Lokalizacja ekwiwariantnych teorii kohomologii

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lokalizacja ekwiwariantnych teorii kohomologii"

Transkrypt

1 Lokalizacja ekwiwariantnych teorii kohomologii Stanisław Szawiel 18 maja Preliminaria 1.1 Kilka faktów o lokalizacji algebraicznej Potrzebujemy kilku prostych faktów o lokalizacji algebraicznej. Niech R będzie pierścieniem z 1 (z gradacją lub przemiennym), a D R zbiorem multiplikatywnym (czyli w szczególności niezawierającym 0). Zachodzi następujące Stwierdzenie 1.1. Kanoniczny homomorfizm R D 1 R indukuje funktor zapominania U : D 1 R mod R mod. Jego lewym sprzężonym jest funktor lokalizacji, czyli rozszerzania skalarów, czyli D 1 R R ( ). Jedność tego sprzężenia jest dana przez η : M D 1 R R M, M m 1 m i jej jądrem, ker(η) jest moduł elementów D-torsyjnych, to znaczy takich m M, dla których istnieje d D, takie, że dr = 0 Dowód. Dowodzimy tylko ostatniej części: przy standardowej konstrukcji D 1 M (m, 1) (0, 1)( [0] D 1 M) d D : dm = 0 Dla porównania przytaczamy wersję dla pierścieni: Lemat 1.2. Niech η : R D 1 R będzie kanonicznym homomorfizmem (jednością pewnego sprzężenia) związanym z lokalizacją względem D. Wtedy ker(η) jest ideałem elementów D-torsyjnych. Dla R-modułów M (z gradacją lub bez) rozważamy zbiór T or D (M) = {m M : d D : dm = 0}, czyli zbiór elementów D-torsyjnych. Zachodzi następujący fakt: Stwierdzenie 1.3. Przy powyższych założeniach zachodzą następujące własności: 1. Zbiór T or D (M) jest największym D-torsyjnym podmodułem M 2. Przekształcenie M T or D (M) przedłuża się do funktora R Mod R Mod 3. Jeżeli A α B β C jest ciągięm dokładnym R-modułów i A oraz C są D-torsyjne, to B też jest D-torsyjny 1

2 Dowód. Dowodzimy punktu 3: niech b B oraz d D takie, że dβ(b) = β(db) = 0. Wtedy db ker(β) = im(α). Zatem db = α(a) dla pewnego a A. Niech d D będzie takie, że d a = 0. Wtedy d db = d α(a) = α(d a) = 0 Uwaga 1.4. Lokalizację, jako własność uniwersalną, można określić dla dowolnego podzbioru D dowolnego pierścienia R (bez 1, nieprzemiennego). Taki problem uniwersalny zawsze ma rozwiązanie, choć odpowiedni pierścień nie zawsze można opisać bezpośrednio. Uwaga 1.5. Możemy rozważać torsję (R {0}-torsję) modułów nad pierścieniami, które nie są koniecznie dziedzinami całkowitości (co oznacza, ze R {0} nie jest systemem multiplikatywnym). Wtedy tezy powyższego stwierdzenia zawodzą. T or( ) nadal jest funktorem, ale przyjmuje wartości jedynie w Set (suma elementów torsyjnych na ogół nie będzie torsyjna). Jak się jednak okaże te problemy nie dotyczą naszego przypadku. Ogólnie przy lokalizacji względem systemów multiplikatywnych takie przypadki nie występują. Przykład 1.6. Z 6 jest pierścieniem i modułem nad samym sobą. W tej sytuacji 2 3 = 6 = 0, więc 2 i 3 są torsyjne, ale = 5, a 5 jest odwracalne w Z 6, więc nie jest torsyjne. 1.2 Krótkie przypomnienie Niech G będzie zwartą grupą Liego, a HG - G-ekwiwariantną, multiplikatywną teorią kohomologii na pewnej kategorii G-przestrzeni topologicznych zawierającą kategorię zwartych G-rozmaitości. Dokładnie jak duża musi byc ta kategoria wyniknie z dowodu. Oznaczamy ją G spc. Jeżeli f : R S jest homomorfizmem pierścieni, to S staje się w naturalny sposób R-modułem: r R działa przez mnożenie w S przez f(r). Jedyne odwzorowania X pt indukują homomorfizmy pierścieni HG (pt) H G (X), które czynią z pierścieni kohomologii R-moduły dla R = HG (pt). Funktorialność teorii zapewnia teraz, że przyjmuje ona wratości w kategorii R-modułów. Musimy jednak założyć, że w ciągu Mayera-Vietorisa homomorfizm kobrzegu jest homomorfizmem R-modułów. We wszystkich rozważanych tu przypadkach tak będzie. Zazwyczaj wymaga się nawet aby był to homomorfizm (dla trójki (U, V, U V = X)) HG (X)-modułów. 2 Ogólne twierdzenie o lokalizacji Interesuje nas obliczenie kohomologii zbioru punktów stałych działania G na X, czyli HG (XG ). Włożenie X G X indukuje homomorfizm HG (X) H G (XG ). Będziemy badać jak zachowuje się ten homomorfizm po zlokalizowaniu względem pewnego podzbioru multiplikatywnego D HG (pt). Odpowiedź na to pytanie jest bardzo ogólna. Przytaczamy kilka definicji: Definicja 2.1. Rodziną podgrup grupy Liego G nazywamy zbiór F podgrup domkniętych grupy G, zamknięty na branie domkniętych podgrup. Przyjmujemy dla G-zbioru X, X F = {x X : G x / F } 2

3 Twierdzenie 2.2 (O lokalizacji ekwiwariantnych teorii kohomologii). Niech F będzie rodziną podgrup grupy G i niech HG będzie ciągła. Wtedy homomorfizm D 1 HG (X) D 1 HG (XF ) jest izomorfizmem dla każdej zwartej G- przestrzeni wtedy i tylko wtedy gdy D 1 HG (G/H) = 0 dla wszystkich H F. Zanim udowodnimy to twierdzenie sformułujemy przydatny lemat: Lemat 2.3. Niech X Y będzie przekształceniem ekwiwariantnym. Wtedy jeżeli HG (Y ) jest D-torsyjne, to H G (X) też. Dowód. Z uwag o multiplikatywności widzimy, że HG (X) jest H G (Y )-modułem. Ponadto struktura tego modułu jest zgodna ze strukturą HG (pt)-modułu na HG (X). Zatem obraz pierścienia kohomologii punktu w H G (X) faktoryzuje się przez HG (Y ), gdzie z założenia jest torsyjny. Zatem, z funktorialności, obraz ten jest torsyjny również w HG (X), co kończy dowód. Dowód. Twierdzenia o lokalizacji : jeżeli H F, to (G/H) F =, skąd D 1 HG (G/H) = 0. : Przypadek X F = : w tym przypadku (rozumując jak powyżej) musimy pokazać, że D 1 HG (X) = 0. Niech {U x } x X będzie pokryciem X tubami wokół orbit. Tuby te retrachują się ekwiwariantnie na swoje orbity, więc z założenia HG (U x) są modułami D- torsyjnymi, bo x : G(x) G/G x, G x F. Przestrzeń X jest zwarta, więc możemy ją pokryc skończoną iloscią tub U x1,..., U xn. Określamy V r = r i=1 U x i. Zaczynając od r = 1 indukcyjnie dowodzimy, że HG (V r) jest modułem torsyjnym. Dla r = 1 jest to jasne. Krok indukcyjny korzyszta ciągu Mayera-Vietorisa: HG(V r U r+1 ) δ H +1 G (V r+1) H +1 G (V r) H +1 G (U r+1) pierwszy wyraz jest torsyjny, ponieważ retrakcję orbity możemy złożyć z włożeniem i otrzymać homomorfizm na orbitę. Zatem zgodnie z lematem o homomorfizmach w D-torsyjne moduły HG (V r U r+1 ) faktycznie jest torsyjny. Ostatni wyraz jest D-torsyjny w oczywisty sposób, a więc środkowy też. Zatem HG (X) jest D-torsyjny, co na mocy wcześniejszych lematów jest równoważne temu, że D 1 HG (X) = 0. Przypadek ogólny: niech U będzie otoczeniem niezmienniczym X F a V takim zbiorem domkniętym w X X F, że U int(v ) = X. Jest jasne, że takie zbiory zawsze istnieją. Rozpatrzmy ciąg Mayera-Vietorisa po lokalizacji: D 1 H 1 (U V ) δ D 1 H G(X) D 1 H G(U) D 1 H G(V ) D 1 H G(U V ) Z poprzedniego punktu widzimy, że D 1 H 1 (U V ) = 0 D 1 HG (V ) = 0 D 1 HG (U V ) = 0 (tutaj gra rolę fakt, że nasza teoria jest określona na V, które jest zwarte a więc teza twierdzenia dla niego zachodzi - co niestety wymaga użycia silnego wariantu twierdzenia o slajsie, dla przestrzeni, które niekoniecznie są rozmaitościami). Zatem dla dowolnego otoczenia U zbioru X F mamy izomorfizm D 1 HG (X) D 1 H (V ). Ciągłość teorii i kociągłość lokalizacji (jako lewego sprzężenia) kończy dowód. 3

4 2.1 Uwagi Rozważamy rodzinę podgrup dla ogólności wywodu, ale także ponieważ nie możemy przyjąc F = {G}, ponieważ (jak się przekonamy) HG (pt) może być dziedziną całkowitości, a więc żadna lokalizacja tego pierścienia nie zniknie (zgodnie z lematem ze wstępu). To zmusza nas do rozważania podgrup właściwych. Aby zbadać przypadek punktów stałych musimy przyjąć F = rodzina wszystkich (domkniętych) podgrup właściwych G. Wtedy X F = X G. Twierdzenie wykorzystuje ciągłość teorii kohomologii. Ale niestety standardowa teoria kohomologii ekwiwariantnej nie jest ciągła już na poziomie trywialnych G-przestrzeni. Jeżeli rozważamy tylko G-rozmaitości i punkty stałe, to nie musimy zakładać ciągłości. Możmy bowiem zauważyć, że zbiór punktów stałych jest podrozmaitością - wynika to z twierdzenia o slajsie. Wtedy G-otoczenie tubularne X G retrachuje się ekwiwariantnie na X G i izomorfizm otrzymujemy juz z ciągu Mayera-Vietorisa. Dokładność lokalizacji oznacza, że D 1 HG również jest teorią kohomologii z wyjątkiem nieskończonej addytywności. Branie punktów stałych dla rodziny F jest funktorem G spc G spc. Ponadto włożenie ( ) F Id G spc jest transformacją naturalną. Możemy zatem sformułować następujący Wniosek 2.4. Po lokalizacji względem D, przekształcenie H G ( ) H G ( F ) jest izomorfizmem teorii kohomologii. Łącząc to z uwagami ze wstępu otrzymujemy Wniosek 2.5. Jądrem odwzorowania i : HG (X) H G (XF ) jest moduł elementów D-torsyjnych w HG (X). Kojądro również jest modułem elementów D- torsyjnych. Dowód. Zgodnie z lematem o jądrze naturalnego homomorfizmu ze wstępu jądro jest co najmniej tak duże. Jednak jeżeli element nie torsyjny przeszdłby na torsyjny przy i, to otrzymalibyśmy sprzeczność z izomorficznością po lokalizacji. Analogiczny argument pokazuje, że w kojądrze nie może znaleźć się element nie torsyjny. Nie jest wcale jasne, że D 1 HG ( ) 0 jako teoria kohomologii. Poniżej zakładamy, że grupa G jest torusem a HG jest teorią zdefiniowaną przez model Weila lub Cartana (lub dowolny inny model). Można wykazać, że założenie przemienności jest mniej więcej konieczne do uzyskania ciekawych wyników. 3 Lokalizacja w ideale zerowym Rozważymy tutaj najprostszy przykład lokalizacji. Jeżeli I R jest ideałem pierwszym, to zbiór R I jest multiplikatywnie zamknięty i lokalizację R wzlędem niego oznaczamy przez R I i nazywamy lokalizacją w ideale I. My rozważymy przykład I = 0, który wymaga, aby R był dziedziną całkowitości. R 0 jest wtedy ciałem ułamków R. Udowodnimy poniżej, że ma to sens. Jest to najsłabsza wersja lokalizacji, ponieważ odwracamy wszystko, co się da. Jak wyniknie z naszych obliczeń, często możemy odwrócić znacznie mniej. 4

5 3.1 Kohomologia przestrzeni jednorodnych Policzymy teraz kohomologię przestrzeni postaci G/K, gdzie G jest spójną grupą przemienną (torusem), a K jest jej domkniętą podgrupą. Okazuje się, że wynik jest następujący: Twierdzenie 3.1. H G (G/K) S(k ), gdzie k = Lie(K) to algebra Liego grupy K. Homomorfizm indukowany przez G/K {pt} jest obcinaniem funkcji wielomianowych. Ponadto homomorfizm indukowany przez włożenie A K G/K G/A również jest obcinaniem funkcji wielomianowych. Razem z twierdzeniami opisującymi O h (G/K, G/A) determinuje to współczynniki naszej teorii kohomologii. Dowód. Korzystamy z modelu Cartana. Przypomnijmy, że rozważamy kompleks (S(g ) Ω (G/K)) G, z różniczką zadaną przez d G (f ω) = f dω Σ a x a f ι a ω, gdzie x a to baza g, a ι a = ι ξa, gdzie ξ a to baza g dualna do x a. W naszym przypadku (przemiennym) kompleks ten przyjmuje postać S(g ) Λ (h ), z różniczką d G (f ω) = Σ a h x a f ι a ω. Jest tak, gdyż (patrząc na wzór opisujący kompleks Cartana) możemy się ograniczyć do rozpatrywania spójnej składowej K 0 grupy K. Wtedy istnieje spójna podgrupa H G taka, że G K 0 H. Ten fakt wynika z opisu torusów przez ich odwzorowania wykładnicze oraz twierdzenia o zgodym wyborze bazy dla krat. Ustalamy h = Lie(H). Bazę g = k h można wybrać tak, aby częśc rozpinała k, a druga część h. Nieścisły napis a h bierze się z faktu, że (g/k) to funkcje liniowe na g, które znikają na k, czyli funkcje liniowe na h, zatem kontrakcje wystarczy wykonać na elementach bazy rozpinających h, bo inaczej wynik znika. Niezmienniczość w przypadku przemiennym dla algebry symetrycznej nie znaczy nic. Zostaje tylko niezmienniczość form różniczkowych, czyli fakt, że są one wyznaczone przez swoją wartość w identyczności grupy - stąd czynnik Λ (h ) Λ ((g/k) ). Są to funkcje stałe, więc pierwszy czynnik w różniczce zawsze znika - stąd wzór w naszym przypadku. Istnieje kanoniczny izomorfizm S(g ) S(k h ) S(k ) S(h ), więc w ogólności: d G ( f α g β ω γ ) = f α x a g β ι a ω γ α,β,γ a h α,β,γ Dowód sprowadza się teraz do następującego lematu: Lemat 3.2. Kohomologie kompleksu S(h ) Λ(h ), z daną wyżej różniczką, to R w gradacji zerowej i zero w wyższych gradacjach. Dowód. Z ogólnych powodów (tzn. własności uniwersalnych operacji S ( ) i Λ ( )) kompleks ten jest funktorialny względem przekształceń liniowych h i przenosi sumy proste na iloczyny tensorowe kompleksów. Zatem ze wzoru Künnetha możemy założyć, że dim(h) = 1. Wtedy nasz kompleks ma postać R[x] R[x] Rξ, gdzie ξ 2 = 0 i ξ jest dowolnym generatorem h, a różniczka jest dana przez 5

6 d G (f + g ξ) = xg Zatem ker(d G ) = R[x] 0, oraz im(d G ) = (x)r[x] 0, co kończy dowód. Rozważając powyższy argument jak i odwzorowanie S(g ) R S(g ) Λ ((g/h) ) pochodzące od G/H {pt} jaki i odwzorowania indukowane przez A H jest jasne, że te homomorfizmy na poziomie kohomologii są odpowiednimi homomorfizmami obcinania funkcji wielomianowych. Uwaga 3.3. Jak pokazuje nasze twierdzenie, wystarczy odwrócić znacznie mniej niż dopełnienie zera w pierścieniu S(g ) - wystarczy odwrócic generujące go formy liniowe (zgodnie z naszymi konwencjami - system multiplikatywny generowany przez nie). 6

Zadania o transferze

Zadania o transferze Maria Donten, 5.12.2007 Zadania o transferze 1. Oznaczenia, założenia i przypomnienia Przez M i M będziemy oznaczać rozmaitości gładkie, przy czym M nakrywa M. Przyjmujemy, że gładkie odwzorowanie p :

Bardziej szczegółowo

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu

Bardziej szczegółowo

Topologia Algebraiczna 2 Zadania egzaminacyjne

Topologia Algebraiczna 2 Zadania egzaminacyjne Topologia Algebraiczna 2 Zadania egzaminacyjne Agnieszka Bojanowska, Stefan Jackowski 9 czerwca 2013 1 Kompleksy łańcuchowe Zad. 1. Niech I będzie odcinkiem w kategorii kompleksów łańcuchowych, czyli kompleksem

Bardziej szczegółowo

O centralizatorach skończonych podgrup

O centralizatorach skończonych podgrup O centralizatorach skończonych podgrup GL(n, Z) Rafał Lutowski Instytut Matematyki Uniwersytetu Gdańskiego III Północne Spotkania Geometryczne Olsztyn, 22-23 czerwca 2009 1 Wprowadzenie Grupy podstawowe

Bardziej szczegółowo

O ROZMAITOŚCIACH TORYCZNYCH

O ROZMAITOŚCIACH TORYCZNYCH O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Analiza II.2*, lato komentarze do ćwiczeń

Analiza II.2*, lato komentarze do ćwiczeń Analiza.2*, lato 2018 - komentarze do ćwiczeń Marcin Kotowski 5 czerwca 2019 1 11 2019, zadanie 2 z serii domowej 1 Pokażemy, że jeśli f nie jest stała, to całka: f(x f(y B B x y dx dy jest nieskończona.

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW

ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIEŃ WIELOMIANÓW Piotr M. Hajac Uniwersytet Warszawski Wykład 6, 6.11.2013 Typeset by Jakub Szczepanik. Plan 2/10 1 Co to są wielomiany i jak się je mnoży? 2 Co to jest stopień

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

CO TO SĄ BAZY GRÖBNERA?

CO TO SĄ BAZY GRÖBNERA? CO TO SĄ BAZY GRÖBNERA? Wykład habilitacyjny, Toruń UMK, 5 czerwca 1995 roku Andrzej Nowicki W. Gröbner, 1899-1980, Austria. B. Buchberger, Austria. H. Hironaka, Japonia (medal Fieldsa). Bazy, o których

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Definicje- Algebra III

Definicje- Algebra III Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian 9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH

ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

R k v = 0}. k N. V 0 = ker R k 0

R k v = 0}. k N. V 0 = ker R k 0 Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}

Bardziej szczegółowo

Sto zadań o homologiach

Sto zadań o homologiach Sto zadań o homologiach Stefan Jackowski 20 maja 2007 Aksjomaty teorii homologii i kohomologii Definicja. Teorią homologii na kategorii punktowanych przestrzeni topologicznych T (lub jej podkategorii zamkniętej

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1. Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

Teoria miary. Matematyka, rok II. Wykład 1

Teoria miary. Matematyka, rok II. Wykład 1 Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe 14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych

Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych, Markus Schmidmeier, FAU Maj, 2015 Oznaczenia K ciało algebraicznie domknięte α, β, γ partycje, tzn. nierosnące ciągi liczb naturalnych

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

3 Abstrakcyjne kompleksy symplicjalne.

3 Abstrakcyjne kompleksy symplicjalne. 3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo