Informatyka, matematyka i sztuczki magiczne
|
|
- Antoni Kalinowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Informatyka, matematyka i sztuczki magiczne Daniel Nowak Piotr Fulma«ski instagram.com/vorkof piotr@fulmanski.pl 18 kwietnia 2018
2 Table of contents 1 O czym b dziemy mówi 2 Dawno, dawno temu... 3 System liczbowy 4 Pozycyjny system liczbowy 5 System dwuwarto±ciowy
3 O czym b dziemy mówi
4 Dawno, dawno temu... Ja
5 Dawno, dawno temu... Ja i moje owce
6 Dawno, dawno temu... Ja i moje owce
7 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
8 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
9 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
10 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
11 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
12 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
13 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
14 Dawno, dawno temu... Id na targ Nie mam ochoty zabiera owiec chc tylko zabra informacj o tym, ile ich posiadam.
15 Dawno, dawno temu... Id na targ Mam tak»e kury.
16 Dawno, dawno temu... Id na targ
17 Dawno, dawno temu... Id na targ
18 Dawno, dawno temu... Ujednolicony zapis o liczebno± Ujednolicenie zapisu uniezale»nienie si od postaci zapisu tak aby przeka informacj o liczebno±.
19 Dawno, dawno temu... Ujednolicony zapis o liczebno± Ujednolicenie zapisu uniezale»nienie si od postaci zapisu tak aby przeka informacj o liczebno±.
20 Dawno, dawno temu... Ujednolicony zapis o liczebno± Ujednolicenie zapisu uniezale»nienie si od postaci zapisu tak aby przeka informacj o liczebno±.
21 Dawno, dawno temu... Ujednolicony zapis o liczebno± Ujednolicenie zapisu uniezale»nienie si od postaci zapisu tak aby przeka informacj o liczebno±.
22 Dawno, dawno temu... Ujednolicony zapis o liczebno± Ujednolicenie zapisu uniezale»nienie si od postaci zapisu tak aby przeka informacj o liczebno±.
23 Dawno, dawno temu... Ujednolicony zapis o liczebno± Ujednolicenie zapisu uniezale»nienie si od postaci zapisu tak aby przeka informacj o liczebno±.
24 Dawno, dawno temu... Potrzebna zwi zªo± zapisu
25 Dawno, dawno temu... Potrzebna zwi zªo± zapisu
26 Dawno, dawno temu... Potrzebna zwi zªo± zapisu
27 Dawno, dawno temu... Potrzebna zwi zªo± zapisu
28 Dawno, dawno temu... Potrzebna zwi zªo± zapisu
29 Dawno, dawno temu... Egipski system liczbowy
30 Dawno, dawno temu... Egipski system liczbowy
31 Dawno, dawno temu... Cyfry Majów
32 Dawno, dawno temu... Cyfry Majów
33 Dawno, dawno temu... Problem
34 Dawno, dawno temu... Problem
35 Dawno, dawno temu... Problem
36 Dawno, dawno temu... Problem
37 Dawno, dawno temu... Problem
38 Dawno, dawno temu... Problem
39 Dawno, dawno temu... Problem
40 Dawno, dawno temu... Problem
41 Dawno, dawno temu... Problem
42 Dawno, dawno temu... Problem
43 System liczbowy Denicja System liczbowy System liczbowy jest sposobem reprezentacji liczb przy u»yciu cyfr (symboli; cyfry tworz numeraªy) w jednolity sposób. W zale»no±ci od kontekstu zapis 11 interpretowa b dziemy jako dwójkowe przedstawienie liczby trzy, dziesi tne przedstawienie liczby jedyna±cie lub by mo»e jeszcze inn liczb zapisan w innym systemie.
44 System liczbowy Liczba Liczba Liczba jest pewnym abstrakcyjnym bytem wykorzystywanym do zliczania i mierzenia. Symbol lub sªowo j zyka naturalnego wyra»aj ce liczb nazywamy numeraªem lub cyfr a (ang. numeral, digit). Cyfry ró»ni si od liczb tak jak sªowa ró»ni si od rzeczy, które okre±laj. Symbole 11, jedyna±cie oraz XI s ró»nymi numeraªami reprezentuj cymi t sam liczb. W potocznym znaczeniu sªowo liczba u»ywane jest zarówno w pierwotnym znaczeniu abstrakcyjnego bytu wyra»aj cego ilo± i wielko± jak i symbolu. Oto bowiem wyra»enia numeryczne (a wi c zªo»one z cyfr) u»ywane s jako pewnego rodzaju nazwy (np. numer telefonu), w celu uporz dkowania (np. numer seryjny)czy te» jako kod (np. ISBN). a Cho termin cyfra zasadniczo zarezerwowany jest dla pojedy«czego symbolu to jednak np. j zyk angielski zdaje si nie rozró»nia tych dwóch terminów.
45 System liczbowy System rzymski Rzymski system liczbowy Symbol Warto± I 1 (unus) V 5 (quinque) X 10 (decem) L 50 (quinquaginta) C 100 (centum) D 500 (quingenti) M 1000 (mille) 2018 = MMXVIII
46 System liczbowy Pozycyjny system liczbowy Denicja Pozycyjnym systemem liczbowym (ang. positional numeral system lub place-value numeral system) nazywamy par (b, D), gdzie b jest liczb naturaln nazywan podstaw systemu (ang. base lub radix of that numeral system), D jest sko«czonym zbiorem b symboli {s 0, s 1,..., s b 1 }, nazywanych cyframi (ang. digits) a. System taki nazywamy systemem liczbowym o podstawie b (ang. base-b system). Je±li b = 10 to taki system b dziemy nazywa tak»e dziesi tnym, je±li b = 2 dwójkowym, je±li b = 8 ósemkowym, itd. a Zazwyczaj zbiór D skªada si z odpowiedniej liczby pocz tkowych symboli tworz cych ci g {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} i je±li zajdzie taka potrzeba to kolejnych liter alfabetu ªaci«skiego: A, B,..., przyjumj c zasad,»e A oznacza dziesi, B jedyna±cie, itd.
47 Systemy pozycyjne Pozycyjny system liczbowy Znaczenie W takich systemach ka»da liczba jest jednoznacznie reprezentowana jako ci g cyfr a jej warto± zale»y zarówno od cyfr jak i pozycji na jakich one wyst puj. Warto± v ci gu k cyfr d k 1 d k 2... d 1 d 0 obliczamy wedªug poni»szej formuªy v = d k 1 b k 1 + d k 2 b k d 1 b 1 + d 0 b 0 gdzie d 0,..., d k 1 D.
48 Pozycyjny system liczbowy System dziesi tny b = 10 D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Warto± v np. liczby 4 cyfrowej 3456: v = = = = 3456
49 Pozycyjny system liczbowy Cyfry Majów Rz d wielko±ci Nazwa Rozliczenie 1 kin 1 20 uinal 20 kin 360 tun 18 uinal katun 20 tun baktun 20 katun piktun 20 baktun calabtun 20 piktun kinchiltun 20 calabtun alautun 20 kinchiltun
50 Pozycyjny system liczbowy Cyfry Majów
51 Pozycyjny system liczbowy Sze± dziesi tkowy system liczbowy
52 Pozycyjny system liczbowy Sze± dziesi tkowy system liczbowy b = 60 D = poprzedni slajd Warto± v np. liczby 4 cyfrowej 2018: v = = = =
53 Pozycyjny system liczbowy Sze± dziesi tkowy system liczbowy
54 Pozycyjny system liczbowy System dwójkowy system liczbowy wspóªczesnych komputerów b = 2 D = {0, 1} Warto± v np. liczby 4 cyfrowej 1011: v = = = = 11 10
55 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy Ponumeruj kwadraty od najja±niejszego do najciemniejszego.
56 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy Ponumeruj kwadraty od najja±niejszego do najciemniejszego.
57 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
58 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
59 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
60 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
61 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
62 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
63 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
64 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
65 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
66 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dziesi ciowarto±ciowy
67 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy Ponumeruj kwadraty od najja±niejszych do najciemniejszych.
68 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy Ponumeruj kwadraty od najja±niejszych do najciemniejszych.
69 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy
70 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy
71 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy
72 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy
73 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System pi ciowarto±ciowy
74 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dwuwarto±ciowy Ponumeruj kwadraty od najja±niejszych do najciemniejszych.
75 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dwuwarto±ciowy Ponumeruj kwadraty od najja±niejszych do najciemniejszych.
76 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dwuwarto±ciowy
77 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) System dwuwarto±ciowy
78 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) Podsumowanie Kiedy najªatwiej byªo nam ponumerowa kwadraty od najja±niejszego do najciemniejszego? Kiedy najªatwiej byªo nam wskaza najja±niejszy i najciemniejszy kwadrat? Dlaczego tak si dziaªo?
79 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) Podsumowanie Kiedy najªatwiej byªo nam ponumerowa kwadraty od najja±niejszego do najciemniejszego? Kiedy najªatwiej byªo nam wskaza najja±niejszy i najciemniejszy kwadrat? Dlaczego tak si dziaªo?
80 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) Podsumowanie Kiedy najªatwiej byªo nam ponumerowa kwadraty od najja±niejszego do najciemniejszego? Kiedy najªatwiej byªo nam wskaza najja±niejszy i najciemniejszy kwadrat? Dlaczego tak si dziaªo?
81 System dwuwarto±ciowy (zamiast dziesi ciowarto±ciowego) Podsumowanie Kiedy najªatwiej byªo nam ponumerowa kwadraty od najja±niejszego do najciemniejszego? Kiedy najªatwiej byªo nam wskaza najja±niejszy i najciemniejszy kwadrat? Dlaczego tak si dziaªo?
Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska
Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych
Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. November 9, Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska
Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska November 9, 2015 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych Liczba
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Introduction to Computer Science
Introduction to Computer Science Numeral systems Piotr Fulma«ski Faculty of Mathematics and Computer Science, University of Šód¹, Poland October 21, 2010 Table of Contents 1 Numbers and their systems 2
Jak my±li czªowiek a jak my±li komputer
Jak my±li czªowiek a jak my±li komputer Piotr Fulma«ski piotr@fulmanski.pl 22 kwietnia 2017 Table of contents 1 Mózg 2 Neurony 3 Procesor 4 System dwuwarto±ciowy 5 Bramki logiczne 6 U»yteczny przykªad
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Lekcja 9 - LICZBY LOSOWE, ZMIENNE
Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
Systemy liczbowe Plan zaję ć
Systemy liczbowe Systemy liczbowe addytywne (niepozycyjne) pozycyjne Konwersja konwersja na system dziesię tny (algorytm Hornera) konwersja z systemu dziesię tnego konwersje: dwójkowo-ósemkowa, ósemkowa,
Wstęp do informatyki- wykład 1
MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz
PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego
System Liczbowe. Szesnastkowy ( heksadecymalny)
SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65
Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Logika dla matematyków i informatyków Wykªad 1
Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Systemy liczbowe. Laura Robińska
Systemy liczbowe Laura Robińska Czym jest system liczbowy? Systemem liczbowym nazywamy sposób zapisywania liczb oraz zbiór reguł umożliwiających wykonywanie działań na tych liczbach. Systemy pozycyjne
Rachunek zda«. Relacje. 2018/2019
Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
1 Kodowanie i dekodowanie
1 Kodowanie i dekodowanie Teoria informacji zajmuje si sposobami gromadzenia, przechowywania oraz przesyªania informacji. W tym celu, a tak»e dla ochrony danych informacje kodujemy. Rozmowa telefoniczna,
Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Lekcja 9 Liczby losowe, zmienne, staªe
Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe
ALGORYTMIKA Wprowadzenie do algorytmów
ALGORYTMIKA Wprowadzenie do algorytmów Popularne denicje algorytmu przepis opisuj cy krok po kroku rozwi zanie problemu lub osi gni cie jakiego± celu. (M. Sysªo, Algorytmy, ±ci±lejszej denicji w ksi»ce
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Silnia iteracyjnie n! = 1 * 2 * 3 *... * n widać, że to definicja w pętli. Silnia rekurencyjnie n! = n * (n-1)!
Zapiszemy teraz algorytm Euklidesa w postaci pseudokodu. Często instrukcje wyrażane za pomocą słów nie przenoszą się bezpośrednio na pseudokod i w drugą stronę podobnie. Np. problem jest z pętlą. Zanim
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Podstawy modelowania w j zyku UML
Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 2 Zwi zki mi dzy klasami Asocjacja (ang. Associations) Uogólnienie, dziedziczenie (ang.
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
Logika matematyczna (16) (JiNoI I)
Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Systemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Model obiektu w JavaScript
16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego
Dokªadny jak komputer?
Dokªadny jak komputer? Czyli dlaczego 2 + 2 = 5? Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska http://math.uni.lodz.pl/~fulmanp/zajecia/prezentacja/festiwalnauki2013/ 17
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
Techniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
REJESTRACJA NA LEKTORATY Z JĘZYKÓW OBCYCH
REJESTRACJA NA LEKTORATY Z JĘZYKÓW OBCYCH Rejestracja na lektoraty jest dwuetapowa i odbywa się w dwóch różnych serwisach internetowych UW, które muszą dokonać migracji danych. Należy poczekać po pierwszym
Proste modele o zªo»onej dynamice
Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj
Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa
Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:
Systemy liczbowe. 1. System liczbowy dziesiętny
Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga
Podstawy Informatyki Gramatyki formalne
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Języki i gramatyki Analiza syntaktyczna Semantyka 2 Podstawowe pojęcia Gramatyki wg Chomsky ego Notacja Backusa-Naura
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.
1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
Teoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Stan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Teoretyczne Podstawy Informatyki
Instytut Informatyki Stosowanej Teoretyczne Podstawy Informatyki Wykªad 2. J zyki i gramatyki formalne Zdzisªaw Spªawski Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki
Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki
Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji
Dokªadny jak komputer
Dokªadny jak komputer Czy aby na pewno? Piotr Fulma«ski Pa«stwowa Wy»sza Szkoªa Zawodowa w Pªocku Wydziaª Nauk Ekonomicznych i Informatyki piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/pwsz_dzien_otwarty_2017/dzien_otwarty_
Zastosowania matematyki
Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Ÿ1 Oznaczenia, poj cia wst pne
Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.
Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a
1. Podstawy budowania wyra e regularnych (Regex)
Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra
Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych
1. Wprowadzenie do C/C++
Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub
1. Wprowadzenie do C/C++
Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub
Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych
Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania
Algorytmy zwiazane z gramatykami bezkontekstowymi
Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk
Wzorce projektowe kreacyjne
Wzorce projektowe kreacyjne Krzysztof Ciebiera 14 pa¹dziernika 2005 1 1 Wst p 1.1 Podstawy Opis Ogólny Podstawowe informacje Wzorce kreacyjne sªu» do uabstrakcyjniania procesu tworzenia obiektów. Znaczenie
Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego
Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie
Treści kształcenia i zakładane osiągnięcia uczniów w edukacji matematycznej
Treści kształcenia i zakładane osiągnięcia uczniów w edukacji matematycznej Kształcenie zintegrowane w klasach I III Treści kształcenia Zakładane osiągnięcia uczniów 1. Orientacja przestrzenna. Położenie.
12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:
PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej
KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu
➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje
Ćwiczenie nr 1: Systemy liczbowe
Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,
Przewodnik u»ytkownika
Opisywanie wygl du dokumentu 15 stycznia 2008 Akapity wystawione Skutkiem u»ycia otoczenia tworz cego akapit wystawiony jest zacz cie go od nowego wiersza, a tak»e zacz cie od nowego wiersza tekstu nast
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym
Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.
Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby
Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).
Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany
Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.
ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów
1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,
Wst p do informatyki
Wst p do informatyki Grupa 1 1. Warunek jednoznaczno±ci w kontek±cie algorytmów okre±la, i» (a) w ka»dym kroku mamy sko«czon ilo± alternatywnych ±cie»ek do wyboru; (b) nie ma w tpliwo±ci co do kolejnego
OPIS PRZEDMIOTU. Podstawy edukacji matematycznej. Wydzia Pedagogiki i Psychologii
OPIS PRZEDMIOTU Nazwa przedmiotu Kod przedmiotu Wydzia Wydzia Pedagogiki i Psychologii Instytut/Katedra INSTYTUT PEDAGOGIKI, Zak ad Pedagogiki Wczesnoszkolnej i Edukacji Plastycznej Kierunek pedagogika,
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Systemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Wst p do informatyki. Reprezentacja danych. Piotr Fulma«ski. November 16, 2013. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska
Wst p do informatyki Reprezentacja danych Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska November 16, 2013 Spis tre±ci 1 Niezb dne wiadomo±ci ogólne 2 Informacja z punktu
Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37
Aplikacje bazodanowe Laboratorium 1 Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, 2017 1 / 37 Plan 1 Informacje wst pne 2 Przygotowanie ±rodowiska do pracy 3 Poj cie bazy danych 4 Relacyjne
Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery
Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
ELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Algorytmy i Struktury Danych
Lista zada«. Nr 4. 9 kwietnia 2016 IIUWr. II rok informatyki. Algorytmy i Struktury Danych 1. (0pkt) Rozwi» wszystkie zadania dodatkowe. 2. (1pkt) Uªó» algorytm znajduj cy najta«sz drog przej±cia przez
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Przedmiotowy system oceniania z matematyki w klasach IV - VI
Przedmiotowy system oceniania z matematyki w klasach IV - VI 1. Ocenie podlegają: a) wiadomości i umiejętności związane z realizacją podstawy programowej kształcenia ogólnego z matematyki, b) praca na