Energia potencjalna pola elektrostatycznego ładunku punktowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Energia potencjalna pola elektrostatycznego ładunku punktowego"

Transkrypt

1 Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony Tekst jest wolnym tłumaczeniem kursu dostępnego na stronie Pole elektrostatyczne ładunku punktowego jest zachowawcze. Wobec tego można wprowadzić pojęcie energii potencjalnej. Praca wykonana przez siłę Coulomba przy przemieszczeniu ładunku od punktu A, gdzie energia potencjalna wynosi U A do punktu B, gdzie energia potencjalna jest równa U B, wynosi. Warto w tym miejscu podkreślić, że pracę wykonała siła pola elektrostatycznego. Praca siły zewnętrznej, mającej zwrot przeciwny do siły Coulomba (ale taki sam kierunek i wartość), nad opisanym przesunięciem jest równa ł ę. 1

2 Energia potencjalna pola jednorodnego Rozważmy jednorodne pole elektryczne skierowane pionowo w dół o natężeniu 0,, 0, w którym zgodnie z kierunkiem i zwrotem wektora natężenia przemieszczany jest ładunek dodatni q. Oś pionowa OY układu współrzędnych ma zwrot do góry, więc składowa. Niech ładunek q zostanie przemieszczony wzdłuż osi pionowej od punktu o współrzędnej do punktu o współrzędnej, jak pokazuje to rysunek. Zgodnie z definicją podaną wyżej obliczamy pracę siły elektrycznej przy opisanym przemieszczeniu. Y A +q E F=qE B. X Pozwala to nam stwierdzić, że energia potencjalna ładunku dodatniego w polu jednorodnym wynosi, co odpowiada znanemu wyrażeniu dla grawitacyjnej energii potencjalnej. 2

3 Energia potencjalna ładunku w polu elektrycznym ładunku punktowego Pokażemy, że w tym przypadku energia potencjalna ładunku q w polu ładunku Q Policzymy pracę dla siły., Zatem szukana energia potencjalna wynosi

4 Energia potencjalna układu N punktowych ładunków elektrycznych 1. 4 Energia potencjalna ładunku próbnego w polu N punktowych ładunków elektrycznych. Potencjał pola elektrycznego Potencjał to energia potencjalna przypadająca na jednostkowy ładunek. Jednostką potencjału jest wolt; 1V = 1 wolt = 1 J/(1 C) = J/C. Ile wynosi różnica potencjałów między dwoma punktami A i B pola elektrycznego? gdzie, i. 4

5 Potencjał elektryczny pola ładunku punktowego. Potencjał elektryczny pola układu ładunków punktowych Potencjał elektryczny pola ładunków o rozkładzie ciągłym

6 Jak wyznaczamy różnicę potencjałów znając wektor natężenia pola elektrycznego? Siła działająca na ładunek próbny. Wobec tego praca siły pola nad przemieszczeniem ładunku próbnego wynosi. Jeśli podzielimy ostatni wynik przez ładunek próbny i skorzystamy ze związku, to otrzymamy poszukiwany związek. Wniosek: Jeśli praca i całka dodatnie, to potencjał jest większy od. są 6

7 Przykład 1. Jeśli przemieszczamy ładunek próbny od źródła pola, którym jest dodatni ładunek punktowy, to praca i całka są dodatnie. Więc potencjał jest większy od. Wniosek: Dodatnie ładunki elektryczne wykazują naturalną tendencję (pod wpływem sił pola) do poruszania się w polu elektrostatycznym w kierunku malejącego potencjału. Przykład 2. Jeśli przemieszczamy ładunek próbny do źródła pola, którym jest dodatni ładunek punktowy, to praca i całka są ujemne. Zatem potencjał jest mniejszy od. Przykład 3. Jeśli przemieszczamy ładunek próbny od źródła pola, którym jest ujemny ładunek punktowy, to praca i całka są ujemne (zwroty wektorów i są przeciwne). Więc potencjał jest mniejszy od. Przykład 4. Jeśli przemieszczamy ładunek próbny do źródła pola, którym jest ujemny ładunek punktowy, to praca i całka są dodatnie (zwroty wektorów i są zgodne). Więc potencjał jest większy od. Wniosek ponowny: Dodatnie ładunki elektryczne wykazują naturalną tendencję (pod wpływem sił pola) do poruszania się w polu elektrostatycznym w kierunku malejącego potencjału. 7

8 Wniosek: Ujemne ładunki wykazują naturalną tendencję do poruszania się w polu elektrostatycznym w kierunku rosnącego potencjału. Wniosek: Niezależnie od znaku punktowego ładunku źródła pola, jeśli poruszamy się w polu elektrostatycznym zgodnie z liniami pola (zwroty wektorów przemieszczenia i natężenia pola są zgodne), to potencjał pola elektrycznego maleje. Uwaga: Jednostką potencjału jest wolt; 1V = 1 wolt = 1 J/(1 C) = J/C. Ale z zależności między potencjałem i natężeniem wnioskujemy, że 1V = (1N/1C) 1m. Zatem 1V/1m = (1N/1C). Czyli V/m = N/C. Najczęściej natężenie pola elektrycznego podajemy w jednostkach V/m a nie N/C. 8

9 Jak wyznaczamy wektor natężenia pola elektrycznego znając potencjał pola w danym punkcie? Odpowiedzią jest wzór V V, co jest równoważne trzem następującym równościom:,,. Wszystkie rysunki i animacje zaczerpnięto ze strony Tekst jest wolnym tłumaczeniem kursu dostępnego na stronie 9

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi Prawo Gaussa Tekst jest wolnym tłumaczeniem pliku guide04.pdf kursu dostępnego na stronie http://web.mit.edu/8.02t/www/802teal3d/visualizations/coursenotes/index.htm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

x+h=10 zatem h=10-x gdzie x>0 i h>0

x+h=10 zatem h=10-x gdzie x>0 i h>0 Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 ) Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów

Bardziej szczegółowo

v p dr dt = v dr= v dt

v p dr dt = v dr= v dt Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu agnetyczny W polu agnetyczny i elektryczny na poruszające się ładunki działa siła Lorentza: F q E B Wykorzystuje się to w wielu urządzeniach, takich jak telewizor, ikroskop elektronowy,

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E

Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Iloczyn wektorowy. Autorzy: Michał Góra

Iloczyn wektorowy. Autorzy: Michał Góra Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Prawo Coulomba i wektor natężenia pola elektrostatycznego

Prawo Coulomba i wektor natężenia pola elektrostatycznego Prawo Coulomba i wektor natężenia pola elektrostatycznego Wykłady do kursu Fizyka II dla studentów Wydziału Inżynieria Środowiska Politechniki Wrocławskiej Autor: Włodzimierz Salejda Instytut Fizyki PWr

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Wprowadzenie do fizyki pola magnetycznego

Wprowadzenie do fizyki pola magnetycznego Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu. Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji

Bardziej szczegółowo

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach

Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka

Wykład FIZYKA II. 1. Elektrostatyka Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski Ruch prostoliniowy zmienny dr inż. Romuald Kędzierski Przypomnienie Szybkość średnia Wielkość skalarna definiowana, jako iloraz przebytej drogi i czasu, w którym ta droga została przebyta. Uwaga: Szybkość

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

Ciąg monotoniczny. Autorzy: Katarzyna Korbel

Ciąg monotoniczny. Autorzy: Katarzyna Korbel Ciąg monotoniczny Autorzy: Katarzyna Korbel 07 Ciąg monotoniczny Autor: Katarzyna Korbel Ciągi, tak jak funkcje, mogą mieć różne własności, których znajomość może przyczynić się do dalszej analizy ich

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8]. Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo