Logika pierwszego rz du. Sposób u»ycia. Tautologie, sposoby u»ywania logiki pierwszego rz du, zwi zki z j zykiem naturalnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Logika pierwszego rz du. Sposób u»ycia. Tautologie, sposoby u»ywania logiki pierwszego rz du, zwi zki z j zykiem naturalnym"

Transkrypt

1 Logika pierwszego rz du. Sposób u»ycia. Tautologie, sposoby u»ywania logiki pierwszego rz du, zwi zki z j zykiem naturalnym

2 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ);

3 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ);

4 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ;

5 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ;

6 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ;

7 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ;

8 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ;

9 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ;

10 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ;

11 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ; 8 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ);

12 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ; 8 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 9 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ);

13 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ; 8 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 9 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 10 xϕ xϕ;

14 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ; 8 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 9 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 10 xϕ xϕ; 11 x yϕ y xϕ;

15 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ; 8 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 9 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 10 xϕ xϕ; 11 x yϕ y xϕ; 12 x yϕ y xϕ;

16 Kilka wa»nych tautologii 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x FV (ϕ); 3 ϕ(s/x) xϕ; 4 xϕ x ϕ; 5 xϕ x ϕ; 6 x(ϕ ψ) xϕ xψ; 7 x(ϕ ψ) xϕ xψ; 8 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 9 x(ϕ ψ) ϕ xψ, o ile x FV (ϕ); 10 xϕ xϕ; 11 x yϕ y xϕ; 12 x yϕ y xϕ; 13 x yϕ y xϕ.

17 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart.

18 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej.

19 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej. Formuªa yp(y) zq(z) jest równowa»na ka»dej z nast puj cych formuª:

20 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej. Formuªa yp(y) zq(z) jest równowa»na ka»dej z nast puj cych formuª: 1 y p(y) z q(z);

21 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej. Formuªa yp(y) zq(z) jest równowa»na ka»dej z nast puj cych formuª: 1 y p(y) z q(z); 2 y p(y) z q(z);

22 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej. Formuªa yp(y) zq(z) jest równowa»na ka»dej z nast puj cych formuª: 1 y p(y) z q(z); 2 y p(y) z q(z); 3 y( p(y) z q(z));

23 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej. Formuªa yp(y) zq(z) jest równowa»na ka»dej z nast puj cych formuª: 1 y p(y) z q(z); 2 y p(y) z q(z); 3 y( p(y) z q(z)); 4 y z( p(y) q(z));

24 Preneksowa posta normalna Formuªa ϕ jest w preneksowej postaci normalnej, gdy ϕ = Q 1 y 1 Q 2 y 2... Q n y n ψ gdzie ka»de z Q i to lub, a ψ jest formuª otwart. Fakt Dla ka»dej formuªy pierwszego rz du istnieje równowa»na jej formuªa w preneksowej postaci normalnej. Formuªa yp(y) zq(z) jest równowa»na ka»dej z nast puj cych formuª: 1 y p(y) z q(z); 2 y p(y) z q(z); 3 y( p(y) z q(z)); 4 y z( p(y) q(z)); 5 y z(p(y) q(z)).

25 Logika formalna i j zyk polski Ka»dy cyrulik sewilski goli tych wszystkich m»czyzn w Sewilli, którzy si sami nie gol. Ale nie goli»adnego z tych, którzy gol si sami. A zatem w Sewilli nie ma ani jednego cyrulika.

26

27 Implikacja materialna i zwi zek przyczynowo-skutkowy Implikacja w logice klasycznej to implikacja materialna. Warto± logiczna ϕ ψ zale»y wyª cznie od warto±ci logicznych przypisanych ϕ i ψ. To nie jest zwi zek przyczynowo-skutkowy ani nast pstwo chronologiczne. W j zyku polskim stwierdzenie je±li ϕ to ψ oczywi±cie sugeruje zwi zek przyczynowo-skutkowy: Je±li zasilanie jest wª czone, to terminal dziaªa. Implikacja materialna nie zachodzi; materialn prawd jest Je±li terminal dziaªa to zasilanie jest wª czone.

28 Implikacja materialna i zwi zek przyczynowo-skutkowy Implikacja w logice klasycznej to implikacja materialna. Warto± logiczna ϕ ψ zale»y wyª cznie od warto±ci logicznych przypisanych ϕ i ψ. To nie jest zwi zek przyczynowo-skutkowy ani nast pstwo chronologiczne. W j zyku polskim stwierdzenie je±li ϕ to ψ oczywi±cie sugeruje zwi zek przyczynowo-skutkowy: Je±li zasilanie jest wª czone, to terminal dziaªa. Implikacja materialna nie zachodzi; materialn prawd jest Je±li terminal dziaªa to zasilanie jest wª czone. Terminal dziaªa, poniewa» zasilanie jest wª czone, stwierdza zwi zek przyczynowo-skutkowy i faktyczne zaj±cie wymienionych zdarze«i jest niewyra»alne w logice klasycznej.

29 Konfuzje skªadniowe: kwantykacja Ka»dy kot ma w sy. Pewien kot ma w sy.

30 Konfuzje skªadniowe: kwantykacja Ka»dy kot ma w sy. Pewien kot ma w sy. x(kot(x) MaW sy(x)); x(kot(x) MaW sy(x)).

31 Konfuzje skªadniowe: negacja Liczba n jest parzysta; Liczba n jest dwukrotno±ci pewnej liczby oznaczaj to samo.

32 Konfuzje skªadniowe: negacja Liczba n jest parzysta; Liczba n jest dwukrotno±ci pewnej liczby oznaczaj to samo. Zaprzeczeniem pierwszego z nich jest zdanie Liczba n nie jest parzysta, ale zaprzeczeniem drugiego nie jest Liczba n nie jest dwukrotno±ci pewnej liczby,

33 Konfuzje skªadniowe: koniunkcja vs. alternatywa Zabrania si za±miecania i zanieczyszczania drogi. 1 Zabrania si za±miecania lub zanieczyszczania drogi. 2 1 Kodeks Drogowy przed nowelizacj w roku Kodeks Drogowy po nowelizacji w roku 1997.

34 Konfuzje kolejno±ci kwantykacji Opcje: You can fool some of the people all of the time, and all of the people some of the time, but you can not fool all of the people all of the time. Abraham Lincoln ( p t...) ( p t...) ( p t...) ( t p...) ( t p...) ( p t...)

35

36 Konfuzje wynikania je±li A, to B je±li C, to B A B Je±li Marysia ma do napisania esej, to b dzie do pó¹na pracowa w bibliotece. Je±li biblioteka b dzie otwarta pó¹nym wieczorem, to Marysia b dzie do pó¹na pracowa w bibliotece. Marysia ma do napisania esej. Marysia b dzie do pó¹na pracowa w bibliotece.

37 Konfuzje wynikania je±li A, to B je±li B, to C A B

38 Konfuzje wynikania je±li A, to B je±li B, to C A B Je±li telewizor Marii jest zepsuty, odda go do reperacji. Je±li Maria odda telewizor do reperacji, nie b dzie mogªa zapªaci rachunku za elektryczno±. Telewizor Marii jest zepsuty. Maria odda telewizor do reperacji.

39 Konfuzje wynikania je±li A, to B je±li B, to C A B

40 Konfuzje wynikania je±li A, to B je±li B, to C A B Je±li telewizor Marii jest zepsuty, odda go do reperacji. Je±li Maria odda telewizor do reperacji, nie b dzie mogªa wykupi lekarstw. Telewizor Marii jest zepsuty. Maria odda telewizor do reperacji.

41 Siªa wyrazu logiki pierwszego rz du

42 Siªa wyrazu logiki pierwszego rz du Zdanie wyra»a wªasno± struktury

43 Siªa wyrazu logiki pierwszego rz du Zdanie wyra»a wªasno± struktury Rozró»nianie struktur Formalizowanie wªasno±ci struktur Formuªa deniuje relacj w strukturze

44 Siªa wyrazu logiki pierwszego rz du Zdanie wyra»a wªasno± struktury Rozró»nianie struktur Formalizowanie wªasno±ci struktur Formuªa deniuje relacj w strukturze Rozró»nianie elementów w strukturze Formalizowanie wªasno±ci elementów i krotek

45 Rozró»nianie struktur Sygnatura: Operacja dwuargumentowa Staªa ε.

46 Rozró»nianie struktur Sygnatura: Operacja dwuargumentowa Staªa ε. x 1 x 2 y( z 1 z 2 (y = z 1 z 2 y = z 1 y = z 2 ) y = x 1 y = x 2 y = ε) jest:

47 Rozró»nianie struktur Sygnatura: Operacja dwuargumentowa Staªa ε. x 1 x 2 y( z 1 z 2 (y = z 1 z 2 y = z 1 y = z 2 ) y = x 1 y = x 2 y = ε) jest: prawdziwe w strukturze {a, b},, ε sªów nad alfabetem {a, b} z konkatenacj i sªowem pustym,

48 Rozró»nianie struktur Sygnatura: Operacja dwuargumentowa Staªa ε. x 1 x 2 y( z 1 z 2 (y = z 1 z 2 y = z 1 y = z 2 ) y = x 1 y = x 2 y = ε) jest: prawdziwe w strukturze {a, b},, ε sªów nad alfabetem {a, b} z konkatenacj i sªowem pustym, faªszywe w strukturze {a, b, c},, ε sªów nad alfabetem {a, b} z konkatenacj i sªowem pustym,

49 Rozró»nianie struktur Sygnatura: Operacja dwuargumentowa Staªa ε. x 1 x 2 y( z 1 z 2 (y = z 1 z 2 y = z 1 y = z 2 ) y = x 1 y = x 2 y = ε) jest: prawdziwe w strukturze {a, b},, ε sªów nad alfabetem {a, b} z konkatenacj i sªowem pustym, faªszywe w strukturze {a, b, c},, ε sªów nad alfabetem {a, b} z konkatenacj i sªowem pustym, Zdanie rozró»nia te dwie struktury.

50 Formalizowanie wªasno±ci elementów i krotek Mamy pier±cie«liczb caªkowitych Z = Z, +,, 0, 1

51 Formalizowanie wªasno±ci elementów i krotek Mamy pier±cie«liczb caªkowitych Z = Z, +,, 0, 1 Formuªa z 1 z 2 z 3 z 4 y = x + (z 1 z 1 ) + (z 2 z 2 ) + (z 3 z 3 ) + (z 4 z 4 ) deniuje relacj x y.

52 Formalizowanie wªasno±ci elementów i krotek Mamy pier±cie«liczb caªkowitych Z = Z, +,, 0, 1 Formuªa z 1 z 2 z 3 z 4 y = x + (z 1 z 1 ) + (z 2 z 2 ) + (z 3 z 3 ) + (z 4 z 4 ) deniuje relacj x y. Twierdzenie Lagrange'a Ka»da liczba naturalna jest sum czterech kwadratów kliczb naturalnych.

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language First-order logic. Usage Tautologies, using rst-order logic, relations to natural language A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); A few important tautologies 1 x(ϕ ψ) ( xϕ xψ); 2 xϕ ϕ, o ile x

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.

Bardziej szczegółowo

Logika matematyczna (16) (JiNoI I)

Logika matematyczna (16) (JiNoI I) Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16

Bardziej szczegółowo

Rachunek zda«. Relacje. 2018/2019

Rachunek zda«. Relacje. 2018/2019 Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.

Bardziej szczegółowo

Logika intuicjonistyczna

Logika intuicjonistyczna 9 listopada 2011 Plan 1 2 3 4 Plan 1 2 3 4 Intuicjonizm Pogl d w lozoi matematyki wprowadzony w 1912 L. E. J. Brouwera. Twierdzenia matematyczne powstaj dzi ki intuicjom naszego umysªu. Skupienie si na

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Metoda tablic semantycznych. 1 Metoda tablic semantycznych

Metoda tablic semantycznych. 1 Metoda tablic semantycznych 1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Zadania z logiki 1. Zadania na rozgrzewk. 1. Zaznacz na rysunku zbiory

Zadania z logiki 1. Zadania na rozgrzewk. 1. Zaznacz na rysunku zbiory Zadania z logiki 1 Zadania na rozgrzewk 1. Zaznacz na rysunku zbiory (a) { x, y R 2 : (x + y > 2) (x < 3)}; (b) { x, y R 2 : (x 2 1 = 0) (y = x + 7)}; (c) { x, y R 2 : (x 2 + y 2 = 1) (2x = y)}; (d) {

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Lech Jakóbczyk Instytut Fizyki Teoretycznej Uniwersytet Wrocªawski 1 / 17 Spl tanie stanów czystych Formalna denicja spl tania Ukªad zªo»ony: Hilberta

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Programowanie wspóªbie»ne wiczenia 5 monitory cz. 1 Zadanie 1: Stolik dwuosobowy raz jeszcze W systemie dziaªa N par procesów. Procesy z pary s nierozró»nialne. Ka»dy proces cyklicznie wykonuje wªasnesprawy,

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Preliminaria logiczne

Preliminaria logiczne Preliminaria logiczne Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR Jerzy Pogonowski (MEG) Preliminaria

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Wyniki prof. Rasiowej w informatyce I

Wyniki prof. Rasiowej w informatyce I G. Mirkowska & A. Salwicki () Wyniki prof. Rasiowej w informatyce I 22 06 2017 1 / 24 Wyniki prof. Rasiowej w informatyce I G. Mirkowska & A. Salwicki Instytut Informatyki UKSW salwicki@mimuw.edu.pl przyczynek

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Rachunki sekwentów. Jerzy Pogonowski. MDTiAR 1xii2015

Rachunki sekwentów. Jerzy Pogonowski. MDTiAR 1xii2015 Rachunki sekwentów Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR 1xii2015 Jerzy Pogonowski (MEG)

Bardziej szczegółowo

Algebra Boole'a i logika cyfrowa

Algebra Boole'a i logika cyfrowa Algebra Boole'a i logika cyfrowa 7.X. 2009 1 Aksjomatyczna denicja algebry Boole'a Do opisywanie ukªadów cyfrowych b dziemy u»ywali formalizmu nazywanego algebr Boole'a. Formalnie algebra Boole'a to struktura

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Arytmetyka pierwszego rz du

Arytmetyka pierwszego rz du Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.

Bardziej szczegółowo

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018 Wielomiany El»bieta Sadowska-Owczorz 19 listopada 2018 Wielomianem nazywamy wyra»enie postaci a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 = n a k x k. k=0 Funkcj wielomianow nazywamy funkcj W :

Bardziej szczegółowo

Wokóª twierdzenia Gödla o peªno±ci logiki pierwszego rz du

Wokóª twierdzenia Gödla o peªno±ci logiki pierwszego rz du Wokóª twierdzenia Gödla o peªno±ci logiki pierwszego rz du Marek Czarnecki 11 lipca 2010 Podczas II Konferencji Epistemologii Nauk cisªych w Królewcu w 1930 roku, Kurt Gödel zaprezentowaª dowód twierdzenia

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

1 Elektrostatyka. 1.1 Wst p teoretyczny

1 Elektrostatyka. 1.1 Wst p teoretyczny Elektrostatyka. Wst p teoretyczny Dwa ªadunki elektryczne q i q 2 wytwarzaj pole elektryczne i za po±rednictwem tego pola odziaªuj na siebie wzajemnie z pewn siª. Je»eli pole elektryczne wytworzone jest

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne. J zykoznawstwo i Informacja Naukowa I, UAM, Jerzy Pogonowski

Logika Matematyczna. Zadania Egzaminacyjne. J zykoznawstwo i Informacja Naukowa I, UAM, Jerzy Pogonowski Logika Matematyczna Zadania Egzaminacyjne J zykoznawstwo i Informacja Naukowa I, UAM, 2002 Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl Dwa zestawy pyta«egzaminacyjnych z Logiki Matematycznej:

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie

Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie Cz ± II Podziaª pracy 1 Tablica sortuj ca Kolejka priorytetowa to struktura danych udost pniaj ca operacje wstawienia warto±ci i pobrania warto±ci minimalnej. Z kolejki liczb caªkowitych, za po±rednictwem

Bardziej szczegółowo

Logika dla informatyków

Logika dla informatyków Logika dla informatyków Jerzy Tiuryn Jerzy Tyszkiewicz Pawe l Urzyczyn Październik 2006 Wnioskowanie o prawdziwości rozmaitych stwierdzeń jest powszednim zajeciem matematyków i nie tylko matematyków. Dlatego

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)]; Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. November 9, Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. November 9, Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska November 9, 2015 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych Liczba

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Podstawy modelowania w j zyku UML

Podstawy modelowania w j zyku UML Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 8 Diagram pakietów I Diagram pakietów (ang. package diagram) jest diagramem strukturalnym,

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Schematy Piramid Logicznych

Schematy Piramid Logicznych Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Metoda aksjomatyczna

Metoda aksjomatyczna Metoda aksjomatyczna Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR 27x2015 Jerzy Pogonowski (MEG)

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

Informatyka, matematyka i sztuczki magiczne

Informatyka, matematyka i sztuczki magiczne Informatyka, matematyka i sztuczki magiczne Daniel Nowak Piotr Fulma«ski instagram.com/vorkof piotr@fulmanski.pl 18 kwietnia 2018 Table of contents 1 O czym b dziemy mówi 2 Dawno, dawno temu... 3 System

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów wiczenia

Podstawy logiki i teorii zbiorów wiczenia Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje

Bardziej szczegółowo

Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych.

Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Plan wykładu azy danych Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Dokoczenie SQL Zalenoci wielowartociowe zwarta posta normalna Dekompozycja do 4NF Przykład sprowadzanie do

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Instytut Informatyki Stosowanej Teoretyczne Podstawy Informatyki Wykªad 2. J zyki i gramatyki formalne Zdzisªaw Spªawski Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki

Bardziej szczegółowo

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,

Bardziej szczegółowo

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan Plan Spis tre±ci 1 Gradient 1 1.1 Pochodna pola skalarnego...................... 1 1.2 Gradient................................ 3 1.3 Operator Hamiltona......................... 4 2 Ró»niczkowanie pola

Bardziej szczegółowo

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ Robert Trypuz Katedra Logiki KUL 18 grudnia 2013 Robert Trypuz (Katedra Logiki) Wnioskowanie 18 grudnia 2013 1 / 12 Zarys 1 Wnioskowanie Definicja Schemat wnioskowania

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo