ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304,

Wielkość: px
Rozpocząć pokaz od strony:

Download "ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu."

Transkrypt

1 ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00, pokój 304 OPTYMALIZACJA GLOBALNA Wykład 1 dr nż. Agneszka Bołtuć Wykłady w wersj elektroncznej: gold.uwb.edu.pl/~aboltuc Forma zalczena wykładu: zalczene psemne PLAN WYKŁADU Wstęp Rodzaje zadań Własnośc funkcj celu Ogranczena funkcj celu Lczba wymarów a złożoność Ocena algorytmów optymalzacj koszt symulacj WSTĘP Optymalzacja, ścśle rozumana, dotyczy poszukwana najlepszego rozwązana. W rzeczywstośc ś chodz często o znalezene rozwązana lepszego nż znane dotychczas. optmus (łacna) - najlepszy 1

2 GDZIE STOSOWANA w oprogramowanu wspomagającym projektowane (CAD) - w procese projektowana kształtu komory slnka odrzutowego, w mkroelektronce do projektowana rozłożena elementów na płytkach, w radotechnce do projektowana anten, w dzedznach, będących domeną badań operacyjnych, na przykład w optymalzacj kolejnośc dostarczana przesyłek, w harmonogramowanu zadań, w rozkładach jazdy, we wspomaganu nawgacj, wyznaczanu tras, podejmowanu decyzj. SFORMUŁOWANIE ZADANIA OPTYMALIZACJI Jest dana metryczna przestrzeń poszukwań Ω = ( U, ), gdze U jest zborem wartośc, a metryką, oraz podzbór D U, Dana jest także funkcja celu (zwana wskaźnkem jakośc) f ( x): U R, Zadane optymalzacj polega za znalezenu takego x D, że x = argmnf ( x) x D SPOSOBY ROZWIĄZYWANIA analtyczne możlwe tylko w przypadku klasy funkcj przedstawonych analtyczne, rzadko stosowane ze względu na trudnośc, numeryczne przeszukwane zboru dopuszczalnego w poszukwanu jak najlepszego punktu klasyczne metody optymalzacj, metody optymalzacj globalnej. RODZAJE ZADAŃ w zależnośc od przestrzen poszukwań optymalzacja parametryczna -zakłada sę, że punkt jest wektorem zmennych nezależnych, z których każda przyjmuje pewną wartość; oznacza to, że przestrzeń przeszukwań jest loczynem kartezjańskm zborów wartośc zmennych nezależnych. zadana cągłe - charakteryzują sę tym, że przestrzeń przeszukwań jest loczynem kartezjańskm n zboru lczb rzeczywstych U = R, zadana wypukłe (gdy zbór dopuszczalny funkcja celu są wypukłe), zadana optymalzacj globalnej (newypukła funkcja celu lub zbór dopuszczalny), x U 2

3 RODZAJE ZADAŃ optymalzacja dyskretna - gdy wartośc zmennych nezależnych x, należą do zboru dyskretnego n (skończonego lub przelczalnego) U = Z, optymalzacja kombnatoryczna -każda ze zmennych nezależnych przyjmuje wartość logczną n - prawda albo fałsz, czyl U = Z 2, RODZAJE ZADAŃ Optymalzacja bez ogranczeń gdy zbór dopuszczalny D jest tożsamy z przestrzeną przeszukwań U, Optymalzacja z ogranczenam w przecwnym przypadku nż wyżej. optymalzacja meszana część zmennych przyjmuje wartośc rzeczywste część całkowte. Zadana w Z n będące dyskretną wersją z R n Nektóre z zadań całkowtolczbowych można uzyskać, formułując zadane cągłe przyjmując dodatkowe ogranczene, że zbór dopuszczalny zawera wektory, których wartośc zmennych nezależnych są lczbam całkowtym. Zadana take można próbować rozwązywać w sposób przyblżony. Wówczas, rozwązane odpowednego problemu cągłego może stanowć oszacowane problemu dyskretnego lub przynajmnej (po przyblżenu do najblższego rozwązana dyskretnego) służy jako punkt początkowy poszukwań. Proste przenesene właścwośc zadań cągłych w ch dyskretna wersję prowadz do zbyt dużych uogólneń. Lnowość T f ( x) = a x+ b Jeśl funkcja celu jest lnowa, to rozwązane zadana wypadne zawsze na grancy obszaru dopuszczalnego (jeśl jest domknęty). Jeśl zbór dopuszczalny D jest neskończonej mary, to ne można wykluczyć sytuacj, że rozwązane ne będze stnało. 3

4 Wypukłość Jeśl wypukłe są funkcja celu zbór dopuszczalny, to stneje dokładne jedno mnmum. Ułatwene procesu optymalzacj - można go bowem ogranczyć sę do przeszukwana sąsedztwa punktu roboczego wyberana z tego sąsedztwa nowego punktu roboczego. Funkcja jest wypukła (w dół lub w górę) gdy łuk wykresu funkcj łączący dowolne dwa punkty P,Q tego wykresu leży ponżej (powyżej) lub na cęcwe PQ. Dla funkcj różnczkowalnej - Funkcja f(x) jest wypukła w przedzale (a,b) wtedy tylko wtedy, gdy wykres funkcj leży ponad (pod) wykresem stycznej dla każdego punktu x 0 z przedzału (a,b). Różnczkowalność Jeśl w każdym punkce stneje pochodna funkcj to: łatwo znaleźć kerunek zmnejszana sę wartośc funkcj (kerunek poprawy), zerowane gradentu może wskazywać na znalezene mnmum. Warunek Lpschtza Funkcja spełna ten warunek, jeśl stneje taka wartość L <, że dla każdego x 1, x 2 D zachodz f ( x ) f ( x ) L x x Wartość L jest zwana stalą Lpschtza. Jeśl jest znana, to może być podstawą do konstruowana algorytmów optymalzacj, a także umożlwać oszacowane dokładnośc wynku optymalzacj. 4

5 Właścwość dekompozycj Funkcja taka jest złożenem welu funkcj; wartość każdej z nch można oblczyć na podstawe znajomośc częśc zmennych nezależnych. Zadane znalezena mnmum funkcj można zastąpć weloma zadanam wyznaczena mnmów funkcj z reguły są prostszych do rozwązana. Dekompozycja może prowadzć do zmnejszena wymarowośc wektora argumentów lub też uczynć funkcję mnej skomplkowaną (na przykład dekompozycja na funkcje wypukłe). Wele mnmów lokalnych Są funkcje, które mają wele mnmów lokalnych - funkcje welomodalne. Mnmum lokalne to tak punkt, w którego sąsedztwe o nezerowym promenu ne stneje nny punkt o mnejszej wartośc funkcj celu. Może stneć spójny zbór punktów o jednakowej wartośc funkcj celu, który traktuje sę tak, jakby był jednym punktem nazywa sę go mnmum newłaścwym. W przypadku gdy stneje dokładne jeden punkt nazywa sę go mnmum właścwym. Istnene mnmów lokalnych wynka z: postac funkcj celu, może być także spowodowane właścwoścam zboru dopuszczalnego, na przykład jego newypukłoścą wówczas mnmum lokalne wypadne często na brzegu obszaru dopuszczalnego. Zbory przycągana mnmów lokalnych Zbór wszystkch punktów, które są elementam początkowym cągu zbeżnego do mnmum lokalnego xˆ, nazywamy obszarem przycągana tego mnmum oznaczamy D(x) ˆ). Podzał zboru dopuszczalnego na obszary przycągana generuje rodznę zborów o następujących właścwoścach: suma obszarów przycągana równa jest zborow dopuszczalnemu, obszary przycągana dwóch różnych mnmów lokalnych są rozłączne. 5

6 OGRANICZENIA FUNKCJI CELU Zbór dopuszczalny może być zdefnowany za pomocą zboru funkcj ogranczeń g h j, spełnających warunek, że dla każdego zachodz x D g 0 h = 0 j RODZAJE ZBIORÓW DOPUSZCZALNYCH Ogranczena kostkowe Ogranczena kostkowe mają postać l x u Ogranczena lnowe Ogranczena lnowe mają postać funkcj lnowej T g ( x) = a x+ b W przestrzen R n, jeśl w zadanu występują wyłączne ogranczena lnowe, zbór dopuszczalny (jeśl jest nepusty) jest wypukły. RODZAJE ZBIORÓW DOPUSZCZALNYCH Wypukły obszar dopuszczalny Kolejnym przypadkem ogranczeń są take, które dają wypukły obszar dopuszczalny. Istneje możlwość transformacj do ogranczeń kostkowych. Newypukły nespójny obszar dopuszczalny. Newypukłość obszaru dopuszczalnego jest utrudnenem dla zastosowana algorytmów optymalzacj, gdyż na ogranczenach może występować jedno lub węcej mnmów lokalnych. RODZAJE ZBIORÓW DOPUSZCZALNYCH Nespójny obszar dopuszczalny Obszar dopuszczalny nespójny to tak który składa sę z odzolowanych podzborów. Oznacza to, że dla każdego punktu dopuszczalnego stneje co najmnej jeden punkt dopuszczalny, którego ne sposób osągnąć dowolne małym krokam, ne pozostając przejścowo w obszarze zabrononym. 6

7 LICZBA WYMIARÓW wzrost lczby zmennych wzrost komplkacj zadana zadana kombnatoryczne - uzupełnene wektora zmennych nezależnych o jedną zmenną powoduje podwojene lczby różnych wartośc, które może on przyjąć zadana dyskretne - dodane zmennej nezależnej mogącej przyjąć k wartośc będze skutkować k-krotnym zwększenem lczby różnych wartośc funkcje testowe Ackleya, Rastrgna, Grewanka, etc. węcej wymarów węcej mnmów lokalnych ZŁOŻONOŚĆ OBLICZENIOWA Gdy funkcja kosztu pesymstycznego jest welomanem to problemy take nazywamy łatwym określamy klasą P (ang. polynomal), Problemy klasy NP (ang. nondetermnstc polynomal) - dla których pesymstyczna złożoność oblczenowa nedetermnstycznego algorytmu jest funkcją welomanową. Wśród NP ważną rolę pełną problemy NP-zupełne. ALGORYTM DETERMINISTYCZNY W nformatyce to algorytm, którego dzałane jest całkowce zdetermnowane przez warunk początkowe (wejśce). Welokrotne uruchomene da te same wynk. Inne: równoległe rozproszone, probablstyczne, kwantowe. PROBLEMY NP-ZUPEŁNE I NP-TRUDNE Cechy NP-zupełnych: dla żadnego z nch ne udało sę wykazać stnena determnstycznego algorytmu o welomanowej złożonośc, każdy z nch można przekształcć do każdego nnego za pomocą determnstycznego algorytmu o złożonośc welomanowej. Cechy NP-trudnych: trudne to take, do których da sę (za pomocą algorytmu determnstycznego o welomanowej złożonośc) sprowadzć dowolny problem z NP. 7

8 OCENA ALGORYTMÓW OPTYMALIZACJI Określena jakośc przyblżena maksmum globalnego można dokonać ocenając: odległość od poszukwanego mnmum x x przyblżene wartośc funkcj celu w poszukwanym mnmum f ( x ) f ( x) OCENA ALGORYTMÓW OPTYMALIZACJI marę zboru pozomcowego otaczającego mnmum dokładność odnesona do mary zboru pozomcowego wycętego ze zboru dopuszczalnego { x D: f ( x) f ( x )} D dokładność odnesona do mary zboru pozomcowego wycętego z obszaru przycągana poszukwanego mnmum { x D : f ( x) f ( x )} D ODPORNOŚĆ Chodz o odporność algorytmu na ekstrema lokalne, Czy metoda jest w stane opuszczać" obszary przycągana mnmum lokalnego? Wązałoby sę to ze stwerdzenem, jak często ( czy w ogóle) znajdowane są punkty należące do obszaru przycągana mnmum globalnego, mmo że żaden tak punkt ne był wygenerowany w faze ncjacj algorytmu trudne lub nemożlwe. ODPORNOŚĆ Inny sposób określana odpornośc. Można lczyć, że odporny algorytm pownen generować rozwązana, których położene zależałoby w jak najmnejszym stopnu od stanu początkowego. Oznacza to, że w wynku welu nezależnych uruchomeń należy oczekwać uzyskana zblżonych do sebe rozwązań. 8

9 KOSZT SYMULACJI Czas procesora neunwersalny, Lczba teracj wygodny, bo na jedna terację składa sę wele dzałań, których sę ne berze pod uwagę, WYKŁAD PRZYGOTOWANO NA PODSTAWIE J. Arabas Wykłady z algorytmów ewolucyjnych, WNT, 2001 Lczba wywołań funkcj celu. 9

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny

Bardziej szczegółowo

Rozliczanie kosztów Proces rozliczania kosztów

Rozliczanie kosztów Proces rozliczania kosztów Rozlczane kosztów Proces rozlczana kosztów Koszty dzałalnośc jednostek gospodarczych są złoŝoną kategorą ekonomczną, ujmowaną weloprzekrojowo. W systeme rachunku kosztów odbywa sę transformacja jednych

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

Programowanie wielokryterialne

Programowanie wielokryterialne Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

DOBÓR SERWOSILNIKA POSUWU

DOBÓR SERWOSILNIKA POSUWU DOBÓR SERWOSILNIKA POSUWU Rysunek 1 przedstawa schemat knematyczny napędu jednej os urządzena. Fp Fw mc l Sp Serwoslnk Rys. 1. Schemat knematyczny serwonapędu: przełożene przekładn pasowej, S p skok śruby

Bardziej szczegółowo

Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu.

Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu. Laboratorum z Podstaw Konstrukcj aszyn - - Ćw.. Wyznaczane wartośc średnego współczynnka tarca sprawnośc śrub złącznych oraz uzyskanego przez ne zacsku da okreśonego momentu.. Podstawowe wadomośc pojęca.

Bardziej szczegółowo

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy 4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

Sieci komputerowe cel

Sieci komputerowe cel Sieci komputerowe cel współuŝytkowanie programów i plików; współuŝytkowanie innych zasobów: drukarek, ploterów, pamięci masowych, itd. współuŝytkowanie baz danych; ograniczenie wydatków na zakup stacji

Bardziej szczegółowo

Automatyka. Etymologicznie automatyka pochodzi od grec.

Automatyka. Etymologicznie automatyka pochodzi od grec. Automatyka Etymologicznie automatyka pochodzi od grec. : samoczynny. Automatyka to: dyscyplina naukowa zajmująca się podstawami teoretycznymi, dział techniki zajmujący się praktyczną realizacją urządzeń

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

Strategia rozwoju sieci dróg rowerowych w Łodzi w latach 2015-2020+

Strategia rozwoju sieci dróg rowerowych w Łodzi w latach 2015-2020+ Strategia rozwoju sieci dróg rowerowych w Łodzi w latach 2015-2020+ Projekt: wersja β do konsultacji społecznych Opracowanie: Zarząd Dróg i Transportu w Łodzi Ul. Piotrkowska 175 90-447 Łódź Spis treści

Bardziej szczegółowo

Formularz Zgłoszeniowy propozycji zadania do Szczecińskiego Budżetu Obywatelskiego na 2016 rok

Formularz Zgłoszeniowy propozycji zadania do Szczecińskiego Budżetu Obywatelskiego na 2016 rok Formularz Zgłoszeniowy propozycji zadania do Szczecińskiego Budżetu Obywatelskiego na 2016 rok 1. KONTAKT DO AUTORA/AUTORÓW PROPOZYCJI ZADANIA (OBOWIĄZKOWE) UWAGA: W PRZYPADKU NIEWYRAŻENIA ZGODY PRZEZ

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

DE-WZP.261.11.2015.JJ.3 Warszawa, 2015-06-15

DE-WZP.261.11.2015.JJ.3 Warszawa, 2015-06-15 DE-WZP.261.11.2015.JJ.3 Warszawa, 2015-06-15 Wykonawcy ubiegający się o udzielenie zamówienia Dotyczy: postępowania prowadzonego w trybie przetargu nieograniczonego na Usługę druku książek, nr postępowania

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik górnictwa podziemnego 311[15] Zadanie egzaminacyjne 1

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik górnictwa podziemnego 311[15] Zadanie egzaminacyjne 1 Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik górnictwa podziemnego 311[15] Zadanie egzaminacyjne 1 Uwaga! Zdający rozwiązywał jedno z dwóch zadań. 1 2 3 4 5 6 Zadanie egzaminacyjne

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

ZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych

ZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych Załącznik nr 3 do SIWZ Istotne postanowienia, które zostaną wprowadzone do treści Umowy Prowadzenia obsługi bankowej budżetu miasta Rzeszowa i jednostek organizacyjnych miasta zawartej z Wykonawcą 1. Umowa

Bardziej szczegółowo

NACZYNIE WZBIORCZE INSTRUKCJA OBSŁUGI INSTRUKCJA INSTALOWANIA

NACZYNIE WZBIORCZE INSTRUKCJA OBSŁUGI INSTRUKCJA INSTALOWANIA NACZYNIE WZBIORCZE INSTRUKCJA OBSŁUGI INSTRUKCJA INSTALOWANIA Kraków 31.01.2014 Dział Techniczny: ul. Pasternik 76, 31-354 Kraków tel. +48 12 379 37 90~91 fax +48 12 378 94 78 tel. kom. +48 665 001 613

Bardziej szczegółowo

OPIS PRZEDMIOTU. Podstawy edukacji matematycznej. Wydzia Pedagogiki i Psychologii

OPIS PRZEDMIOTU. Podstawy edukacji matematycznej. Wydzia Pedagogiki i Psychologii OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Wydzia Wydzia Pedagogiki i Psychologii Instytut/Katedra INSTYTUT PEDAGOGIKI, Zak ad Pedagogiki Wczesnoszkolnej i Edukacji Plastycznej Kierunek pedagogika,

Bardziej szczegółowo

PROCEDURA REKRUTACJI DZIECI DO PRZEDSZKOLA NR 2 PROWADZONEGO PRZEZ URZĄD GMINY WE WŁOSZAKOWICACH NA ROK SZKOLNY 2014/2015

PROCEDURA REKRUTACJI DZIECI DO PRZEDSZKOLA NR 2 PROWADZONEGO PRZEZ URZĄD GMINY WE WŁOSZAKOWICACH NA ROK SZKOLNY 2014/2015 Załącznik do Zarządzenia Nr 1./2014 Dyrektora Przedszkola nr 2 z dnia 20.02. 2014r. PROCEDURA REKRUTACJI DZIECI DO PRZEDSZKOLA NR 2 PROWADZONEGO PRZEZ URZĄD GMINY WE WŁOSZAKOWICACH NA ROK SZKOLNY 2014/2015

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE e LAORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYH LPP 2 Ćwiczenie nr 10 1. el ćwiczenia Przełączanie tranzystora bipolarnego elem

Bardziej szczegółowo

Gruntowy wymiennik ciepła PROVENT- GEO

Gruntowy wymiennik ciepła PROVENT- GEO Gruntowy wymiennik ciepła PROVENT- GEO Bezprzeponowy Płytowy Gruntowy Wymiennik Ciepła PROVENT-GEO to unikatowe, oryginalne rozwiązanie umożliwiające pozyskanie zawartego gruncie chłodu latem oraz ciepła

Bardziej szczegółowo

REGULAMIN RADY RODZICÓW Liceum Ogólnokształcącego Nr XVII im. A. Osieckiej we Wrocławiu

REGULAMIN RADY RODZICÓW Liceum Ogólnokształcącego Nr XVII im. A. Osieckiej we Wrocławiu Uchwała nr 4/10/2010 z dnia 06.10.2010 r. REGULAMIN RADY RODZICÓW Liceum Ogólnokształcącego Nr XVII im. A. Osieckiej we Wrocławiu Podstawa prawna: - art. 53.1 ustawy z dnia 7 września 1991 r. o systemie

Bardziej szczegółowo

Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach.

Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach. Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach. 1 PROJEKTY KOSZTOWE 2 PROJEKTY PRZYCHODOWE 3 PODZIAŁ PROJEKTÓW ZE WZGLĘDU

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY KLASA CZWARTA, PIĄTA I SZÓSTA PROGRAM: Przyrodo, witaj! WSiP, PODRĘCZNIK, ZESZYT UCZNIA, ZESZYT ĆWICZEŃ (tylko klasa piąta) Przyrodo, witaj! E.Błaszczyk, E.Kłos

Bardziej szczegółowo

Wykład 1 Tomasz Żak Instytut Matematyki i Informatyki C-11, pok. 313, www.im.pwr.wroc.pl/ zak

Wykład 1 Tomasz Żak Instytut Matematyki i Informatyki C-11, pok. 313, www.im.pwr.wroc.pl/ zak Wykład 1 Tomasz Żak Instytut Matematyki i Informatyki C-11, pok. 313, www.im.pwr.wroc.pl/ zak Zasady zaliczenia Zajęcia są obowiązkowe, wolno opuścić 4 godziny. W semestrze 2 kolokwia po 50 punktów. Rozwiązywanie

Bardziej szczegółowo

3 Zarządzenie wchodzi w życie z dniem 1 listopada 2012 roku.

3 Zarządzenie wchodzi w życie z dniem 1 listopada 2012 roku. Zarządzenie Nr 6 / 2012/2013 Dyrektora Zespołu Szkół Ponadgimnazjalnych we Wrocławiu z dnia 1 listopada 2012 w sprawie wprowadzania Procedury wynajmu pomieszczeń w budynku Zespołu Szkół Ponadgimnazjalnych

Bardziej szczegółowo

Komputerowe Systemy Sterowania Sem.VI, Wykład organizacyjny

Komputerowe Systemy Sterowania Sem.VI, Wykład organizacyjny Komputerowe Systemy Sterowania Sem.VI, Kierunek: Automatyka i Robotyka, Specjalność: Automatyka i Systemy Sterowania Wykład organizacyjny Katedra Inżynierii Systemów Sterowania Wymiar dydaktyczny przedmiotu

Bardziej szczegółowo

REGULAMIN TURNIEJU SPORTOWEJ GRY KARCIANEJ KANASTA W RAMACH I OGÓLNOPOLSKIEGO FESTIWALU GIER UMYSŁOWYCH 55+ GORZÓW WLKP. 2013 R.

REGULAMIN TURNIEJU SPORTOWEJ GRY KARCIANEJ KANASTA W RAMACH I OGÓLNOPOLSKIEGO FESTIWALU GIER UMYSŁOWYCH 55+ GORZÓW WLKP. 2013 R. REGULAMIN TURNIEJU SPORTOWEJ GRY KARCIANEJ KANASTA W RAMACH I OGÓLNOPOLSKIEGO FESTIWALU GIER UMYSŁOWYCH 55+ GORZÓW WLKP. 2013 R. Termin: 13 kwietnia 2013 r. godz. 10:45 15:45 Miejsce: WiMBP im. Zbigniewa

Bardziej szczegółowo

o: - umorzenie* / odroczenie* / rozłoŝenie na raty * naleŝności w opłatach związanych z lokalem mieszkalnym.

o: - umorzenie* / odroczenie* / rozłoŝenie na raty * naleŝności w opłatach związanych z lokalem mieszkalnym. ... (imię i nazwisko)... w Rybniku (adres) ul. 3 Maja 12 44-200 Rybnik... (pesel)... ( NIP)... (nr telefonu kontaktowego) Wniosek Do Dyrektora Zakładu Gospodarki Mieszkaniowej o: - umorzenie* / odroczenie*

Bardziej szczegółowo

Stanowisko Rzecznika Finansowego i Prezesa Urzędu Ochrony Konkurencji i Konsumentów w sprawie interpretacji art. 49 ustawy o kredycie konsumenckim

Stanowisko Rzecznika Finansowego i Prezesa Urzędu Ochrony Konkurencji i Konsumentów w sprawie interpretacji art. 49 ustawy o kredycie konsumenckim Prezes Urzędu Ochrony Konkurencji i Konsumentów Warszawa, 16 maja 2016 r. Stanowisko Rzecznika Finansowego i Prezesa Urzędu Ochrony Konkurencji i Konsumentów w sprawie interpretacji art. 49 ustawy o kredycie

Bardziej szczegółowo

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13

Bardziej szczegółowo

U C H W A Ł A NR XIX/81/2008. Rady Gminy Ostrowite z dnia 21 maja 2008 roku. u c h w a l a s ię:

U C H W A Ł A NR XIX/81/2008. Rady Gminy Ostrowite z dnia 21 maja 2008 roku. u c h w a l a s ię: U C H W A Ł A NR XIX/81/2008 Rady Gminy Ostrowite z dnia 21 maja 2008 roku w sprawie regulaminu udzielania pomocy materialnej o charakterze socjalnym dla uczniów. Na podstawie art. 90f. ustawy z dnia 7

Bardziej szczegółowo

Elektryczne ogrzewanie podłogowe fakty i mity

Elektryczne ogrzewanie podłogowe fakty i mity Elektryczne ogrzewanie podłogowe fakty i mity Ogrzewanie podłogowe staje się coraz bardziej docenianym systemem podnoszącym komfort użytkowników mieszkań, apartamentów i domów jednorodzinnych. Niestety

Bardziej szczegółowo

OBWODY REZYSTANCYJNE NIELINIOWE

OBWODY REZYSTANCYJNE NIELINIOWE Politechnika Białostocka Wydział Elektryczny atedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zaj laboratoryjnych OBWODY REZYSTANCYJNE NELNOWE Numer wiczenia E17 Opracowanie: dr in. Jarosław

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium ROBOTYKA Robotics Forma studiów: stacjonarne Poziom przedmiotu: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

PL-LS.054.24.2015 Pani Małgorzata Kidawa Błońska Marszałek Sejmu RP

PL-LS.054.24.2015 Pani Małgorzata Kidawa Błońska Marszałek Sejmu RP Warszawa, dnia 04 września 2015 r. RZECZPOSPOLITA POLSKA MINISTER FINANSÓW PL-LS.054.24.2015 Pani Małgorzata Kidawa Błońska Marszałek Sejmu RP W związku z interpelacją nr 34158 posła Jana Warzechy i posła

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

REGULAMIN SAMORZĄDU UCZNIOWSKIEGO GIMNAZJUM W ZABOROWIE UL. STOŁECZNA 182

REGULAMIN SAMORZĄDU UCZNIOWSKIEGO GIMNAZJUM W ZABOROWIE UL. STOŁECZNA 182 Załącznik nr 6 REGULAMIN SAMORZĄDU UCZNIOWSKIEGO GIMNAZJUM W ZABOROWIE UL. STOŁECZNA 182 Na podstawie atr.55 Ustawy o systemie oświaty z dnia 7 września 1991 roku (Dz.U. z 1991 roku nr 59 poz.425) ze zmianami

Bardziej szczegółowo

1) Dziekan lub wyznaczony przez niego prodziekan - jako Przewodniczący;

1) Dziekan lub wyznaczony przez niego prodziekan - jako Przewodniczący; Wydział Prawa, Prawa Kanonicznego i Administracji KUL Wydziałowa Komisja ds. Jakości Kształcenia Al. Racławickie 14, 20-950 Lublin, tel. +48 81 445 37 31; fax. +48 81 445 37 26, e-mail: wydzial.prawa@kul.pl

Bardziej szczegółowo

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój

Bardziej szczegółowo

Sieć komputerowa grupa komputerów lub innych urządzeo połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów, na przykład:

Sieć komputerowa grupa komputerów lub innych urządzeo połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów, na przykład: Sieci komputerowe Sieć komputerowa grupa komputerów lub innych urządzeo połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów, na przykład: korzystania ze wspólnych urządzeo, np.

Bardziej szczegółowo

LABORATORIUM TECHNOLOGII NAPRAW WERYFIKACJA TULEJI CYLINDROWYCH SILNIKA SPALINOWEGO

LABORATORIUM TECHNOLOGII NAPRAW WERYFIKACJA TULEJI CYLINDROWYCH SILNIKA SPALINOWEGO LABORATORIUM TECHNOLOGII NAPRAW WERYFIKACJA TULEJI CYLINDROWYCH SILNIKA SPALINOWEGO 2 1. Cel ćwiczenia : Dokonać pomiaru zuŝycia tulei cylindrowej (cylindra) W wyniku opanowania treści ćwiczenia student

Bardziej szczegółowo

Zasady rekrutacji dzieci do I klasy Szkoły Podstawowej im. hm. Janka Bytnara Rudego w Lubieniu Kujawskim na rok szkolny 2014/2015*

Zasady rekrutacji dzieci do I klasy Szkoły Podstawowej im. hm. Janka Bytnara Rudego w Lubieniu Kujawskim na rok szkolny 2014/2015* Zasady rekrutacji dzieci do I klasy Szkoły Podstawowej im. hm. Janka Bytnara Rudego w Lubieniu Kujawskim na rok szkolny 2014/2015* 1. Dzieci zamieszkałe w obwodzie szkoły przyjmowane są do klasy I na podstawie

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

Szczegółowy opis zamówienia

Szczegółowy opis zamówienia ZFE-II.042.2. 24.2015 Szczegółowy opis zamówienia I. Zasady przeprowadzenia procedury zamówienia 1. Zamówienie realizowane jest na podstawie art.70 1 i 70 3 70 5 Kodeksu Cywilnego ( Dz. U. z 2014 r. poz.

Bardziej szczegółowo

Regulamin. Rady Nadzorczej Spółdzielni Mieszkaniowej "Doły -Marysińska" w Łodzi

Regulamin. Rady Nadzorczej Spółdzielni Mieszkaniowej Doły -Marysińska w Łodzi Regulamin Rady Nadzorczej Spółdzielni Mieszkaniowej "Doły -Marysińska" w Łodzi I. PODSTAWY I ZAKRES DZIAŁANIA 1 Rada Nadzorcza działa na podstawie: 1/ ustawy z dnia 16.09.1982r. Prawo spółdzielcze (tekst

Bardziej szczegółowo

REGULAMIN WSPARCIA FINANSOWEGO CZŁONKÓW. OIPiP BĘDĄCYCH PRZEDSTAWICIELAMI USTAWOWYMI DZIECKA NIEPEŁNOSPRAWNEGO LUB PRZEWLEKLE CHOREGO

REGULAMIN WSPARCIA FINANSOWEGO CZŁONKÓW. OIPiP BĘDĄCYCH PRZEDSTAWICIELAMI USTAWOWYMI DZIECKA NIEPEŁNOSPRAWNEGO LUB PRZEWLEKLE CHOREGO Załącznik nr 1 do Uchwały Okręgowej Rady Pielęgniarek i Położnych w Opolu Nr 786/VI/2014 z dnia 29.09.2014 r. REGULAMIN WSPARCIA FINANSOWEGO CZŁONKÓW OIPiP BĘDĄCYCH PRZEDSTAWICIELAMI USTAWOWYMI DZIECKA

Bardziej szczegółowo

Regulamin rekrutacji do Gimnazjum w Chwaliszewie na rok szkolny 2016/2017

Regulamin rekrutacji do Gimnazjum w Chwaliszewie na rok szkolny 2016/2017 Regulamin rekrutacji do Gimnazjum w Chwaliszewie na rok szkolny 2016/2017 Podstawa prawna: 1. Ustawy z dnia 7 września 1991 r. o systemie oświaty (Dz.U. z 2015 r. poz. 2156 z późn zm.) 2. Rozporządzenie

Bardziej szczegółowo

Odpowiedzi na pytania zadane do zapytania ofertowego nr EFS/2012/05/01

Odpowiedzi na pytania zadane do zapytania ofertowego nr EFS/2012/05/01 Odpowiedzi na pytania zadane do zapytania ofertowego nr EFS/2012/05/01 1 Pytanie nr 1: Czy oferta powinna zawierać informację o ewentualnych podwykonawcach usług czy też obowiązek uzyskania od Państwa

Bardziej szczegółowo

UCHWAŁ A SENATU RZECZYPOSPOLITEJ POLSKIEJ. z dnia 18 października 2012 r. w sprawie ustawy o zmianie ustawy o podatku dochodowym od osób fizycznych

UCHWAŁ A SENATU RZECZYPOSPOLITEJ POLSKIEJ. z dnia 18 października 2012 r. w sprawie ustawy o zmianie ustawy o podatku dochodowym od osób fizycznych UCHWAŁ A SENATU RZECZYPOSPOLITEJ POLSKIEJ z dnia 18 października 2012 r. w sprawie ustawy o zmianie ustawy o podatku dochodowym od osób fizycznych Senat, po rozpatrzeniu uchwalonej przez Sejm na posiedzeniu

Bardziej szczegółowo

Regulamin studenckich praktyk zawodowych w Państwowej Wyższej Szkole Zawodowej w Nowym Sączu

Regulamin studenckich praktyk zawodowych w Państwowej Wyższej Szkole Zawodowej w Nowym Sączu Regulamin studenckich praktyk zawodowych w Państwowej Wyższej Szkole Zawodowej w Nowym Sączu 1 1. Uczelnia organizuje studenckie praktyki zawodowe, zwane dalej "praktykami", przewidziane w planach studiów

Bardziej szczegółowo

WZORU UŻYTKOWEGO EGZEMPLARZ ARCHIWALNY. d2)opis OCHRONNY. (19) PL (n)62894. Centralny Instytut Ochrony Pracy, Warszawa, PL

WZORU UŻYTKOWEGO EGZEMPLARZ ARCHIWALNY. d2)opis OCHRONNY. (19) PL (n)62894. Centralny Instytut Ochrony Pracy, Warszawa, PL RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej d2)opis OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 112772 (22) Data zgłoszenia: 29.11.2001 EGZEMPLARZ ARCHIWALNY (19) PL (n)62894 (13)

Bardziej szczegółowo

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiotowe zasady oceniania zgodne z Wewnątrzszkolnymi Zasadami Oceniania obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiot: biologia Nauczyciel przedmiotu: Anna Jasztal, Anna Woch 1. Formy sprawdzania

Bardziej szczegółowo

Komentarz technik dróg i mostów kolejowych 311[06]-01 Czerwiec 2009

Komentarz technik dróg i mostów kolejowych 311[06]-01 Czerwiec 2009 Strona 1 z 14 Strona 2 z 14 Strona 3 z 14 Strona 4 z 14 Strona 5 z 14 Strona 6 z 14 Uwagi ogólne Egzamin praktyczny w zawodzie technik dróg i mostów kolejowych zdawały wyłącznie osoby w wieku wskazującym

Bardziej szczegółowo

Warszawa, dnia 6 listopada 2015 r. Poz. 1821 ROZPORZĄDZENIE MINISTRA ROLNICTWA I ROZWOJU WSI 1) z dnia 23 października 2015 r.

Warszawa, dnia 6 listopada 2015 r. Poz. 1821 ROZPORZĄDZENIE MINISTRA ROLNICTWA I ROZWOJU WSI 1) z dnia 23 października 2015 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 6 listopada 2015 r. Poz. 1821 ROZPORZĄDZENIE MINISTRA ROLNICTWA I ROZWOJU WSI 1) z dnia 23 października 2015 r. w sprawie szczegółowych warunków

Bardziej szczegółowo

DEKLARACJA NA PODATEK ROLNY. 3. Rok

DEKLARACJA NA PODATEK ROLNY. 3. Rok POLA JASNE WYPEŁNA PODATNK. WYPEŁNAĆ NA MASZYNE KOMPUTEROWO LUB RĘCZNE DUŻYM DRUKOWANYM LTERAM CZARNYM LUB NEBESKM KOLOREM. 1. Numer dentyfikatora Podatkowego składajacego deklarację DR-1 2. Nr dokumentu

Bardziej szczegółowo

STATUT CHODZIESKIEGO STOWARZYSZENIA SPORTOWEGO HALS. I. Nazwa stowarzyszenia i godło. I. Teren działania i siedziba

STATUT CHODZIESKIEGO STOWARZYSZENIA SPORTOWEGO HALS. I. Nazwa stowarzyszenia i godło. I. Teren działania i siedziba STATUT CHODZIESKIEGO STOWARZYSZENIA SPORTOWEGO HALS I. Nazwa stowarzyszenia i godło 1 Stowarzyszenie nosi nazwę: Chodzieskie Stowarzyszenie Sportowe HALS, w skrócie Ch.S.S. HALS zwane w dalszym ciągu statutu

Bardziej szczegółowo

Regulamin przeprowadzania rokowań na sprzedaż lub oddanie w użytkowanie wieczyste nieruchomości stanowiących własność Gminy Wałbrzych

Regulamin przeprowadzania rokowań na sprzedaż lub oddanie w użytkowanie wieczyste nieruchomości stanowiących własność Gminy Wałbrzych Załącznik nr 2 do Zarządzenia nr 901/2012 Prezydenta Miasta Wałbrzycha z dnia 19.11.2012 r. Regulamin przeprowadzania rokowań na sprzedaż lub oddanie w użytkowanie wieczyste nieruchomości stanowiących

Bardziej szczegółowo

Umowa o pracę zawarta na czas nieokreślony

Umowa o pracę zawarta na czas nieokreślony Umowa o pracę zawarta na czas nieokreślony Uwagi ogólne Definicja umowy Umowa o pracę stanowi dokument stwierdzający zatrudnienie w ramach stosunku pracy. Według ustawowej definicji jest to zgodne oświadczenie

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) WZORY OŚWIADCZEŃ SKŁADANYCH DO WNIOSKU Wzór nr 1 zbiór oświadczeń Wzór nr 2 oświadczenie o posiadanym prawie do dysponowania nieruchomością Wzór nr 3 oświadczenie o dokonanych poprawkach / uzupełnieniach

Bardziej szczegółowo

U S T A W A. z dnia. o zmianie ustawy o ułatwieniu zatrudnienia absolwentom szkół. Art. 1.

U S T A W A. z dnia. o zmianie ustawy o ułatwieniu zatrudnienia absolwentom szkół. Art. 1. P r o j e k t z dnia U S T A W A o zmianie ustawy o ułatwieniu zatrudnienia absolwentom szkół. Art. 1. W ustawie z dnia 18 września 2001 r. o ułatwieniu zatrudnienia absolwentom szkół (Dz.U. Nr 122, poz.

Bardziej szczegółowo

Rozdział 1. Ogólna charakterystyka podatku od towarów i usług

Rozdział 1. Ogólna charakterystyka podatku od towarów i usług Podatek od towarów i usług. Red.: Aneta Kaźmierczyk Wykaz skrótów Słowo wstępne Rozdział 1. Ogólna charakterystyka podatku od towarów i usług 1.1. Cechy charakterystyczne podatku VAT 1.2. Prounijna wykładnia

Bardziej szczegółowo

KLAUZULE ARBITRAŻOWE

KLAUZULE ARBITRAŻOWE KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa

Bardziej szczegółowo

NOWELIZACJA USTAWY PRAWO O STOWARZYSZENIACH

NOWELIZACJA USTAWY PRAWO O STOWARZYSZENIACH NOWELIZACJA USTAWY PRAWO O STOWARZYSZENIACH Stowarzyszenie opiera swoją działalność na pracy społecznej swoich członków. Do prowadzenia swych spraw stowarzyszenie może zatrudniać pracowników, w tym swoich

Bardziej szczegółowo

Rozdział 6. KONTROLE I SANKCJE

Rozdział 6. KONTROLE I SANKCJE Rozdział 6. KONTROLE I SANKCJE 6.1. AUDYT I KONTROLE FINANSOWE Komisja w czasie realizacji projektu i do 5 lat po jego zakończeniu może zlecić przeprowadzenie audytu finansowego. Audyt może obejmować:

Bardziej szczegółowo

ZARZĄDZENIE Nr Or/9/Z/05

ZARZĄDZENIE Nr Or/9/Z/05 ZARZĄDZENIE Nr Or/9/Z/05 Burmistrza Gminy i Miasta Lwówek Śląski z dnia 6 kwietnia 2005r. w sprawie udzielenia dnia wolnego od pracy Działając na podstawie art. 33 ust. 5 ustawy z dnia 8 marca 1990 r.

Bardziej szczegółowo

Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych

Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych Zapytanie ofertowe dotyczące wyboru wykonawcy (biegłego rewidenta) usługi polegającej na przeprowadzeniu kompleksowego badania sprawozdań finansowych Data publikacji 2016-04-29 Rodzaj zamówienia Tryb zamówienia

Bardziej szczegółowo

UCHWAŁA NR RADY MIEJSKIEJ W ŁODZI z dnia

UCHWAŁA NR RADY MIEJSKIEJ W ŁODZI z dnia Druk Nr Projekt z dnia UCHWAŁA NR RADY MIEJSKIEJ W ŁODZI z dnia w sprawie ustalenia stawek opłat za zajęcie pasa drogowego dróg krajowych, wojewódzkich, powiatowych i gminnych na cele nie związane z budową,

Bardziej szczegółowo

Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show

Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show Warunek: uczestnikami mogą być amatorzy pow.15 lat 1. Style taneczne turniejów tańca w show. 1. 1. Turnieje tańca w show przeprowadzane

Bardziej szczegółowo

System wielokryterialnej optymalizacji systemu traderskiego na rynku kontraktów terminowych

System wielokryterialnej optymalizacji systemu traderskiego na rynku kontraktów terminowych System wielokryterialnej optymalizacji systemu traderskiego na rynku kontraktów terminowych Bartłomiej Wietrak 1 1 Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Streszczenie

Bardziej szczegółowo

1 Jeżeli od momentu złożenia w ARR, odpisu z KRS lub zaświadczenia o wpisie do ewidencji działalności

1 Jeżeli od momentu złożenia w ARR, odpisu z KRS lub zaświadczenia o wpisie do ewidencji działalności Załącznik nr 2 Zasady przyznawania autoryzacji dla zakładów produkcyjnych (przetwórczych) i zakładów konfekcjonujących oraz autoryzacji receptury produktów pośrednich 1. Autoryzację w ramach niniejszego

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY

WOJEWÓDZKI KONKURS FIZYCZNY Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza wykracza poza obowiązujący

Bardziej szczegółowo

Podstawa prawna: Ustawa z dnia 15 lutego 1992 r. o podatku dochodowym od osób prawnych (t. j. Dz. U. z 2000r. Nr 54, poz. 654 ze zm.

Podstawa prawna: Ustawa z dnia 15 lutego 1992 r. o podatku dochodowym od osób prawnych (t. j. Dz. U. z 2000r. Nr 54, poz. 654 ze zm. Rozliczenie podatników podatku dochodowego od osób prawnych uzyskujących przychody ze źródeł, z których dochód jest wolny od podatku oraz z innych źródeł Podstawa prawna: Ustawa z dnia 15 lutego 1992 r.

Bardziej szczegółowo

Podstawy programowania

Podstawy programowania Podstawy programowania Elementy algorytmiki C w środowisku.e (C#) dr inŝ. Grzegorz Zych Copernicanum, pok. 104 lub 206a 1 Minimum programowe reści kształcenia: Pojęcie algorytmu. Podstawowe konstrukcje

Bardziej szczegółowo

REGULAMIN KOSZTÓW PIŁKARSKIEGO SĄDU POLUBOWNEGO

REGULAMIN KOSZTÓW PIŁKARSKIEGO SĄDU POLUBOWNEGO REGULAMIN KOSZTÓW PIŁKARSKIEGO SĄDU POLUBOWNEGO Na podstawie 17 ust. 4 Regulaminu Piłkarskiego Sądu Polubownego Polskiego Związku Piłki Nożnej, postanawia się co następuje: I POSTANOWIENIA OGÓLNE 1 Niniejszy

Bardziej szczegółowo

FORMULARZ POZWALAJĄCY NA WYKONYWANIE PRAWA GŁOSU PRZEZ PEŁNOMOCNIKA NA NADZWYCZAJNYM WALNYM ZGROMADZENIU CODEMEDIA S.A

FORMULARZ POZWALAJĄCY NA WYKONYWANIE PRAWA GŁOSU PRZEZ PEŁNOMOCNIKA NA NADZWYCZAJNYM WALNYM ZGROMADZENIU CODEMEDIA S.A FORMULARZ POZWALAJĄCY NA WYKONYWANIE PRAWA GŁOSU PRZEZ PEŁNOMOCNIKA NA NADZWYCZAJNYM WALNYM ZGROMADZENIU Z SIEDZIBĄ W WARSZAWIE ZWOŁANYM NA DZIEŃ 2 SIERPNIA 2013 ROKU Niniejszy formularz przygotowany został

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

WNIOSEK O WPIS DO REJESTRU GRUPOWYCH PRAKTYK LEKARSKICH... (nazwa i siedziba Okręgowej/Wojskowej Izby Lekarskiej) przedstawiciela spółki

WNIOSEK O WPIS DO REJESTRU GRUPOWYCH PRAKTYK LEKARSKICH... (nazwa i siedziba Okręgowej/Wojskowej Izby Lekarskiej) przedstawiciela spółki (Ŝółty PANTONE 012 U) CZĘŚĆ A WYPEŁNIA WNIOSKODAWCA DANE EWIDENCYJNE WNIOSEK O WPIS DO REJESTRU GRUPOWYCH PRAKTYK LEKARSKICH................................................ (nazwa i siedziba Okręgowej/Wojskowej

Bardziej szczegółowo

Sprawozdanie z działalności Rady Nadzorczej TESGAS S.A. w 2008 roku.

Sprawozdanie z działalności Rady Nadzorczej TESGAS S.A. w 2008 roku. Sprawozdanie z działalności Rady Nadzorczej TESGAS S.A. w 2008 roku. Rada Nadzorcza zgodnie z treścią Statutu Spółki składa się od 5 do 9 Członków powoływanych przez Walne Zgromadzenie w głosowaniu tajnym.

Bardziej szczegółowo

Rady Miejskiej Wodzisławia Śląskiego. w sprawie stypendiów dla osób zajmujących się twórczością artystyczną i upowszechnianiem kultury.

Rady Miejskiej Wodzisławia Śląskiego. w sprawie stypendiów dla osób zajmujących się twórczością artystyczną i upowszechnianiem kultury. identyfikator /6 Druk nr 114 UCHWAŁY NR... Rady Miejskiej Wodzisławia Śląskiego z dnia... w sprawie stypendiów dla osób zajmujących się twórczością Na podstawie art. 7 ust. 1 pkt 9 i art. 18 ust. 1 ustawy

Bardziej szczegółowo

KONKURS NA NAJLEPSZE LOGO

KONKURS NA NAJLEPSZE LOGO KONKURS NA NAJLEPSZE LOGO Stowarzyszenie Unia Nadwarciańska ogłasza konkurs na logo. Regulamin konkursu: I. POSTANOWIENIA WSTĘPNE 1. Regulamin określa: cele konkursu, warunki uczestnictwa w konkursie,

Bardziej szczegółowo

Założenia prognostyczne Wieloletniej Prognozy Finansowej

Założenia prognostyczne Wieloletniej Prognozy Finansowej Załącznik nr 3 do uchwały o Wieloletniej Prognozie Finansowej Założenia prognostyczne Wieloletniej Prognozy Finansowej Uwagi ogólne Przewidywana w nowej ustawie o finansach publicznych wieloletnia prognoza

Bardziej szczegółowo

Warszawa: Dostawa kalendarzy na rok 2017 Numer ogłoszenia: 41127-2016; data zamieszczenia: 15.04.2016 OGŁOSZENIE O ZAMÓWIENIU - dostawy

Warszawa: Dostawa kalendarzy na rok 2017 Numer ogłoszenia: 41127-2016; data zamieszczenia: 15.04.2016 OGŁOSZENIE O ZAMÓWIENIU - dostawy Strona 1 z 5 Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.knf.gov.pl/o_nas/urzad_komisji/zamowienia_publiczne/zam_pub_pow/index.html Warszawa:

Bardziej szczegółowo