Analiza dynamiki zjawisk masowych. Wprowadzenie
|
|
- Sylwester Sławomir Kozieł
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie Analizę dynamiki zjawisk masowych przeprowadza się na podstawie szeregówczasowych.sątociągi (Y t )wartościbadanegozjawiska obserwowanego w kolejnych jednostkach czasu. Zmienną niezależną jest czas, a zmienną zależną wartości liczbowe badanego zjawiska.
2 Szeregi czasowe w R Do konstrukcji szeregu czasowego wykorzystywana jest funkcja ts. Jeśli mamy już szereg czasowy, to możemy uzyskać z niego wiele informacji. Wykorzystywane są do tego następujące funkcje: start (początkowy okres), end(końcowy okres), frequency(liczba podokresów), deltat(odstęp czasowy pomiędzy obserwacjami, np. dla miesięcy mamy 1/12), time(wektor czasów, w których mamy obserwacje z szeregu). Do wizualizacji danych zebranych w postaci szeregu czasowego służy funkcja ts.plot, której argumentem może być kilka szeregów czasowych(zostaną zwizualizowane na jednym wykresie).
3 DatywR Podstawowe funkcje to: Sys.time(data wraz z godziną), Sys.Date (data bez godziny). Do wprowadzania danych jako dat służy funkcja as.date, której argumentem jest data. Domyślny format daty,toczterycyfrynarok,dwienamiesiącidwienadzień, oddzielone kreską lub ukośnikiem. Jeśli chcemy użyć niestandardowego formatu, należy go wyspecyfikować jako wartość parametru format według oznaczeń zawartych w poniższej tabeli.
4 DatywR
5 DatywR Data przechowywana jest jako liczba dni, jaka upłynęła od 1 stycznia 1970 roku. Można również podać datę jako liczbę dni, która upłynęła od pewnej daty początkowej. Jeśli chcemy się dowiedzieć, jakim dniem, miesiącem lub kwartałem jest dana data możemy użyć funkcji weekdays, months oraz quarters. Często możemy być zainteresowani jaka była różnica pomiędzy dwoma datami. W R różnicę tę możemy wyrazić w sekundach, minutach, godzinach, dniach i miesiącach używając funkcji difftime i określając parametr units na secs, mins, hours, days, weeks odpowiednio. Przy konstrukcji szeregów czasowych potrzebne nam są sekwencje dat. Można je z łatwością utworzyć korzystająca z poznanej wcześniej funkcji seq z wykorzystaniem jej parametru by, który może przyjmować wartości będące jednostkami czasowymi.
6 Model wahań w czasie Modelem wahań w czasie nazywamy konstrukcję teoretyczną opisującą kształtowanie się określonego zjawiska jako funkcję czasu, wahań okresowych(periodycznych) i przypadkowych (nieregularnych). Tradycyjnie analizy prawidłowości w rozwoju zmiennej dokonuje się poprzez wyodrębnianie w szeregu czasowym jego elementów składowych, co nosi nazwę dekompozycji tego szeregu. W najogólniejszym przypadku zakłada się, że w szeregu czasowym mogą wystąpić cztery składniki: 1 trend T t, 2 wahaniacykliczne C t, 3 wahaniasezonowe S t, 4 wahanianieregularne,przypadkowe I t.
7 Model wahań w czasie Trend charakteryzuje długookresową tendencję zmian w szeregu czasowym. Może on oznaczać w miarę regularnie powtarzający się wzrost lub spadek wartości zmiennej Y lub też brak wyraźnej tendencji zmian. Pozostałe trzy składniki szeregu czasowego to różnego typu odchylenia od tendencji długookresowej. Wahania cykliczne oznaczają powtarzające się(niekoniecznie regularnie) wahania o czasie trwania dłuższym niż rok. Wahania sezonowe oznaczają takie odchylenia od trendu, które powtarzają się w czasiewsposóbregularnyiktórychpełencyklzawierasięwciągu jednego roku. Wahania sezonowe powtarzają się według pewnego wzorca każdego roku. Wahania sezonowe kształtowane są przez czynniki naturalne(pory roku, pogodę) oraz przez zwyczaje(np. różne święta). Wahania nieregularne(losowe) to te, które obejmują wszelkie odchylenia od trendu, będące efektem działania na badaną zmienną niepowtarzalnych, nie dających się przewidzieć ani prognozować zdarzeń.
8 Trend Tendencją rozwojową(trendem) nazywamy powolne, regularne i systematyczne zmiany określonego zjawiska, obserwowane w dostatecznie długim przedziale czasu i będące wynikiem działania przyczyn głównych. Przyjmuje się, że aby wyodrębnić trend, niezbędne są co najmniej 10-letnie badania. Wyróżniamy dwie metody wyodrębniania tendencji rozwojowej szeregów czasowych: Metoda mechaniczna opiera się na średnich ruchomych. Polega ona na zastąpieniu danych empirycznych średnimi poziomami z okresu badanego i kilku okresów sąsiednich. Średnie ruchome mogą być obliczane z parzystej bądź nieparzystej liczby wyrazów sąsiednich. Metoda analityczna polega na dopasowaniu określonej funkcji matematycznej do całego szeregu czasowego za pomocą MNK. Istotny jest wybór klasy funkcji trendu oraz prawidłowe oszacowanie jej parametrów.
9 Średnia ruchoma Dla przykładu średnie ruchome trzyokresowe(k = 3) obliczamy następująco: Ȳ 2 = Y 1 +Y 2 +Y 3, 3 Ȳ 3 = Y 2 +Y 3 +Y 4, 3..., Ȳ n 1 = Y n 2 +Y n 1 +Y n. 3
10 Średnia ruchoma Natomiast w przypadku średniej ruchomej dla parzystej liczby okresów(k = 4) obliczenia wykonujemy według wzorów: Ȳ 3 = 1 2 Y 1 +Y 2 +Y 3 +Y Y 5, Ȳ 4 = Y 2 +Y 3 +Y 4 +Y Y 6, 4..., Ȳ n 2 = 1 2 Y n 4 +Y n 3 +Y n 2 +Y n Y n 4 Zaletą tej metody jest prostota obliczeń, wadą natomiast jest skracanie wyrównanego tą metodą szeregu czasowego. W naszym przypadkudla k =3tracimyelementpierwszyiostatni,adla k =4tracimydwapierwszeidwaostatnie..
11 Filtry wygładzające Oprócz najprostszej metody średniej ruchomej można zastosować, dużo bardziej wyrafinowane metody zwane filtrami. Do najpopularniejszych należą filtr liniowy oraz wykładniczy. Filtr liniowy ma postać: Ŷ t = 1 2a+1 a Y t+i. i= a Jest to w zasadzie nieco zmodyfikowana średnia ruchoma.
12 Filtry wygładzające Filtr wykładniczy, który bywa również nazywany wygładzaniem wykładniczym Browna, opiera się na założeniu, że wartość szeregu czasowego powinna bardziej zależeć od obserwacji bliskich niż dalekich, co daje Ŷ t+1 = αy t 1 +(1 α)ŷ t. Istotny jak widać jest w tym przypadku wybór wartości startowej, najczęściejjestzaniąprzyjmowanawartośćpoczątkowaszeregu Y 1 lub jest to średnia z pierwszych czterech lub pięciu obserwacji początkowych. Takie proste wygładzanie wykładnicze używane jest w przypadku prognoz krótkoterminowych, gdy dane nie wykazują trendu ani sezonowości.
13 Filtry wygładzające W przypadku wystąpienia trendu używa się podwójnego wygładzania wykładniczego Holta postaci: oraz S t = αy t +(1 α)(s t 1 +b t 1 ), 0 < α <1 b t = β(s t S t 1 )+(1 β)b t 1, 0 < β <1 Ŷ t+1 = S t +b t gdzie S t jestwygładzonąwartościązmiennejprognozowanejw chwili t,ab t wygładzonąwartościąprzyrostutrenduwokresie t. Zawartościstartoweprzyjmujesię S 1 = Y 1 oraz b 1 = Y 2 Y 1 lub b 1 = (Y n Y 1 )/(n 1).Jeślidodatkowouwzględnimysezonowość to dostaniemy potrójne wygładzanie wykładnicze, zwane również metodą Wintersa(pojawia się tam dodatkowy parametr γ). Istnieją dwa jego rodzaje w zależności czy przyjmujemy model addytywny czy multiplikatywny sezonowości. Ogólnie wygładzenie wykładnicze jest nazywane filtrem Holta-Wintersa.
14 Filtry wygładzające w R Filtr liniowy realizuje funkcja filter, której pierwszym argumentem jest szereg czasowy, natomiast drugim argumentem jest wektor wag. Filtrowanie wykładnicze realizuje funkcja HoltWinters, której pierwszym argumentem jest szereg czasowy, następne trzy parametry alpha, beta i gamma określają wartości odpowiednich parametrów modelu. Jeśli nie zostaną podane(ustalenie na NULL wyklucza parametr z modelu), funkcja poszuka wartości minimalizujących błąd średniokwadratowy predykcji.
15 Metoda analityczna Najczęściej stosowana jest funkcja liniowa postaci: Y t = α 0 +α 1 t +ε t, gdzie ε t oznaczaskładniklosowy.napodstawiedanychzszeregu empirycznego wyznacza się oszacowanie tej funkcji: Ŷ t = a 0 +a 1 t, gdzie estymatory parametrów wyznaczamy według wzorów: 12 n Y t t t=1 a 1 = n 3 n a 0 = Ȳ a 1 t. 6 n Y t t=1 n 2 n,
16 Autokorelacja Aby powyższe wzory były poprawne, odchylenia resztowe muszą być losowe oraz nie może występować autokorelacja(acf) składnika losowego. Autokorelacja występuje wtedy, gdy skutki działania zmienności losowej nie wygasają w danym okresie t, lecz są przenoszone naokresyprzyszłe t +1(autokorelacjarzędupierwszego), t +2 (autokorelacja rzędu drugiego) itd. Autokorelacja rzędu k(popularnie zwana opóźnieniem) jest funkcją, która argumentowi naturalnemu k przypisuje wartość współczynnika korelacji Pearsona pomiędzy szeregiem czasowym, a tym samym szeregiem cofniętym o k jednostek czasu. Formalnie(dla procesów stacjonarnych): gdzie ρ(k) = γ(k) γ(0), γ(k) = cov(y t,y t+k ) = E[(Y t µ)(y t+k µ)] jestautokowariancjąrzędu koraz µ = E(Y t ).
17 Autokorelacja Najczęściej spotykaną formą autokorelacji jest autokorelacja dodatnia. Dodatnio skorelowane zaburzenia losowe nie zachowują się całkowicie chaotycznie. Jeśli w okresie t błąd losowy był dodatni,toprawdopodobieństwo,żewokresie t +1będzieon także dodatni, jest wyższe niż prawdopodobieństwo, że w okresie tym będzie on ujemny. Spowodowana jest ona zwykle rozciągnięciem na dłużej niż jeden okres skutków zdarzeń losowych wpływających na poziom zmiennej objaśnianej. Rzadziej spotykaną formą autokorelacji jest autokorelacja ujemna. W takim przypadku prawdopodobieństwo wystąpienia po dodatnim błędzie losowym ujemnego błędu jest wyższe niż prawdopodobieństwo wystąpienia dodatniego błędu. Autokorelacja może być także spowodowana przyjęciem błędnej postaci funkcyjnej dla estymowanego modelu. Sprawdzenie istotności autokorelacji składnika losowego następuje najczęściej za pomocą testu Durbina-Watsona, w którym hipoteza zerowa zakłada brak autokorelacji.
18 Autokorelacja wykresy Do wstępnej oceny autokorelacji można wykorzystać wykresy. a) Brak autokorelacji b) autokorelacja dodatnia c) autokorelacja ujemna a) Autokorelacja dodatnia b) autokorelacja ujemna
19 Modelowanie szeregów czasowych z autokorelacją Jeśli autokorelacja występuje szereg czasowy modeluje się poprzez: Proces średniej ruchomej(ma) rzędu q postaci: Y t = c + q β j ε t j, j=0 gdzie ε t jestczynnikiemlosowym(owartościoczekiwanej0 orazwariancji σ 2 ),przyczym ε i oraz ε i+1 sąniezależnedla każdej wartości i.
20 Modelowanie szeregów czasowych z autokorelacją Proces autoregresji(ar) rzędu p postaci: Y t = α 0 + p α i Y t i +ε t. i=1 W procesie AR(p) uwzględniamy wpływ p poprzednich wartości szeregu na jego wielkość w momencie t.
21 Modelowanie szeregów czasowych z autokorelacją Proces autoregresji i średniej ruchomej(arma) rzędu (p, q) postaci: Y t = α 0 + p α i Y t i + i=1 q β j ε t j, j=0 w którym dodajemy dodatkowo efekt wpływu czynnika losowego z poprzednich momentów czasowych na wartość szeregu w momencie t.
22 Modelowanie szeregów czasowych z autokorelacją Scałkowany proces autoregresji i średniej ruchomej(arima) rzędu (p, d, q). Jeśli w danych występuje wyraźny trend (proces jest niestacjonarny), należy taki trend usunąć przed dalszą analizą. Trend usuwany jest poprzez różnicowanie d razy. Stopień różnicowania określony jest przez stopień wielomianu opisującego trend(pojedyncze różnicowanie usuwa trend liniowy, podwójne kwadratowy itd.). Operacja różnicowania polega na d krotnym zastępowaniu szeregu szeregiem różnic wyrazów sąsiednich. Przy każdej takiej operacji długość szeregu zmniejsza się o jeden. Gdy metodą różnicowania dojdziemy do szeregu stacjonarnego obliczając różnice rzędu d, taki szereg nazywamy szeregiem zintegrowanym stopnia d.
23 Stacjonarność Średnia szeregu czasowego(trend) nie powinna być funkcją czasu, raczej powinna być stała.
24 Stacjonarność Wariancja szeregu czasowego nie powinna być funkcją czasu.
25 Stacjonarność Kowariancja i-tegoi(i +m)-egoskładnikaniepowinnabyć funkcją czasu.
26 Stacjonarność Jeśli nie mamy pewności co do stacjonarności szeregu, możemy spróbować zbadać to jednym z dostępnych testów stacjonarności. Do najpopularniejszych należy test Dickeya-Fullera. Hipoteza zerowa stanowi, że szereg jest niestacjonarny. Proces AR oraz ARMA są stacjonarne jeżeli wszystkie pierwiastki równania charakterystycznego są większe co do wartości bezwzględnej od 1. Jeżeliwmodeluzawartofunkcjęzależnąodczasu t,toprocesjest niestacjonarny. Proces MA jest zawsze stacjonarny.
27 Stacjonarność Proces Y t = 1 2 Y t 1 +ε t marównaniecharakterystyczne postaci x 2 =0,któremapierwiastekrówny2.Jestto zatem proces stacjonarny. Proces Y t = Y t Y t 2 +ε t marównanie charakterystycznepostaci x 2 4x +4 =0,którema pierwiastek podwójny równy 2. Zatem jest to również proces stacjonarny. Proces Y t = 1 2 Y t Y t 2 +ε t marównanie charakterystycznepostaci x 2 +x 2 =0,którema pierwiastkirówne-2i1.ponieważniesąobawiększecodo wartości bezwzględnej od 1, zatem proces jest niestacjonarny. Proces Y t = 1 4 Y t 2 +ε t marównaniecharakterystyczne postaci x 2 +4 =0,któremadwapierwiastkizespolone postaci ±2i,dlaktórych 2i = =2.Czyliproces jest stacjonarny.
28 Flowchart
29 Flowchart
Analiza dynamiki zjawisk masowych Analiza szeregów czasowych. Wprowadzenie
Wprowadzenie Analiza dynamiki zjawisk masowych Analizę dynamiki zjawisk masowych przeprowadza się na podstawie szeregówczasowych.sątociągi (Y t )wartościbadanegozjawiska obserwowanego w kolejnych jednostkach
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU prof. dr hab. Andrzej Sokołowski 2 W tym opracowaniu przedstawiony zostanie przebieg procesu poszukiwania modelu prognostycznego wykorzystującego jedynie przeszłe
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Analiza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Modelowanie ekonometryczne
Modelowanie ekonometryczne Kamil Skoczylas Kamilskoczylas@wp.pl 1. Wstęp Otaczający nas świat to zbiór różnych zjawisk. W zależności od zainteresowań człowiek staje się obserwatorem niektórych z nich.
WYKŁAD: Szeregi czasowe II. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe II Zaawansowane Metody Uczenia Maszynowego Zwroty indeksów finansowych Y t : indeks finansowy w momencie t (wartość waloru, kurs walutowy itp). Określimy zwrot indeksu finansowego
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
wprowadzenie do analizy szeregów czasowych
19 stycznia 2016 Wprowadzenie Prezentacja danych Dekompozycja Preprocessing Model predykcji ARIMA Dobór parametrów modelu ARIMA Podsumowanie Definicje i przykłady Definicje Szeregiem czasowym nazywamy
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?
Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Ćwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Wprowadzenie do szeregów czasowych i modelu ARIMA
Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA
Metody Prognozowania
Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.
Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny
Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
Po co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym