OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH
|
|
- Klaudia Gajda
- 9 lat temu
- Przeglądów:
Transkrypt
1 Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Przedstawono zagadnene optymalzacj procesu przesewana w weloproduktowych układach przesewających stosowanych powszechne w nstalacjach produkcj kruszyw. Zaproponowano kryterum optymalnośc procesu merzonej wartoścą produkcj jako funkcję lośc, ceny współczynnka jakośc produktów przesewana. Współczynnk jakośc określono jako bezwymarową funkcję zawartośc podzarna, nadzarna frakcj podstawowej w produkce przesewana. Na przykładze typowego układu produkcj kruszyw wykonano oblczena efektu przesewana przy zmenających sę welkoścach oczek st przesewaczy welopokładowych. 1. WSTĘP Jakość produkowanych kruszyw oraz koszty ch wytwarzana są przedmotem szczególnej trosk przedsęborstwa górnczego w procesach zarządzana produkcją. Wynka to z cążącej na nm odpowedzalnośc za produkt, konkurencj na rynkach surowcowych oraz zmennośc potrzeb asortymentowych klenta (rys. 1). Ten stan rzeczy pocąga za sobą rozwój wewnętrznych systemów kontrol jakośc podnoszena kwalfkacj kompetencyjnych pracownków mających wpływ na efektywność przedsęborstwa. Produkcja kruszyw w przemysłowych nstalacjach przeróbczych odbywa sę w klku następujących po sobe stadach rozdrabnana klasyfkacj. Główną funkcją dwóch perwszych stadów jest redukcja wymarów zaren oraz usuwane zaneczyszczeń lastych organcznych. Na tym etape uzyskuje sę mnej wartoścowe produkty rozdrabnana w postac tłuczna lub klńca. Produkty cennejsze uzyskuje sę w trzecm lub nawet czwartym stadum rozdrabnana sortowana. Ilustrację fragmentu takej technolog odpowedzalnego za jakość produkcj (tzw. grysown), * Poltechnka Wrocławska, Instytut Górnctwa, jerzy.malewsk@pwr.wroc.pl ** Poltechnka Wrocławska, Instytut Górnctwa, baszczynska.marta@gmal.com
2 100 oddzelonej zwykle od 1 stadum układu wstępnego kruszena zbornkem dużej pojemnośc przedstawa rysunek 6. Główne cechy jakoścowe fnalnych produktów to odpowedne uzarnene, płaskość oraz kształt zaren badanych według norm PN EN. Jednocześne welkość zaren oraz ch kształt stotne wpływają na sprawność procesów klasyfkacj (sortowana). Podstawowym problemem jest w tym wypadku uzyskane odpowednch proporcj nadzarna, podzarna frakcj podstawowej w fnalnych produktach układów przesewających. Oznacza to, że w takch produktach zawartość frakcj nomnalnej 1 2 mus być ne mnejsza od pewnej wartośc c, a lość podzarna (zaren mnejszych od 1) nadzarna b (zaren wększych od 2) jest równeż ogranczona do pewnych założonych granc ustalonych w odpowednch normach branżowych oraz wymaganach specyfkacjach techncznych odborcy. Producent kruszywa staje węc przed problemem sprostana tym wymaganom przy jak najwększych korzyścach handlowych. Jest to typowe zadane optymalzacyjne, poneważ jakość produktów (struktura uzarnena, kształt zaren) oraz ch lość pozostają do sebe w relacjach przecwnych wzajemne zależnych (rys. 2). Rys. 1. Zależność jakoścowo-loścowa kopalnctwa, przeróbk zastosowań w górnctwe skalnym Fg. 1. Dependence of qualty-quanttatve n quarryng, mneral processng and applcatons n rock mnng W całośc jest to proces bardzo złożony jego optymalzacja w praktyce odbywa sę metodą prób błędów. O le zagadnene modelowana tego typu operacj jest dość dobrze rozpoznane teoretyczne praktyczne [1 3], to optymalzacja takego zagadnena ne jest już sprawą oczywstą prostą. Problem leży w sformułowanu odpo-
3 101 wednego kryterum optymalzacj. W artykule tym przedstawono koncepcję takego kryterum pokazano sposób jego wykorzystana na przykładach lczbowych analzy typowego układu przeróbczego kruszyw. Jego konstrukcja może być rozwjana w oparcu o znajomość technolog produkcj kruszyw dobrego rozpoznana wymagań jakoścowych odborców. 2. PRAKTYKA PRZESIEWANIA Instalacje przemysłowe zaprojektowane w celu otrzymana szerokego asortymentu, uzyskują produkty na klku kolejnych, welopokładowych przesewaczach. Na przykład frakcje 2-5, 5-8, 8-11, 11-16, można uzyskać w układze dwóch przesewaczy (rys. 3). Nomnalna, najmnejsza szerokość frakcj produktów przesewana wynos tu zaledwe 3 mm, co sprawa, że producenc mają welke trudnośc w uzyskanu przy takm programe produkcj właścwej struktury uzarnena nstalacjach przeróbczych. #22 #16 #11 #8 #5 #2 Rys. 2. Jakość lość jako zagadnene optymalzacyjne Fg. 2. The qualty and quantty as an optmzaton ssue Rys. 3. Typowe układy st w przesewaczach Fg. 3. Typcal seves systems at screens
4 102 Rys. 4. Przykład z praktyk produkcyjnej Fg. 4. Example from practce of producton Technologowe próbują ten problem rozwązywać różnym sposobam. Przede wszystkch uceczką od produkcj wąskch frakcj na rzecz sortymentów o szerszym uzarnenu, np. 2-8, Ale tam, gdze tego ne można zrobć manpuluje sę welkoścam oczek st sąsednch pokładów albo różncowanem tych średnc w poszczególnych segmentach jednego pokładu [2]. Praktyczny przykład takego rozwązana przedstawa rys. 4. Wdzmy tu zróżncowane welkośc oczek st w pone pozome drog przepływu przesewanej nadawy. Całość procesu dochodzena do pożądanych efektów odbywa sę metodą prób błędów. Efekty takego postępowana są najczęścej nezadowalające, poneważ ne sposób jest w warunkach produkcyjnych wypróbować wszelke możlwe kombnacje parametrów przesewana z uwzględnenem wpływu kruszarek na ten proces. Jedynym sposobem jest analza off-lne tego zagad- nena na drodze odpowednej symulacj cyfrowej konkretnego układu klasyfkacj rozdrabnana w oparcu o sprawdzone modele operacj technologcznych. 3. KONCEPCJA OPTYMALIZACJI Podstawowym problemem jakejkolwek optymalzacj jest wybór kryterów, które jednoznaczne pokazują nam jake rozwązane, czyl układ parametrów, struktura, jakość, lość tp. welkośc są najkorzystnejsze w zborze uzyskanych rezultatów. Napotykamy tu jednak na poważny kłopot metodyczny: jak zdefnować jakość produktów klasyfkacj jak powązać tę jakość z wolumenem, a w konsekwencj z wartoścą produkcj? W tym celu przykładową można rozpatrzyć strukturę jednego produktu (rys. 5).
5 103 F(d) F( 2 ) 100% Zakres podzarna Klasa nomnalna Zakres nadzarna F( 1 ) d 1 2 Rys. 5. Struktura uzarnena produktu sortowana Fg. 5. The structure of the partcle sze dstrbuton of sortng product Produkt P wytwarzany jest w lośc q ma skład zarnowy F(d), przy czym zawartość podzarna, frakcj nomnalnej nadzarna wynos a F( 1 ) b F( ) c F ) F( ) (1) 1 2 ( 2 1 Funkcja rozkładu uzarnena F(d) każdego produktu określona jest w zakrese, 0 1, 2 d max, gdze d max wyznacza tu średncę oczka sta górnego. Przyjmując, że suma składnków podzarna, nadzarna frakcj nomnalnej wynos a + b + c = 1 lub 100% wdzmy, że zmana wartośc jednego składnka powoduje zmanę wartośc pozostałych. Jednocześne zmana wartośc oczek st poza wartośc nomnalne 1, 2 {np. 2, 5, 8, 11, 16, 22 mm} powoduje zmany wychodów nadzarna podzarna w produktach przesewana, a także wydajnośc tych produktów. Przyjmjmy dalej, że wartość handlowa -produktu w jest lorazem jego C ceny rynkowej C oraz pewnej mary jakośc = f (a, b, c). Wtedy kryterum optymalnośc procesu może być funkcja wartośc produkcj W, określoną jako W max C q max w q (2) Problemem pozostaje określene funkcyjnej zależnośc od struktury jego uzarnena. Zakładając, że jest to funkcja 1 ( a b) / c (3) formuła ta może być rozwnęta przez odpowedne wprowadzene do nej nnej merzalnej cechy produktu, takej jak kształt zaren, albo kary lub nagrody za odpowedną strukturę uzarnena. Jest to zagadnene warte uwag w przyszłośc. Tymczasem śledząc efekt produkcyjny układu technologcznego merzony wartoścą wyrażoną
6 104 wzorem (2), który uzyskuje sę po manpulacjach na welkoścach oczek st. Pokażemy to na przykładze hpotetycznego (ale typowego w tej branży) układu produkcyjnego (tzw. grysown) o strukturze technolog jak na rysunku 6. produkt stadum I 0 Zbornk półprod R stadum II R stadum III R stadum IV Rys. 6. Przykładowa technologa produkcj kruszywa Fg. 6. Example of aggregate producton technology Z teor praktyk wadomo [1 4], że lość podzarna nadzarna w produktach przesewana zależy od sprawnośc operacj, na co z kole mają wpływ parametry geometryczne dynamczne przesewacza, a także skład zarnowy nadawy obcążene st. W tym wypadku dla wększej jasnośc przykładu, zastosowano prosty model przesewana zakładając jednocześne, że obcążene st jest stałe oraz parametry geometryczne dynamczne przesewaczy są podobne, a węc ntensywność procesu przesewana zależy jedyne od składu zarnowego nadawy na sto oraz że średnce oczek
7 Wychód skumulowany 105 st w pokładach są jednakowe na całej długośc pokładu. Kolejnym uproszczenem jest przyjęce założena, że kruszark generują skład zarnowy jak na rysunku 7 zależny jedyne od szerokośc szczeln wypustowych, które w tym przykładze przyjmuje sę jak na rys. 6, tj. 30, 12 6 mm. Wynk oblczeń przedstawono w tabel 1 2 oraz na rys. 8a, b. W tabel 1 pokazano szczegółowe wynk oblczena układu wg scenarusza produkcj oznaczonego jako 011, co oznacza technologę 4-stadalną (układ granulatora IV stadum jest włączony) produkcję frakcj po II stadum rozdrabnana. Z kole tabela 2 przedstawa wynk w obu scenaruszach: 010 bez IV stadum 011 z IV stadum rozdrabnana. W kolumne 2 tabel zapsano wynk oblczony wzorem (2), w pozostałych kolumnach przyjęto welkośc oczek st równe lub różnące sę od welkośc nomnalnych w odnesenu do poszczególnych frakcj jak w nagłówku tabel. Krzywe składu zarnowego produkcj kruszena F1(d) F2(d) F3(d) F4(d) welkość zaren [mm] Rys. 7. Skład zarnowy produktów kruszena w stadach I do IV Fg. 7. Partcle sze dstrbuton of crushng n stages I to IV
8 011-4-stada rozdrabana 010-3stada rozdrabana 106 Tabela 1 Struktura, jakość lość produkcj wg zadanych welkośc oczek st (Scenarusz 011,wnt 7) Struktura lość produktów przeróbk; s 011, wnt w7 W, zł/h Q, m3/h cena zł/m F( 2) F( ) wspjakosc 1-(a+b)/c zadane # górne # dolne nomnalne nadzarna b podzarna a FrPodst c Tabela 2 Wynk oblczeń wartośc produkcj W przy różnych średncach oczek st lczbe stadów rozdrabnana Scenarusz Warant Wartość W W W W W W W W W W W W W W W W
9 F(d) 107 Wartość produktu jako loczyn ceny wspjakosc Krzywe składu zarnowego produktów rozdrabana 1 wspjakosc wartosc a) d b) Rys. 8. a) Współczynnk jakośc oraz wartość produkcj jako funkcja jakośc wychodu produktów przesewana; b) skład zarnowy produktów przeróbk dla warantu w7 Fg. 8. a) The qualty factor and system output value dependent on and yeld of screenng products; b) gran sze dstrbuton of the screenng products for w7 calculaton varant 4. PODSUMOWANIE Jakość kruszyw merzona strukturą uzarnena jest kluczową cechą produktów przeróbk. Wymagana standardowe dotyczą lośc podzarna, nadzarna frakcj podstawowej. Uzyskane odpowednch proporcj tych składnków w produktach welopokładowych układów przesewających jest trudne z powodów techncznych technologcznych. Problem ten rozwązuje sę w praktyce przez manpulacją średncam oczek st, ale efekty takch zabegów są często wątplwe ryzykowne, jeśl ne są optymalzowane według jasno określonego kryterum jakoścowo-loścowego. Propozycję takego kryterum sposób jego wykorzystana przedstawono w tym opracowanu. Zapewne wymaga to dalszych studów ulepszeń, ale znaczene praktyczne tego zagadnena warte jest podjęca tej dyskusj. LITERATURA [1] BANASZEWSKI T., Przesewacze, Wyd. Śląsk, Katowce [2] MALEWSKI J., Efektywność operacj przesewana, Górn. Odkr., 5/6, [3] MALEWSKI J., O rozkładze obcążena sta sprawnośc przesewana w dwupokładowym przesewaczu wbracyjnym, Prace Naukowe Instytutu Górnctwa Poltechnk Wrocławskej nr 108, sera Konferencje, Wrocław [4] SZTABA K., Przesewane, Śląske Wydawnctwo Technczne, Katowce 1993.
10 108 OPTIMIZATION OF THE SCREENING PROCESS IN CRUSHING-SCREENING SYSTEMS A concept of optmzng the aggregates screenng process n mult-product screenng systems have been presented n ths paper. Optmalty crteron process measured by value of producton as a functon of quantty, prce and qualty screenng factor were proposed. The qualty factor s defned as a dmensonless functon of content of undersze, oversze and man fracton n the screenng product. At the example of typcal aggregates producton system the calculatons of the screenng effect by changng mesh seve szes n mult-deck screens were performed.
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.
Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
ANALIZA GRANULOMETRYCZNA
ZAKŁAD TECHIKI WODO-MUŁOWEJ I UTYLIZACJI ODPADÓW ISTRUKCJA DO LABORATORIUM IŻYIERIA PORCESOWA AALIZA GRAULOMETRYCZA BADAIE WPŁYWU AMPLITUDY DRGAŃ A JAKOŚĆ PROCESU BADAIE ZAWARTOŚCI PODZIARA KOSZALI 2016
WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO
Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono
STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],
STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych
NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych
OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch
Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym
KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
PRZERÓBKA KOPALIN I ODPADÓW PODSTAWY MINERALURGII. Wprowadzenie
Przedmiot: PRZERÓBKA KOPALIN I OPAÓW POSTAWY MINERALURII Ćwiczenie: PRZESIEWANIE Opracowanie: Żaklina Konopacka, Jan rzymała Wprowadzenie Przesiewanie, zwane także klasyfikacją mechaniczną, jest jedną
Karta (sylabus) modułu/przedmiotu
Karta (sylabus) mułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Materały budowlane II Constructon materals Rok: II Semestr: MK_26 Rzaje zajęć lczba gzn: Studa stacjonarne Studa
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ
PIOTR KRZEMIEŃ *, ANDRZEJ GAJEK ** WPŁYW POSTACI FUNKCJI JAKOŚCI ORAZ WAG KRYTERIÓW CZĄSTKOWYCH NA WYNIKI OPTYMALIZACJI ZDERZENIA METODĄ GENETYCZNĄ THE INFLUENCE OF THE SHAPE OF THE QUALITY FUNCTION AND
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego
BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20
Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta
Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu
PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
OGŁOSZENIE TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW. Taryfa obowiązuje od 01.01.2014 do 31.12.
OGŁOSZENIE Zgodne z Uchwałą Nr XXXIII/421/2013 Rady Mejskej w Busku-Zdroju z dna 14 lstopada 2013 r. w sprawe zatwerdzena taryf za zborowe zaopatrzene w wodę zborowe odprowadzane śceków dla Mejskego Przedsęborstwa
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013
ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik
Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Analiza ryzyka jako instrument zarządzania środowiskiem
WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Współczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
Evaluation of estimation accuracy of correlation functions with use of virtual correlator model
Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu
Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
WikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł
ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Wstęp Bogdan Supeł W ostatnm czase obserwuje sę welke zanteresowane dzannam dystansowym do produkcj materaców. Człowek około /3 życa
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU
Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc
8. Optymalizacja decyzji inwestycyjnych
dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.
METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki
Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody
Modelowanie systemu zarządzania przepływem materiałów i oceny efektywności procesów. Redakcja naukowa Bogusław Śliwczyoski
BOGUSŁAW ŚLIWCZYŃSKI (RED.) MODELOWANIE SYSTEMU ZARZĄDZANIA PRZEPŁYWEM MATERIAŁÓW I OCENY EFEKTYWNOŚCI PROCESÓW Modelowane systemu zarządzana przepływem materałów oceny efektywnośc procesów Redakcja naukowa
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID
Symulator układu regulacj automatycznej z samonastrajającym regulatorem PID Założena. Należy napsać program komputerowy symulujący układ regulacj automatycznej, który: - ma pracować w trybe sterowana ręcznego
Regulamin promocji 14 wiosna
promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30
Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
ROZKŁAD OBCIĄŻEŃ ŚRODOWISKOWYCH W WIELOKOMOROWEJ SZYBIE ZESPOLONEJ
Budownctwo o Zoptymalzowanym Potencjale Energetycznym 1(19) 17, s. 15-11 DOI: 1.1751/bozpe.17.1.15 Zbgnew RESPONDEK Poltechnka Częstochowska, Wydzał Budownctwa ROZKŁAD OBCIĄŻEŃ ŚRODOWISKOWYCH W WIELOKOMOROWEJ
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA
InŜynera Rolncza 7/2005 Jan Radoń Katedra Budownctwa Weskego Akadema Rolncza w Krakowe PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA Streszczene Opsano nawaŝnesze
3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO
3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.
Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego
Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz
NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów
PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA
Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012)
30/04! 2012 PON 13: 30! t FAX 22 55 99 910 PKPP Lewatan _..~._. _., _. _ :. _._..... _.. ~._..:.l._.... _. '. _-'-'-'"." -.-.---.. ----.---.-.~.....----------.. LEWATAN Pol~ka KonfederacJa Pracodawcow
Uchwała Nr XXVI 11/176/2012 Rada Gminy Jeleśnia z dnia 11 grudnia 2012
RADA GMNY JELEŚNA Uchwała Nr XXV 11/176/2012 Rada Gmny Jeleśna z dna 11 grudna 2012 w sprawe zatwerdzena taryfy na odprowadzane śceków dostarczane wody przedstawonej przez Zakład Gospodark Komunalnej w
Regulamin promocji zimowa piętnastka
zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna
1. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH
Projekt z fundamentowana: MUR OPOROWY (tuda mgr) POSADOWIENIE NA PALACH WG PN-83/B-02482. OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH grunt G π P d T/Nm P / P r grunt zayp. Tabl.II.. Zetawene parametrów geotechncznych.
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Jakość cieplna obudowy budynków - doświadczenia z ekspertyz
dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc
Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją
Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej
Poltecnka ałostocka Wydzał udownctwa Inżyner Środowska Zakład Inżyner Drogowej Ćwczene projektowe z Podstaw Inżyner Komunkacyjnej Projekt tecnczny odcnka drog klasy tecncznej Z V p 50 km/. Założena do
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
Problem plecakowy (KNAPSACK PROBLEM).
Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne
OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW
Inżynera Rolncza 8(96)/2007 OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Jolanta Królczyk, Marek Tukendorf Katedra Technk Rolnczej Leśnej,
mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH
Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr
MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI
Inżynera Rolncza 10(108)/2008 MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI Leonard Vorontsov, Ewa Wachowcz Katedra Automatyk, Poltechnka Koszalńska Streszczene: W pracy przedstawono
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Sprawozdanie powinno zawierać:
Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,
Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik
Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego obcążena ceplnego Poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
Analiza alternatywnych systemów zaopatrzenia w energię budynków na etapie przygotowania inwestycji zgodnie z wymaganiami art. 5 Dyrektywy UE/91/2002
NARODOWA AGNCJA POSZANOWANIA NRGII S.A. ul. Śwętokrzyska 20, 00-002 Warszawa tel. (0-22) 50 54 661, fax (0-22) 825 86 70 Analza alternatywnych systemów zaopatrzena w energę budynków na etape przygotowana
Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak
Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach
Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.
Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego
TMS. Obliczenia powierzchni i wydajności przesiewania
TMS Obliczenia powierzchni i wydajności przesiewania Przykład: Przesiewacz 2 pokładowy Ilość nadawy kierowanej na przesiewacz 110 t/h Sposób współpracy sit nasobny Wielkość oczek sita - # 3 mm; # 8 mm
ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO FRAGMENTU SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA W ASPEKCIE WYBORU METODY ESTYMACJI OBCIĄŻEŃ SIECI
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrcal Engneerng 2018 DOI 10.21008/j.1897-0737.2018.94.0010 Wojcech BĄCHOREK *, Marusz BENESZ * Andrzej MAKUCH * ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO
Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2
T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej
WPŁYW ASYMETRII NA WAHANIA NAPIĘCIA W SIECIACH ZASILAJĄCYCH PIECE ŁUKOWE
OLZYKOWKI Zbgnew wahana napęca, asymetra, pec łukowy WPŁYW YMETRII N WHNI NPIĘI W IEIH ZILJĄYH PIEE ŁKOWE W referace omówono wpływ asymetr na wahana napęca. Przedstawono wynk oblczeń modelowych oraz przebeg
Sylabus przedmiotu: logistycznym
Sylabus przedmotu: Specjalność: Bezpeczeństwo produktu w łańcuchu Zarządzane rozwojem Data wydruku: 23.01.2016 Dla rocznka: 2015/2016 Kerunek: Wydzał: Zarządzane nżynera produkcj Inżyneryjno-Ekonomczny
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego
Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II