MECHANIKA RELATYWISTYCZNA
|
|
- Krystyna Czyż
- 8 lat temu
- Przeglądów:
Transkrypt
1 MCHANIKA RLATYWISTYCZNA
2 MCHANIKA RLATYWISTYCZNA (SZCZGÓLNA TORIA WZGLĘDNOŚCI TRANSFORMACJA LORNTZA WSPÓŁRZĘDNYCH CZĄSTKI (93r. Rys.. S y y S z z z Układy S i S są inerjalnymi kładami odniesienia z ( m Hendrik Antoon Lorentz ( Prędkość względna kładów onst 8, gdzie 3 m/ s nie zależy od kład odniesienia ( onst. Podstawowe założenie STW, sformłowane na podstawie wynik doświadzenia Mihelsona Moreleya z 887 rok. masa, prędkość i położenie ząstki w kładzie S : m, w kładzie S : m, r, (,y,z r r r, (,y,z r Założenie: t t, gdy O O, pozątki kładów pokrywają się.
3 3 Transformaja współrzędnyh ząstki Definija zynnika beta ( i gamma (γ Lorentza: γ ( t t t z z y y t ( t γ γ Transformaja odwrotna:, ( t t t z z y y t ( t γ γ ZASADA KORSPONDNCJI BOHRA (93r. Prawa i sformłowania dotyząe nowyh odkryć nie mogą być sprzezne z prawami fizyki klasyznej. Wzory transformaji Lorentza przehodzą we wzory transformaji Galilesza. t t z z y y t ( / << Niels H.D. Bohr (885 96
4 TRANSFORMACJA LORNTZA PRĘDKOŚCI CZĄSTKI Dla nieskońzenie małyh przyrostów i t możemy napisać d dy dz dt Gdzie γ ( d dy dz γ ( dt dt d γ ( dt γ ( d, dt d dt / dt Transformaja prędkośi ząstki ma postać: y z y z itd. oznazają odpowiednie składowe prędkośi ząstki w kładzie S i S Gdy wzory transformaji Lorentza przehodzą we wzory transformaji Galilesza y z y z 4
5 SKŁADANI PRĘDKOŚCI, przykład Rys.. S S onst. ( z z Prędkość względna kładów i prędkość ząstki w kładzie S są równe prędkośi światła oraz ząstka porsza się w kiernk osi., y z Złożenie dwóh prędkośi światła daje w wynik prędkość,y z światła. Spełnione jest podstawowe założenie szzególnej teorii względnośi, że wartość prędkośi światła nie zależy od kład odniesieni i jest maksymalną prędkośią w przyrodzie. 5
6 KONSKWNCJ TRANSFORMACJI LORNTZA Skróenie dłgośi Wydłżenie przedziałów zasowyh 3 Masa ząstki relatywistyznej 4 nergia ząstki relatywistyznej DŁUGOŚĆ odległość dwóh pnktów w przestrzeni mierzona w tej samej hwili zas PRZDZIAŁ CZASU zas oddzielająy dwa kolejne zdarzenia zahodząe w tym samym pnkie przestrzeni Rys.. S y S y onst. P t zahodzą dwa różne zdarzenia odległe w zasie o T (T L (L Pręt spozywa względem kład S (kład spozynkowy pręta z z 6
7 TRANSFORMACJA LORNTZA DŁUGOŚCI Pręt spozywa względem kład S S kład spozynkowy pręta (ząstki, iała, tzw. własny kład odniesienia S kład laboratoryjny, spozywająy względem Ziemi ważanej za inerjalny kład odniesienia L mierzona dłgość pręta, gdy znajdje się on w rh względem obserwatora, L dłgość, gdy pręt względem obserwatora spozywa, L onst, tzw. dłgość własna pręta L L < L L Pręt na Ziemi dla obserwatora ma m Obserwatorowi na Ziemi pręt na statk wyda się krótszy Skróenie dłgośi w kładzie laboratoryjnym Inazej L L γ γl > L 7
8 TRANSFORMACJA LORNTZA PRZDZIAŁU CZASU W pnkie przestrzeni P zahodzą dwa różne zdarzenia odległe w zasie o T (w kładzie S lb T (mierzone w kładzie S T przedział zas mierzony przez obserwatora w kładzie laboratoryjnym S, T przedział zas mierzony w kładzie S T γ > T γt > T Wydłżenie przedział zas w kładzie laboratoryjnym Inazej T T Porszająe się zegary hodzą wolniej niż zegary spozywająe. 8
9 MASA CZĄSTKI RLATYWITYCZNJ (98r. Doświadzenie z 98 r: badanie zależnośi masy elektron od jego prędkośi S Laboratorim, S Układ Spozynkowy lektron Zmiana oznazeń: wielkośi wyznazane w laboratorim są zapisywane bez indeksów dolnyh, wielkośi w kładzie spozynkowym (własnym posiadają dolny indeks Rys. 3. e / m e / mo Krzywa o równani: e / m e / m o ν γ e/m - stosnek ładnk elektron do jego masy e - nie zależy od kład odniesienia m - masa elektron przy prędkośi różnej od zera m - masa spozynkowa elektron ( γ Zależność stosnk e / m e / m najlepiej opisje krzywa o równani: Wynika stąd zależność masy ząstki od jej prędkośi m γ m e / m e / m γ 9
10 NRGIA CZĄSTKI RLATYWISTYCZNJ Spełnione równanie rh (II zasada dynamiki Newtona r F Obowiązje definija pęd ząstki taka jak w fizye klasyznej r dp dt r r r r p m( γm γ / / nergia kinetyzna ząstki jest równa pray wykonanej nad ząstką przez siłę przemieszzenia jej z pnkt A do pnkt B. Założenie: w hwili t, B r r PRACA F d k A F r, podzas Przy małyh prędkośiah ząstki, <<, wzór na energię kinetyzną ma postać: k m Przy prędkośiah ząstki porównywalnyh z prędkośią światła wzór na energię kinetyzna ma ( zpełnie inną postać: k m m γm m m γ m Z definiji: m nosi nazwę energii spozynkowej, m - energia ałkowita ząstki relatywistyznej m k m m - wzór insteina na równoważność masy i energii. Inazej
11 ZMIANA NRGII CAŁKOWITJ ZMIANA MASY BZWŁADNJ M C ( nergia ałkowita inazej 4 m p ( m p ( m p m p γ CZĄSTKI O ZROWJ MASI SPOCZYNKOWJ CZĄSTKI SKRAJNI RLATYWISTYCZN nergia (masa spozynkowa ząstki jest dżo mniejsza od energii ałkowitej << m p p m p Cząstki o zerowej masie spozynkowej (fotony, netrina porszają się z prędkośią równą prędkośi światła.
12 ODDZIAŁYWANI GRAWITACYJN FOTONÓW (KWANTÓW γ I NUTRIN (ν Z obserwaji astrofizyznyh wiadomo, że foton (netrino przebiegają w pobliż gwiazdy zakrzywia swój tor. Zakrzywienie to, w przypadk foton, wynika z oddziaływania grawitayjnego foton ( ząstki bezmasowej z gwiazdą, zego następstwem jest zmiana jego zęstośi. Rys. 4. Masa foton m hν m hν nergia ałkowita foton oddziaływjąego z polem grawitayjnym ' hν' hν ( r GMm GMhν ( r r r hν' hν GM hν r ν GM, ν ν ν' ν r np. gdy Gwiazdą jest Słońe, otrzymjemy ν ν (3 Jest to obserwowane tzw. przesnięie zęstośi fotonów k zerwieni (zmniejszenie zęstośi fotonów.
13 p RÓWNOWAŻNOŚĆ INRCJALNYCH UKŁADÓW ODNISINIA Doświadzenie z rozpraszaniem protonów na jądrah atomów (na jądrah tarzy, np. na protonah dłgość odinków wydaje się skróona, a zegary wydają się hodzić szybiej Rys. 5. kład S (lab T N o l m N? N detektor mezonów π S kład laboratoryjny, S kład własny ząstek (mezonów π p jadro T mezony π (p proton, T tarza l m Mezony π są nietrwałe, legają rozpadowi π ± µ ± N N e t ν µ / τ - τ.6-8 s, średni zas żyia pion w jego kładzie własnym S - MeV energia (masa spozynkowa pion Zał.: γ nergia kinetyzna wynosi: k k ( m m γ m MeV GeV ( γ ( γ 3
14 UKŁAD LABORATORYJNY S Rozważania klasyzne N? N N e m t 8 3 m / s N / N N N t / τ ep % s.8 % Tylko 3 mezony na dotrą do detektora! Rozważania relatywistyzne, z względnieniem spowolnienia zegara pion τ γτ N N ep 5. N / N 5% 8 s N 6 Ponad połowa mezonów dotrze do detektora! s N UKŁAD WŁASNY MZONU π, S Obserwator porszająy się z mezonami laboratorim z pnkt widzenia leąyh mezonów τ.6-8 s, zegar pion hodzi normalnie l l m γ 5m t 8 3 m / s 5m.7.7 N N ep.6 N / N 5% s.5n Tyle samo mezonów dotrze do detektora w kładzie własnym, zanim legnie rozpadowi, o i w kładzie laboratoryjnym! N N LABORATORIUM( S N N SPOCZYNKOWY π( S kład laboratoryjny kład mezon π 4
Elementy szczególnej teorii względności
Elementy szzególnej teorii względnośi Podstawowe założenia szzególnej teorii względnośi: Albert Einstein 195 Prawa fizyzne są takie same dla wszystkih obserwatorów któryh kłady odniesienia porszają się
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich
ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa
Albert Einstein SZCZEGÓLNA I OGÓLNA TEORIA WZGLĘDNOŚCI. Szczególna Teoria Względności
Szzególna Teoria Względnośi SZCZEGÓLNA I OGÓLNA TEORIA WZGLĘDNOŚCI Albert Einstein 1879 1955 1905 szzególna teoria względnośi 1915 ogólna teoria względnośi (teoria grawitaji) PRZESTRZEŃ CZAS ŚWIATŁO MASA
Elementy mechaniki relatywistycznej
Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka
teoria wzgl wzgl dności
ver-8.6.7 teoria względnośi interferometr Mihelsona eter? Albert Mihelson 85 Strzelno, Kujawy 93 Pasadena, Kalifornia Nobel - 97 http://galileoandeinstein.physis.virginia.edu/more_stuff/flashlets/mmexpt6.htm
Szczególna Teoria Względności
Szzególna Teoria Względnośi Prędkość światła klzowa dla fndamentalnyh pytań o natrę Wszehświata Starożytność bardzo dża lb prędkość dźwięk określona (IV w. B.C. Arystoteles = ) XI w. A.D. Arabowie (Awienna)
Wykład 30 Szczególne przekształcenie Lorentza
Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku
Elementy dynamiki relatywistycznej r r
Elementy dynamiki relatywistyznej r r F ma - nieaktualne r r d p F - nadal aktualne dt ale pod warunkiem, że r r m r p γ m gdzie m - masa spozynkowa. Możliwa interpretaja: r r m p m gdzie masa zależy od
KINEMATYKA RELATYWISTYCZNA
KINEMATYKA RELATYWISTYCZNA Wstęp Mehanika klasyzna, hoć daje świetne przewidywania dla rh pojazdów, maszyn zy statków kosmiznyh, zawodzi ałkowiie, gdy opisjemy ząstki porszająe się z wielkimi prędkośiami,
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Wykład FIZYKA II. 10. Szczególna teoria względności. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYK II 10. Szzególna teoria względnośi Dr hab. inż. Władysław rtur Woźniak Instytut Fizyki Politehniki Wroławskiej http://www.if.pwr.wro.pl/~wozniak/ MECHNIK RELTYWISTYCZN Mehanika newtonowska
Fizyka cząstek elementarnych
Wykład II lementy szzególnej teorii względnośi W fizye ząstek elementarnyh mamy zwykle do zynienia z obiektami oruszająymi się z rędkośiami orównywalnymi z rędkośią światła o owoduje koniezność stosowania
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szzególna i ogólna teoria względnośi (wybrane zagadnienia) Mariusz Przybyień Wydział Fizyki i Informatyki Stosowanej Akademia Górnizo-Hutniza Wykład 1 M. Przybyień (WFiIS AGH) Szzególna Teoria Względnośi
V.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
ELEMENTY MECHANIKI RELATYWISTYCZNEJ
ELEMENTY MECHANIKI RELATYWISTYCZNEJ Wykład 9 Pamiętaj, że najmniejszy krok w stronę elu jest więej wart niż maraton dobryh hęi. H. J. Brown ELEMENTY MECHANIKI RELATYWISTYCZNEJ Szzególna teoria względnośi
TRANFORMACJA GALILEUSZA I LORENTZA
TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym
IV.5. Promieniowanie Czerenkowa.
Jansz B. Kępka Rh absoltny i względny IV.5. Promieniowanie Czerenkowa. Fizyk rosyjski Pawieł A. Czerenkow podjął badania (1934 r.) nad znanym słabym świeeniem niebiesko-białym wydzielanym przez silne preparaty
Fizyka relatywistyczna
Fizyka relatywistyzna Zadania z rozwiązaniami Projekt współfinansowany przez Unię uropejską w ramah uropejskiego Funduszu Społeznego Zadanie Na spozywająą ząstkę zazyna działać stała siła. Jaką prędkość
U.1 Elementy szczególnej teorii względności
UZUPEŁNIENIE Uzupełnienie Elementy szzególnej teorii względnośi U.1 Elementy szzególnej teorii względnośi Mehanika klasyzna oparta na zasadah dynamiki Newtona poprawnie opisuje zjawiska, w któryh prędkośi
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Zrozumieć Einsteina, czyli jak uczę szczególnej teorii względności
strona 1/17 Motto: Geniusz jest potrzebny do tworzenia dzieł, a nie do ih podziwiania. Zrozumieć Einsteina, zyli jak uzę szzególnej teorii względnośi Aleksander Nowik aleksander.nowik@neostrada.pl Szzególna
CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie I (luty, 2013) u Wyprowadzenie transformacji Lorentza u Relatywistyczna transformacja prędkości u Dylatacja czasu u Skrócenie długości
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Mechanika relatywistyczna Wykład 13
Mechanika relatywistyczna Wykład 13 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/32 Czterowektory kontrawariantne
Teoria względności Szczególna teoria względności dr Mikołaj Szopa wykład
Teoria względnośi Szzególna teoria względnośi dr Mikołaj Szopa wykład 9.0.6 Teoria względnośi Transformaje Galileusza Przyspieszenie układu S : a = 0 S S y y t x = x - t y = y z = z t = t () x = x - t
Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l
Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej
Mechanika relatywistyczna
Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX
ver teoria względności
ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
Mechanika relatywistyczna Wykład 15
Mechanika relatywistyczna Wykład 15 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/40 Czterowektory kontrawariantne
Własności falowe cząstek. Zasada nieoznaczoności Heisenberga.
Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina
Podstawy fizyki wykład 9
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI)
MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI) Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Rys. Albert
Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości
III.3 Transformacja Lorentza położenia i pędu cd. Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości Jan Królikowski Fizyka IBC 1 Geometria czasoprzestrzeni-
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków
ANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Fizyka 1 (mechanika) AF14. Wykład 12
Fizyka 1 (mechanika) 1100-1AF14 Wykład 12 Jerzy Łusakowski 18.12.2017 Plan wykładu Doświadczenie Michelsona - Morley a Transformacja Lorentza Synchronizacja zegarów Wnioski z transformacji Lorentza Doświadczenie
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2 9 października 2017 A.F.Żarnecki
f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując
Wykład z fizyki. Piotr Posmykiewiz 63 s = ma s = m v f vi = mvi 7- f W równaniu powyŝszym zastosowano równanie Porównują równania 7-0 i 7- otrzymamy: i a s = v f v i v f = 0 ( Patrz równanie -). f s =
7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.
7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa
Podstawy fizyki sezon 1 XI. Mechanika relatywistyczna
Podstawy fizyki sezon 1 XI. Mechanika relatywistyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka
Postulaty szczególnej teorii względności
Teoria Względności Pomiary co, gdzie, kiedy oraz w jakiej odległości w czasie i przestrzeni Transformowanie (przekształcanie) wyników pomiarów między poruszającymi się układami Szczególna teoria względności
Najwygodniej za energię przekazaną materii uważać energię usuniętą z pola promieniowania z wyłączeniem energii zużytej na wzrost masy spoczynkowej.
awką pohłoniętą nazywa się energię przekazaną aterii przez proieniowanie jonizjąe na jednostkę asy. energia przekazana energia zżyta na jonizaję, wzbdzenie, wzrost energii heiznej lb energii siei krystaliznej,
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
III.2 Transformacja Lorentza położenia i czasu.
III.2 Transformacja Lorentza położenia i czasu. Transformacja Lorentza Geometria czasoprzestrzeni interwał. Konsekwencje transformacji Lorentza: dylatacja czasu i skrócenie długości. Jan Królikowski Fizyka
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Transformacja Lorentza Wykład 14
Transformacja Lorentza Wykład 14 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/43 Względność Galileusza Dotychczas
Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
MECHANIKA RELATYWISTYCZNA. Rys. Transformacja Galileusza
MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Wstęp Jeden z twórców mechaniki (klasycznej).
Zasady względności w fizyce
Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,
Masa relatywistyczna niepotrzebny i szkodliwy relikt
FOTON 14, Wiosna 014 1 Masa relatywistyzna niepotrzebny i szkodliwy relikt Aleksander Nowik Nauzyiel fizyki, matematyki i informatyki Siemianowie Śląskie Ouh! The onept of relatiisti mass is subjet to
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
ELEMENTY MECHANIKI RELATYWISTYCZNEJ
ELEMENTY MECHANIKI RELATYWISTYCZNEJ Wykład 9 ELEMENTY MECHANIKI RELATYWISTYCZNEJ What I'm really interested in is whether God could have made the world in a different way; that is, whether the necessity
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Teoria grawitacji. Grzegorz Hoppe (PhD)
Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości
Elektron i proton jako cząstki przyspieszane
Elektron i proton jako cząstki przyspieszane Streszczenie Obecnie znanych jest wiele metod przyśpieszania cząstek. Przyśpieszane są elektrony, protony, deuterony a nawet jony ciężkie. Wszystkie one znalazły
Szczególna teoria względności
Szczególna teoria względności Wykład VI: energia progowa foton rozpraszanie Comptona efekt Doplera prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Podstawy fizyki subatomowej
Podstawy fizyki subatomowej Zenon Janas Zakład Fizyki Jądrowej IFD UW ul. Pasteura 5 p..81 tel. 55 3 681 e-mail: janas@fuw.edu.pl http://www.fuw.edu.pl/~janas/fsuba/fizsub.htm Zasady zaliczenia Obecność
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Symetrie. D. Kiełczewska, wykład9
Symetrie Symetrie a prawa zachowania Zachowanie momentu pędu (niezachowanie spinu) Parzystość, sprzężenie ładunkowe Symetria CP Skrętność (eksperyment Goldhabera) Zależność spinowa oddziaływań słabych
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład XII: masa niezmiennicza i układ środka masy zderzenia elastyczne czastki elementarne rozpady czastek rozpraszanie nieelastyczne Dynamika relatywistyczna
Dynamika relatywistyczna, czasoprzestrzeń
Kuala Lupur, Malesia, Febuary 4 W-8 (Jarszewiz) 3 slajdów Na pdstawie prezentaji prf. J. Rutkwskieg Dynaika relatywistyzna, zasprzestrzeń Siła relatywistyzna Pęd relatywistyzny Energia relatywistyzna:
Fizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna
Elementy optyki Odbiie i załamanie fal Zasada Huygensa Zasada Fermata Interferenja Dyfrakja Siatka dyfrakyjna 1 Odbiie i załamanie fal elektromagnetyznyh na graniah dwóh ośrodków Normalna do powierzhni
Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.
Zasady zachowania Pęd i moment pędu Praca, moc, energia Ruch pod działaniem sił zachowawczych Pęd i energia przy prędkościach bliskich prędkości światła Pęd i moment pędu dp/dt = F p = const, gdy F = 0
Czym zajmuje się teoria względności
Teoria względności Czym zajmuje się teoria względności Głównym przedmiotem zainteresowania teorii względności są pomiary zdarzeń (czegoś, co się dzieje) ustalenia, gdzie i kiedy one zachodzą, a także jaka
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Temat XXXIII. Szczególna Teoria Względności
Temat XXXIII Szczególna Teoria Względności Metoda radiolokacyjna Niech w K znajduje się urządzenie nadawcze o okresie T, mierzonym w układzie K Niech K oddala się od K z prędkością v wzdłuż osi x i rejestruje
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski
Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:
Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn
Magnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
Reakcje jądrowe dr inż. Romuald Kędzierski
Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane
Fizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
B C D D B C C B B B B B A Zadanie 5 (1 pkt) Astronauta podczas zbierania próbek skał z powierzchni Księżyca upuścił szczypce z wysokości 1m. Przyspieszenie grawitacyjne przy powierzchni Księżyca ma wartość
9.6. Promieniowanie rentgenowskie. Dyfrakcja promieniowania rentgenowskiego (prawo Bragga).
9. Optyka 9.6. Promieniowanie rentgenowskie. yfrakja promieniowania rentgenowskiego (prawo Bragga). Shemat budowy lampy rentgenowskiej. Przyspieszone do dużej prędkośi elektrony uderzają w antykatodę zmniejszają
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład V: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła