Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych.
|
|
- Tadeusz Majewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Plan wykładu azy danych Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Dokoczenie SQL Zalenoci wielowartociowe zwarta posta normalna Dekompozycja do 4NF Przykład sprowadzanie do postaci normalnej Małgorzata Krtowska Katedra Oprogramowania azy danych (studia zaoczne) 2 Podzapytania - wskazówki Wewntrzne zapytanie musi by ujte w nawiasy i musi wystpowa po prawej stronie warunku W podzapytaniu nie wolno stosowa klauzuli ORDER Y. Obowizuje zasada jednej klauzuli ORDER Y dla całego polecenia SELET. Jeli jest potrzebna umieszczamy j jako ostatni Kolumny wystepujce na licie wyboru wewntrznego zapytania musz wystpowa w klejnoci zgodnej z kolejnoci kolumn ujtych w nawiasy warunku zapytania głównego. Musi równie wystpowa zgodno co do liczby i typu kolumn wybieranych w bloku wewntrznym i kolumn bloku zewntrznego porównywanych z nimi. Podzapytania po FROM Podzapytania mog wystpowa po WHERE, HVING i FROM: FROM tabela1, (podzapytanie1) alias1, (podzapytanie2) alias2... azy danych (studia zaoczne) 3 azy danych (studia zaoczne) 4
2 Operator EXISTS Powtórzenie NF i 3NF W przypadku zapyta skorelowanych czasami nie interesuje nas wynik zapytania, ale jedynie czy wiersz o zadanych przez nas warunkach istnieje. Wówczas wykorzystujemy operator EXISTS. Relacja R jest w postaci normalnej NF wtedy i tylko wtedy, gdy dla kadej nietrywialnej zalenoci 1, 2,..., n, zbiór { 1, 2,..., n } jest nadkluczem R EXISTS (podzapytanie) - zwraca true jeeli podzapytanie zwróci przynajmniej jeden wiersz NOT EXISTS(podzapytanie) zwraca true jeeli podzapytanie nie zwróci adnego wiersza Mówimy, e relacja jest w trzeciej postaci normalnej (3NF) wtedy i tylko wtedy, gdy jest spełniony nastpujcy warunek: jeli 1, 2,..., n jest zalenoci nietrywaln, to albo { 1, 2,..., n } jest nadkluczem albo jest elementem pewnego klucza. azy danych (studia zaoczne) 5 azy danych (studia zaoczne) 6 Nowa forma redundancji Moe si okaza, e schemat relacji ma posta NF, ale wystpuje w nim redundancja Najpowszechniejszym ródłem redundancji s tzw zalenoci wielowartociowe (ZW), które wyraaj zaleno pomidzy krotkami istniejcej relacji, która to relacja stara si reprezentowa wicej ni jeden zwizek wiele do wielu. W takich sytuacjach niektóre atrybuty s od siebie niezalene i ich wartoci musz powtórzy si w relacji we wszystkich moliwych kombinacjach. Zalenoci wielowartociowe definicja Zaleno wielowartociowa n ->-> m zachodzi w relacji R wówczas, gdy wybierajc z relacji R te krotki, które s zgodne dla atrybutów typu, zbiór wartoci atrybutów typu nie zaley od adnych wartoci tych atrybutów z R, których nie ma ani w zbiorze, ani w. Dla kadej pary krotek t i u z relacji R, które maj takie same wartoci atrybutów typu, mona znale w R tak krotk v, której składowe maj wartoci równe: wartociom atrybutów typu w krotkach t i u wartociom atrybutów typu krotki t wartociom tych składowych krotki u, które nie s ani typu, ani typu. azy danych (studia zaoczne) 7 azy danych (studia zaoczne) 8
3 Zalenoci wielowartociowe ->-> pozostałe t u v Wnioskowanie z zalenoci wielowartociowych Reguła zalenoci trywialnych jeli w pewnej relacji zachodzi zaleno n ->-> m to wówczas, gdy k s wszystkimi atrybutami oraz cz z nich jest typu, zachodzi równie n ->-> k Reguła przechodnioci jeli zachodz zalenoci n ->-> m i m ->-> k to zachodzi równie zaleno n ->-> k Zalenoci wielowartociowe nie spełniaj reguły podziału i łczenia. azy danych (studia zaoczne) 9 azy danych (studia zaoczne) 10 Wnioskowanie z zalenoci wielowartociowych cd Kada zaleno funkcyjna jest zalenoci wielowartociow, czyli jeli n -> m to n ->-> m Reguła dopełnienia jeli n ->-> m zachodzi dla relacji R, to w R zachodzi równie n ->-> k, gdzie atrybuty typu s wszystkimi tymi atrybutami R, które nie s ani typu, ani typu. Przykład: Relacja ktorzy (nazwisko, ulica, miasto, tytuł, rok) Zalenoci wielofunkcyjne nazwisko->-> ulica miasto, z reguły dopełnienia mamy te zaleno nazwisko ->-> tytuł rok, która jest równie spełniona zwarta posta normalna Zaleno wielowartociow w relacji R: n ->-> m okrelamy jako nietrywialn, jeli: aden atrybut typu nie jest typu Kady atrybut R jest albo typu, albo typu. Relacja R jest w czwartej postaci normalnej (4NF), wtedy i tylko wtedy, gdy: n ->-> m jest nietrywialn zalenoci wielowartociow; { n } jest nadkluczem w R. azy danych (studia zaoczne) 11 azy danych (studia zaoczne) 12
4 Dekompozycja do czwartej postaci normalnej Znajdujemy zaleno, która nie spełnia 4NF np n ->-> m, gdzie { n } nie jest nadkluczem (moe by to zaleno np. wyprowadzona z pewnej zalenoci funkcyjnej). Wówczas schemat relacji R dzielimy na dwa schematy: pierwszy schemat zawiera wszystkie atrybuty typu i typu. Drugi schemat zawiera wszystkie atrybuty typu oraz te wszystkie atrybuty z R, które nie s atrybutami ani typu, ani typu Pierwsza posta normalna Relacja jest w pierwszej postaci normalnej, jeli kada warto atrybutu w kadej krotce tej relacji jest wartoci atomow azy danych (studia zaoczne) 13 azy danych (studia zaoczne) 14 Druga posta normalna Pełna zaleno funkcyjna trybut relacji r jest w pełni funkcyjnie zalezny od zbioru atrybutów X, jeli jest funkcyjnie zaleny od niego, ale nie jest funkcyjnie zalezny od adnego podzbioru zbioru X. Trzecia posta normalna Dana relacja jest w trzeciej postaci normalnej, jeli jest ona w drugiej postaci normalnej i kady jej atrybut nie wchodzcy w skład adnego klucza nie jest przechodnio funkcyjnie zaleny od adnego klucza tej relacji. Dana relacja jest w drugiej postaci normalnej, jeli kady atrybut tej relacji nie wchodzcy w skład adnego klucza jest w pełni funkcyjnie zaleny od wszystkich kluczy tej relacji. W celu uzyskania drugiej postaci normalnej naley podzieli relacj na zbiór takich relacji, których wszystkie atrybuty bd w pełni funkcyjnie zalene od kluczy. Przechodnia zaleno funkcyjna Zalenoci funkcyjne dwóch relacji w 3NF azy danych (studia zaoczne) 15 azy danych (studia zaoczne) 16
5 Pierwsza posta normalna Druga posta normalna Posta nieznormalizowana; struktury danych nie s dwuwymiarowe do 1PN Relacja R D klucz D do 2PN D Usunicie danych nieelementarnych Usunicie niepełnej zalenoci funkcyjnej azy danych (studia zaoczne) 17 azy danych (studia zaoczne) 18 Trzecia posta normalna do 3PN Usunicie przechodniej zalenoci funkcyjnej azy danych (studia zaoczne) 19
Bazy danych. Plan wykáadu. Powtórzenie BCNF i 3NF. Nowa forma redundancji. Wykáad 6: Postaci normalne. SQL - zapytania záo*one.
Plan wykáadu Bazy danych Wykáad 6: Postaci normalne. SQL - zapytania záo*one. Maágorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl Zale*noci wielowartociowe Czwarta postaü normalna
Bardziej szczegółowoBazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B
Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania Definicja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów
Bardziej szczegółowoBazy danych. Plan wykładu. Pierwsza posta normalna. Druga posta normalna. Wykład 7: Sprowadzanie do postaci normalnych. DDL, DML
Plan wykładu azy danych Wykład 7: Sprowadzanie do postaci normalnych. DDL, DML Przykład sprowadzenia nieznormalizowanej relacji do 3NF SQL instrukcja EXISTS DDL DML (insert) Małgorzata Krtowska Katedra
Bardziej szczegółowoBazy danych. Plan wykładu. Dekompozycja relacji. Anomalie. Wykład 5: Projektowanie relacyjnych schematów baz danych. SQL - funkcje grupujce
Plan wykładu Bazy danych Wykład 5: Projektowanie relacyjnych schematów baz danych. SQL - funkcje grupujce Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl Proces dobrego projektowania
Bardziej szczegółowoBazy danych. Plan wykáadu. Zale*noci funkcyjne. Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. A B
Plan wykáadu Bazy danych Wykáad 4: Relacyjny model danych - zale*noci funkcyjne. Maágorzata Krtowska Wydziaá Informatyki Politechnika Biaáostocka Deficja zale*noci funkcyjnych Klucze relacji Reguáy dotyczce
Bardziej szczegółowoBazy danych. Plan wykładu. Podstawy modeli relacyjnych. Diagramy ER. Wykład 3: Relacyjny model danych. SQL
Plan wykładu Bazy danych Wykład 3: Relacyjny model danych. SQL Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - podstawy Małgorzata Krtowska Katedra Oprogramowania e-mail:
Bardziej szczegółowoTechnologie baz danych
Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów
Bardziej szczegółowoPlan wykładu. Problemy w bazie danych. Problemy w bazie danych BAZY DANYCH. Problemy w bazie danych Przykład sprowadzenia nieznormalizowanej SQL
Plan wykładu 2 ZY DNYH Wykład 2: Sprowadzanie do postaci normalnych. SQL. Problemy w bazie danych Przykład sprowadzenia nieznormalizowanej relacji do 3NF SQL Małgorzata Krętowska Wydział Informatyki Politechnika
Bardziej szczegółowoBazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD)
Plan wykładu Bazy danych Wykład 2: Diagramy zwizków encji (ERD) Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory słabych encji Małgorzata Krtowska Katedra Oprogramowania e-mail:
Bardziej szczegółowoPlan wykładu. Problemy w bazie danych. Problemy w bazie danych BAZY DANYCH
Plan wykładu 2 ZY DNYH Wykład 3: Sprowadzanie do postaci normalnych. SQL zapytania grupujące Małgorzata Krętowska Wydział Informatyki Politechnika iałostocka Problemy w bazie danych Przykład sprowadzenia
Bardziej szczegółowoBazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD)
Plan wykładu Bazy danych Wykład 2: Diagramy zwizków encji (ERD) Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory słabych encji Małgorzata Krtowska Katedra Oprogramowania e-mail:
Bardziej szczegółowoBazy danych. Plan wykładu. Definicja zalenoci funkcyjnych. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne.
Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - funkcje Deficja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów
Bardziej szczegółowoBazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.
Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów
Bardziej szczegółowoBAZY DANYCH. Anomalie. Rozkład relacji i normalizacja. Wady redundancji
BAZY DANYCH WYKŁAD 5 Normalizacja relacji. Zapytania zagnieżdżone cd. Wady redundancji Konieczność utrzymania spójności kopii, Marnowanie miejsca, Anomalie. (Wybrane materiały) Dr inż. E. Busłowska Copyright
Bardziej szczegółowoBazy danych Podstawy teoretyczne
Pojcia podstawowe Baza Danych jest to zbiór danych o okrelonej strukturze zapisany w nieulotnej pamici, mogcy zaspokoi potrzeby wielu u!ytkowników korzystajcych z niego w sposóbs selektywny w dogodnym
Bardziej szczegółowoKonstruowanie Baz Danych Wprowadzenie do projektowania. Normalizacja
Studia podyplomowe In»ynieria oprogramowania wspóªnansowane przez Uni Europejsk w ramach Europejskiego Funduszu Spoªecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarz dzania
Bardziej szczegółowoBazy danych. Plan wykładu. Operacje w algebrze relacji. Pojcie algebry relacji. Wykład 8: Algebra relacji. SQL - cd
Plan wykładu Bazy danych Wykład 8: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogociowe rzutowanie selekcja przemianowanie Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl
Bardziej szczegółowoBazy danych i usługi sieciowe
Bazy danych i usługi sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2016 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2016 1 / 50 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B
Bardziej szczegółowoPodzapytania. SELECT atrybut_1, atrybut_2,... FROM relacja WHERE atrybut_n operator (SELECT atrybut_1, FROM relacja WHERE warunek
Podzapytania Podzapytanie jest poleceniem SELECT zagnieżdżonym w innym poleceniu SELECT. Podzapytanie może wystąpić wszędzie tam, gdzie system spodziewa się zbioru wartości, czyli w klauzulach SELECT,
Bardziej szczegółowoBazy Danych i Usługi Sieciowe
Bazy Danych i Usługi Sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2011 1 / 40 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B
Bardziej szczegółowoBazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych
Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy
Bardziej szczegółowoPożyczkobiorcy. Anomalia modyfikacji: Anomalia usuwania: Konta_pożyczkowe. Anomalia wstawiania: Przykłady anomalii. Pożyczki.
Normalizacja Niewłaściwe zaprojektowanie schematów relacji może być przyczyną dublowania się danych, ich niespójności i anomalii podczas ich aktualizowania Przykłady anomalii PROWNIY id_prac nazwisko adres
Bardziej szczegółowoPojęcie zależności funkcyjnej
Postacie normalne Plan wykładu Zależności funkcyjne Cel normalizacji Pierwsza postać normalna Druga postać normalna Trzecia postać normalna Postać normalna Boyca - Codda Pojęcie zależności funkcyjnej Definicja
Bardziej szczegółowoDefinicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.
TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.
Bardziej szczegółowoWYKŁAD 1. Wprowadzenie do problematyki baz danych
WYKŁAD 1 Wprowadzenie do problematyki baz danych WYKŁAD 2 Relacyjny i obiektowy model danych JĘZYK UML (UNIFIED MODELING LANGUAGE) Zunifikowany język modelowania SAMOCHÓD
Bardziej szczegółowoNormalizacja. Pojęcie klucza. Cel normalizacji
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Bardziej szczegółowo3. Podzapytania, łączenie tabel i zapytań
3. Podzapytania, łączenie tabel i zapytań I. PODZAPYTANIE (SUBSELECT) oddzielna, ujęta w nawiasy instrukcja SELECT, zagnieżdżona w innej instrukcji SQL, zazwyczaj w instrukcji SELECT w instrukcji SELECT,
Bardziej szczegółowoPLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE
PLAN WYKŁADU Zależności funkcyjne Anomalie danych Normalizacja Postacie normalne Zależności niefunkcyjne Zależności złączenia BAZY DANYCH Wykład 5 dr inż. Agnieszka Bołtuć ZALEŻNOŚCI FUNKCYJNE Niech R
Bardziej szczegółowoZależności funkcyjne
Zależności funkcyjne Plan wykładu Pojęcie zależności funkcyjnej Dopełnienie zbioru zależności funkcyjnych Postać minimalna zbioru zależności funkcyjnych Domknięcie atrybutu relacji względem zależności
Bardziej szczegółowoPlan wykładu. Elementy ERD BAZY DANYCH. Proces modelowania i implementacji bazy danych. Diagramy związków encji. SQL podzapytania
Plan wykładu 2 BAZY DANYCH Wykład 4: Diagramy związków encji (ERD). SQL podzapytania. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Diagramy związków encji elementy ERD liczności związków
Bardziej szczegółowoSystemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009
Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Bardziej szczegółowoBazy Danych i Usługi Sieciowe
Bazy Danych i Usługi Sieciowe Ćwiczenia III Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS ćw. III Jesień 2011 1 / 1 Strona wykładu http://bioexploratorium.pl/wiki/ Bazy_Danych_i_Usługi_Sieciowe_-_2011z
Bardziej szczegółowoNormalizacja relacyjnych baz danych. Sebastian Ernst
Normalizacja relacyjnych baz danych Sebastian Ernst Zależności funkcyjne Zależność funkcyjna pomiędzy zbiorami atrybutów X oraz Y oznacza, że każdemu zestawowi wartości atrybutów X odpowiada dokładnie
Bardziej szczegółowoBazy danych. Plan wykładu. Metody organizacji pliku rekordów. Pojcie indeksu. Wykład 11: Indeksy. Pojcie indeksu - rodzaje indeksów
Plan wykładu Bazy Wykład 11: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl
Bardziej szczegółowoTechnologie baz danych
Plan wykładu Technologie baz danych Wykład 6: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogościowe rzutowanie selekcja przemianowanie Małgorzata Krętowska Wydział Informatyki Politechnika
Bardziej szczegółowoPODZAPYTANIE (SUBSELECT)
2. Podzapytania PODZAPYTANIE (SUBSELECT) oddzielna, ujęta w nawiasy instrukcja SELECT, zagnieżdżona w innej instrukcji SQL, zazwyczaj w instrukcji SELECT W instrukcji SELECT, podzapytanie może być umieszczone
Bardziej szczegółowoJak wiernie odzwierciedlić świat i zachować występujące w nim zależności? Jak implementacja fizyczna zmienia model logiczny?
Plan wykładu Spis treści 1 Projektowanie baz danych 1 2 Zależności funkcyjne 1 3 Normalizacja 1NF, 2NF, 3NF, BCNF 4 4 Normalizacja 4NF, 5NF 6 5 Podsumowanie 9 6 Źródła 10 1 Projektowanie baz danych Projektowanie
Bardziej szczegółowoZależności funkcyjne pierwotne i wtórne
Zależności funkcyjne pierwotne i wtórne W praktyce, w przypadku konkretnej bazy danych, nie jest zwykle możliwe (ani potrzebne), by projektant określił wszystkie zależności funkcyjne na etapie analizy
Bardziej szczegółowoWprowadzenie do języka SQL
Wprowadzenie do języka SQL język dostępu do bazy danych grupy poleceń języka: DQL (ang( ang.. Data Query Language) DML (ang( ang.. Data Manipulation Language) DDL (ang( ang.. Data Definition Language)
Bardziej szczegółowoCel normalizacji. Tadeusz Pankowski
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Bardziej szczegółowoBazy danych 2. Zależności funkcyjne Normalizacja baz danych
Bazy danych 2. Zależności funkcyjne Normalizacja baz danych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Zależności funkcyjne Definicja: Mówimy, że atrybut B jest zależny funkcyjnie od atrybutów
Bardziej szczegółowoJęzyk SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS.
Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS. 1 Podzapytania Podzapytanie jest poleceniem SELECT zagnieżdżonym
Bardziej szczegółowoChemoinformatyczne bazy danych - Wprowadzenie do technologii baz danych. Andrzej Bąk
Chemoinformatyczne bazy danych - Wprowadzenie do technologii baz danych Andrzej Bąk Wstęp Zarys Co to jest baza danych? Podstawy teorii baz danych Klasyfikacja baz danych Organizacja danych w relacyjnej
Bardziej szczegółowoBazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski
azy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 5 Normalizacja relacji bazy danych jako podstawa relacyjnego modelowania danych (wykład przygotowany z wykorzystaniem materiałów
Bardziej szczegółowoBazy danych. Plan wykładu. Przetwarzanie zapyta. Etapy przetwarzania zapytania. Wykład 12: Optymalizacja zapyta. Etapy przetwarzanie zapytania
Plan wykładu Bazy danych Wykład 12: Optymalizacja zapyta Etapy przetwarzanie zapytania Implementacja wyrae algebry relacji Reguły heurystyczne optymalizacji zapyta Kosztowa optymalizacja zapyta Małgorzata
Bardziej szczegółowoNormalizacja baz danych
Wrocławska Wyższa Szkoła Informatyki Stosowanej Normalizacja baz danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Normalizacja relacji ma na celu takie jej przekształcenie,
Bardziej szczegółowoKaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości.
elacja chemat relacji chemat relacji jest to zbiór = {A 1,..., A n }, gdzie A 1,..., A n są artybutami (nazwami kolumn) np. Loty = {Numer, kąd, Dokąd, Odlot, Przylot} KaŜdemu atrybutowi A przyporządkowana
Bardziej szczegółowoPodzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę
Podzapytania Rozdział 5 Podzapytania podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, klauzula WITH, operatory ANY, ALL i EXISTS, zapytania hierarchiczne Podzapytanie jest poleceniem
Bardziej szczegółowoBazy danych Teoria projektowania relacyjnych baz danych. Wykła. Wykład dla studentów matematyki
Bazy danych Teoria projektowania relacyjnych baz danych. Wykład dla studentów matematyki 2 kwietnia 2017 Ogólne wprowadzenie No przecież do tego służa reguły, rozumiesz? Żebyś się dobrze zastanowił, zanim
Bardziej szczegółowoTechnologie baz danych
Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD
Bardziej szczegółowoPostać normalna Boyce-Codd (BCNF)
Postać normalna Boyce-Codd (BCNF) Grunty Id_Własności Wojewódz. Id-gruntu Obszar Cena Stopa_podatku Postać normalna Boyce-Codd a stanowi warunek dostateczny 3NF, ale nie konieczny. GRUNTY Id_Własności
Bardziej szczegółowoInstytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny technologiczny Politechnika Śląska
Instytut Mechaniki i Inżynierii Obliczeniowej www.imio.polsl.pl fb.com/imiopolsl @imiopolsl Wydział Mechaniczny technologiczny Politechnika Śląska Laboratorium 5 (Projektowanie i normalizacja bazy danych)
Bardziej szczegółowoPodzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę
Podzapytania Rozdział 5 Podzapytania podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, klauzula WITH, operatory ANY, ALL i EXISTS, zapytania hierarchiczne Podzapytanie jest poleceniem
Bardziej szczegółowoPierwsza postać normalna
Normalizacja Pierwsza postać normalna Jedynymi relacjami dozwolonymi w modelu relacyjnym są relacje spełniające następujący warunek: każda wartość w relacji, tj. każda wartość atrybutu w każdej krotce,
Bardziej szczegółowoNormalizacja schematów logicznych relacji
Normalizacja schematów logicznych relacji Wykład przygotował: Tadeusz Morzy BD wykład 5 Celem niniejszego wykładu jest przedstawienie i omówienie procesu normalizacji. Proces normalizacji traktujemy jako
Bardziej szczegółowoBazy danych 3. Normalizacja baz danych
Bazy danych 3. Normalizacja baz danych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011/12 Pierwsza postać normalna Tabela jest w pierwszej postaci normalnej (1PN), jeżeli 1. Tabela posiada klucz.
Bardziej szczegółowoBazy danych. Plan wykáadu. Proces modelowania i implementacji bazy danych. Elementy ERD
Plan wykáadu Wykáad 2: Diagramy zwizków encji (ERD) SQL - áczenie tabel, zapytania grupujce Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory sáabych encji Maágorzata Krtowska,
Bardziej szczegółowoPlan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty
Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne
Bardziej szczegółowoPodzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę
Podzapytania Rozdział 5 Podzapytania podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, klauzula WITH, operatory ANY, ALL i EXISTS, zapytania hierarchiczne Podzapytanie jest poleceniem
Bardziej szczegółowoBazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 10/15 Semantyka schematu relacyjnej bazy danych Schemat bazy danych składa się ze schematów relacji i więzów
Bardziej szczegółowoBazy danych 3. Normalizacja baz danych (c.d.)
Bazy danych 3. Normalizacja baz danych (c.d.) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Postać normalna Boyce a-codda Tabela jest w postaci normalnej Boyce a-codda (BCNF, PNBC), jeżeli 1.
Bardziej szczegółowoPodstawy języka SQL cz. 2
Podstawy języka SQL cz. 2 1. Operatory zbiorowe a. UNION suma zbiorów z eliminacją powtórzeń, b. EXCEPT różnica zbiorów z eliminacją powtórzeń, c. INTERSECT część wspólna zbiorów z eliminacją powtórzeń.
Bardziej szczegółowoBazy danych. Plan wykładu. Klucz wyszukiwania. Pojcie indeksu. Wykład 8: Indeksy. Pojcie indeksu - rodzaje indeksów
Plan wykładu Bazy Wykład 8: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl
Bardziej szczegółowoBAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski
BAZY DANYCH model relacyjny Opracował: dr inż. Piotr Suchomski Relacyjny model danych Relacyjny model danych posiada trzy podstawowe składowe: relacyjne struktury danych operatory algebry relacyjnej, które
Bardziej szczegółowoPROWIZJE Menad er Schematy rozliczeniowe
W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo
Bardziej szczegółowoBazy danych SQL. Wstp. SQL (Structured( Query Language) strukturalny jzyk zapyta
Wstp (Structured( Query Language) strukturalny jzyk zapyta Podstawowe cechy jzyka : - zapytania wyszukiwanie danych w bazie danych, - operowanie danymi wstawianie, modyfikacja, usuwanie danych z bazy danych,
Bardziej szczegółowo030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła
030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,
Bardziej szczegółowoBazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 11/15 NORMALIZACJA c.d. Przykład {UCZEŃ*, JĘZYK*, NAUCZYCIEL} {UCZEŃ, JĘZYK} NAUCZYCIEL NAUCZYCIEL JĘZYK Są
Bardziej szczegółowoS y s t e m y. B a z D a n y c h
S y s t e m y B a z D a n y c h Wykład na przedmiot: Bazy danych Studia zaoczne i podyplomowe UAM Anna Pankowska aniap@amu.edu.pl W y k ł a d I Temat: Relacyjne bazy danych Plan wykładu: - cel stosowania
Bardziej szczegółowoJęzyk SQL. Rozdział 5. Połączenia i operatory zbiorowe
Język SQL. Rozdział 5. Połączenia i operatory zbiorowe Iloczyn kartezjański, połączenie równościowe, połączenie nierównościowe, połączenie zwrotne, połączenie zewnętrzne, składnia jawna połączeń, składnia
Bardziej szczegółowoBAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Bardziej szczegółowoBazy danych 1. Wykład 6 Metodologia projektowania baz danych. (projektowanie logiczne - Normalizacja)
Bazy danych 1 Wykład 6 Metodologia projektowania baz danych (projektowanie logiczne - Normalizacja) Projektowanie logiczne przegląd krok po kroku 1. Usuń własności niekompatybilne z modelem relacyjnym
Bardziej szczegółowoRelacyjny model baz danych, model związków encji, normalizacje
Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na
Bardziej szczegółowoBaza danych - Access. 2 Budowa bazy danych
Baza danych - Access 1 Baza danych Jest to zbiór danych zapisanych zgodnie z okre±lonymi reguªami. W w»szym znaczeniu obejmuje dane cyfrowe gromadzone zgodnie z zasadami przyj tymi dla danego programu
Bardziej szczegółowoMateriały szkoleniowe. Podstawy jzyka SQL. Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk
Materiały szkoleniowe Podstawy jzyka SQL Prowadzcy Anna Pijanowska - Kunierz Paweł ołnierczyk Spis treci Zawarto tabel wykorzystywanych na kursie 5 Zawarto tabeli DEPT 6 Zawarto tabeli EMP 6 Zawarto tabeli
Bardziej szczegółowo1 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 1 1 Bazy Danych Instrukcja laboratoryjna Temat: Normalizacje 1 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie. Normalizacja to proces organizacji danych w bazie danych. Polega on na
Bardziej szczegółowoPierwsza postać normalna
Normalizacja Pierwsza postać normalna Jedynymi relacjami dozwolonymi w modelu relacyjnym są relacje spełniające następujący warunek: każda wartość w relacji, tj. każda wartość atrybutu w każdej krotce,
Bardziej szczegółowoPlanowanie adresacji IP dla przedsibiorstwa.
Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli
Bardziej szczegółowoProjektowanie relacyjnych baz danych
BAZY DANYCH wykład 7 Projektowanie relacyjnych baz danych Dr hab. Sławomir Zadrożny, prof. PR Zależności funkcyjne Niech X i Y oznaczają zbiory atrybutów relacji R Powiemy, że dla relacji R obowiązuje
Bardziej szczegółowoSQL (ang. Structured Query Language)
SQL (ang. Structured Query Language) SELECT pobranie danych z bazy, INSERT umieszczenie danych w bazie, UPDATE zmiana danych, DELETE usunięcie danych z bazy. Rozkaz INSERT Rozkaz insert dodaje nowe wiersze
Bardziej szczegółowoRBD Relacyjne Bazy Danych
Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji
Bardziej szczegółowoPodzapytania do tabel W miejscu w którym możemy użyć nazwy tabeli, możemy użyć podzapytania
Plan Podzapytania (subqueries) Podzapytania do tabel Podzapytanie jako wyrażenie Podzapytania skorelowane operatory IN, NOT IN operatory EXISTS, NOT EXISTS Podzapytania do tabel W miejscu w którym możemy
Bardziej szczegółowoPodstawowe zapytania SELECT (na jednej tabeli)
Podstawowe zapytania SELECT (na jednej tabeli) Struktura polecenia SELECT SELECT opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje FROM nazwy tabel lub widoków WHERE warunek (wybieranie wierszy) GROUP
Bardziej szczegółowoLaboratorium Bazy danych SQL 2
Klauzula order by występuje jako ostatnia klauzula w poleceniu select, powoduje posortowanie wierszy będących wynikiem zapytania według wartości atrybutu w niej wskazanego. Domyślnie sortowanie jest według
Bardziej szczegółowoTworzenie bazy danych Biblioteka tworzenie tabel i powiza, manipulowanie danymi. Zadania do wykonani przed przystpieniem do pracy:
wiczenie 2 Tworzenie bazy danych Biblioteka tworzenie tabel i powiza, manipulowanie danymi. Cel wiczenia: Zapoznanie si ze sposobami konstruowania tabel, powiza pomidzy tabelami oraz metodami manipulowania
Bardziej szczegółowoModel relacyjny. Wykład II
Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji
Bardziej szczegółowoTadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja
Plan Zależności funkcyjne 1. Zależności funkcyjne jako klasa ograniczeń semantycznych odwzorowywanego świata rzeczywistego. 2. Schematy relacyjne = typ relacji + zależności funkcyjne. 3. Rozkładalność
Bardziej szczegółowoWstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga
Bazy Danych i Systemy informacyjne Wykład 1 Piotr Syga 09.10.2017 Ogólny zarys wykładu Podstawowe zapytania SQL Tworzenie i modyfikacja baz danych Elementy dynamiczne, backup, replikacja, transakcje Algebra
Bardziej szczegółowoJęzyk SQL. Rozdział 2. Proste zapytania
Język SQL. Rozdział 2. Proste zapytania Polecenie SELECT, klauzula WHERE, operatory SQL, klauzula ORDER BY. 1 Wprowadzenie do języka SQL Język dostępu do bazy danych. Język deklaratywny, zorientowany na
Bardziej szczegółowoWymagania: Konstrukcja prostych zapytań w języku SQL, umiejętność wykorzystania funkcji wierszowych i agregujących.
Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania podzapytań ń w zapytaniach języka ę SQL. Podzapytania są ą konstrukcjami, pozwalającymi na wykonywanie zapytań w stylu podaj nazwisko
Bardziej szczegółowoTemat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów
Bardziej szczegółowoWykład 8. SQL praca z tabelami 5
Wykład 8 SQL praca z tabelami 5 Podzapytania to mechanizm pozwalający wykorzystywać wyniki jednego zapytania w innym zapytaniu. Nazywane często zapytaniami zagnieżdżonymi. Są stosowane z zapytaniami typu
Bardziej szczegółowoWykład 2. Relacyjny model danych
Wykład 2 Relacyjny model danych Wymagania stawiane modelowi danych Unikanie nadmiarowości danych (redundancji) jedna informacja powinna być wpisana do bazy danych tylko jeden raz Problem powtarzających
Bardziej szczegółowoGrupowanie i funkcje agregujące
Grupowanie i funkcje agregujące Zadanie 1. Stwórz odpowiednią tabelę Test_agr i wprowadź odpowiednie rekordy tak, aby wynik zapytania SELECT AVG(kol) avg_all, AVG(DISTINCT kol) avg_dist, COUNT(*) count_gw,
Bardziej szczegółowoWstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9
Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn
Bardziej szczegółowoTemat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Bardziej szczegółowoBazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski
Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 2 Podstawy integralności w relacyjnym modelu baz danych Bazy danych. Wykład 2 2 Integralność relacyjnych baz danych Schemat relacji
Bardziej szczegółowoBazy danych Transakcje
Wstp Pojcia podstawowe: Transakcja - sekwencja (uporzdkowany zbiór) logicznie powizanych operacji na bazie danych, która przeprowadza baz danych z jednego stanu spójnego w inny stan spójny. W!a"no"ci transakcji:
Bardziej szczegółowoBAZY DANYCH NORMALIZACJA BAZ DANYCH. Microsoft Access. Adrian Horzyk. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access NORMALIZACJA BAZ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Bardziej szczegółowoPrzestrzenne bazy danych Podstawy języka SQL
Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured
Bardziej szczegółowo