Analiza dynamiki zjawisk masowych Analiza szeregów czasowych. Wprowadzenie
|
|
- Grzegorz Kowalczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie Analiza dynamiki zjawisk masowych Analizę dynamiki zjawisk masowych przeprowadza się na podstawie szeregówczasowych.sątociągi (Y t )wartościbadanegozjawiska obserwowanego w kolejnych jednostkach czasu. Zmienną niezależną jest czas, a zmienną zależną wartości liczbowe badanego zjawiska.
2 Szeregi czasowe w R Do konstrukcji szeregu czasowego wykorzystywana jest funkcja ts. Jeśli mamy już szereg czasowy, to możemy uzyskać z niego wiele informacji. Wykorzystywane są do tego następujące funkcje: start (początkowy okres), end(końcowy okres), frequency(liczba podokresów), deltat(odstęp czasowy pomiędzy obserwacjami, np. dla miesięcy mamy 1/12), time(wektor czasów, w których mamy obserwacje z szeregu). Do wizualizacji danych zebranych w postaci szeregu czasowego służy funkcja ts.plot, której argumentem może być kilka szeregów czasowych(zostaną zwizualizowane na jednym wykresie).
3 DatywR Analiza dynamiki zjawisk masowych Podstawowe funkcje to: Sys.time(data wraz z godziną), Sys.Date (data bez godziny). Do wprowadzania danych jako dat służy funkcja as.date, której argumentem jest data. Domyślny format daty,toczterycyfrynarok,dwienamiesiącidwienadzień, oddzielone kreską lub ukośnikiem. Jeśli chcemy użyć niestandardowego formatu, należy go wyspecyfikować jako wartość parametru format według oznaczeń zawartych w poniższej tabeli. Oznaczenie Działanie %d dzień miesiąca(liczba) %m miesiąc(liczba) %b miesiąc(skrót nazwy) %B miesiąc(pełna nazwa) %y rok(2 cyfry) %Y rok(4 cyfry)
4 DatywR Analiza dynamiki zjawisk masowych Data przechowywana jest jako liczba dni, jaka upłynęła od 1 stycznia 1970 roku. Można również podać datę jako liczbę dni, która upłynęła od pewnej daty początkowej. Jeśli chcemy sie dowiedzieć, jakim dniem, miesiącem lub kwartałem jest dana data możemy użyć funkcji weekdays, months oraz quarters. Często możemy być zainteresowani jaka była różnica pomiędzy dwoma datami. W R różnicę tę możemy wyrazić w sekundach, minutach, godzinach, dniach i miesiącach używając funkcji difftime i określając parametr units na secs, mins, hours, days, weeks odpowiednio. Przy konstrukcji szeregów czasowych potrzebne nam są sekwencje dat. Można je z łatwością utworzyć korzystająca z poznanej wcześniej funkcji seq z wykorzystaniem jej parametru by, który może przyjmować wartości będące jednostkami czasowymi.
5 Model wahań w czasie Modelem wahań w czasie nazywamy konstrukcję teoretyczną opisującą kształtowanie się określonego zjawiska jako funkcję czasu, wahań okresowych(periodycznych) i przypadkowych (nieregularnych). Tradycyjnie analizy prawidłowości w rozwoju zmiennej dokonuje się poprzez wyodrębnianie w szeregu czasowym jego elementów składowych, co nosi nazwę dekompozycji tego szeregu. W najogólniejszym przypadku zakłada się, że w szeregu czasowym mogą wystąpić cztery składniki: 1 trend T t, 2 wahaniacykliczne C t, 3 wahaniasezonowe S t, 4 wahanianieregularne,przypadkowe I t.
6 Model wahań w czasie Trend charakteryzuje długookresową tendencję zmian w szeregu czasowym. Może on oznaczać w miarę regularnie powtarzający się wzrost lub spadek wartości zmiennej Y lub też brak wyraźnej tendencji zmian. Pozostałe trzy składniki szeregu czasowego to różnego typu odchylenia od tendencji długookresowej. Wahania cykliczne oznaczają powtarzające się(niekoniecznie regularnie) wahania o czasie trwania dłuższym niż rok. Wahania sezonowe oznaczają takie odchylenia od trendu, które powtarzają się w czasiewsposóbregularnyiktórychpełencyklzawierasięwciągu jednego roku. Wahania sezonowe powtarzają się według pewnego wzorca każdego roku. Wahania sezonowe kształtowane są przez czynniki naturalne(pory roku, pogodę) oraz przez zwyczaje(np. różne święta). Wahania nieregularne(losowe) to te, które obejmują wszelkie odchylenia od trendu, będące efektem działania na badaną zmienną niepowtarzalnych, nie dających się przewidzieć ani prognozować zdarzeń.
7 Modelowanie szeregów czasowych Szereg czasowy możemy modelować na dwa sposoby: Multiplikatywnie Y t = T t S t C t I t Zakładamy, że zmiany odchylenia od trendu wyrażone są w procentach, przy czym 100% oznacza brak zmian. Ten model jest wykorzystywany częściej. Addytywnie Y t = T t +S t +C t +I t Zakładamy, że zmiany odchylenia od trendu wyrażone są w wartościach absolutnych.
8 Trend Analiza dynamiki zjawisk masowych Tendencją rozwojową(trendem) nazywamy powolne, regularne i systematyczne zmiany określonego zjawiska, obserwowane w dostatecznie długim przedziale czasu i będące wynikiem działania przyczyn głównych. Przyjmuje się, że aby wyodrębnić trend, niezbędne są co najmniej 10-letnie badania. Wyróżniamy dwie metody wyodrębniania tendencji rozwojowej szeregów czasowych: Metoda mechaniczna opiera się na średnich ruchomych. Polega ona na zastąpieniu danych empirycznych średnimi poziomami z okresu badanego i kilku okresów sąsiednich. Średnie ruchome mogą być obliczane z parzystej bądź nieparzystej liczby wyrazów sąsiednich. Metoda analityczna polega na dopasowaniu określonej funkcji matematycznej do całego szeregu czasowego za pomocą MNK. Istotny jest wybór klasy funkcji trendu oraz prawidłowe oszacowanie jej parametrów.
9 Średnia ruchoma Analiza dynamiki zjawisk masowych Dla przykładu średnie ruchome trzyokresowe(k = 3) obliczamy następująco: Ȳ 2 = Y 1 +Y 2 +Y 3, 3 Ȳ 3 = Y 2 +Y 3 +Y 4, 3..., Ȳ n 1 = Y n 2 +Y n 1 +Y n. 3
10 Średnia ruchoma Analiza dynamiki zjawisk masowych Natomiast w przypadku średniej ruchomej dla parzystej liczby okresów(k = 4) obliczenia wykonujemy według wzorów: Ȳ 3 = 1 2 Y 1 +Y 2 +Y 3 +Y Y 5, Ȳ 4 = Y 2 +Y 3 +Y 4 +Y Y 6, 4..., Ȳ n 2 = 1 2 Y n 4 +Y n 3 +Y n 2 +Y n Y n 4 Zaletą tej metody jest prostota obliczeń, wadą natomiast jest skracanie wyrównanego tą metodą szeregu czasowego. W naszym przypadkudla k =3tracimyelementpierwszyiostatni,adla k =4tracimydwapierwszeidwaostatnie..
11 Filtry wygładzające Oprócz najprostszej metody średniej ruchomej można zastosować, dużo bardziej wyrafinowane metody zwane filtrami. Do najpopularniejszych należą filtr liniowy oraz wykładniczy. Filtr liniowy ma postać: Ŷ t = 1 2a+1 a Y t+i. i= a Jest to w zasadzie nieco zmodyfikowana średnia ruchoma.
12 Filtry wygładzające Filtr wykładniczy, który bywa również nazywany wygładzaniem wykładniczym Browna, opiera się na założeniu, że wartość szeregu czasowego powinna bardziej zależeć od obserwacji bliskich niż dalekich, co daje Ŷ t+1 = αy t 1 +(1 α)ŷt. Istotny jak widać jest w tym przypadku wybór wartości startowej, najczęściejjestzaniąprzyjmowanawartośćpoczątkowaszeregu Y 1 lub jest to średnia z pierwszych czterech lub pięciu obserwacji początkowych. Takie proste wygładzanie wykładnicze używane jest w przypadku prognoz krótkoterminowych, gdy dane nie wykazują trendu ani sezonowości.
13 Filtry wygładzające W przypadku wystąpienia trendu używa się podwójnego wygładzania wykładniczego Holta postaci: oraz S t = αy t +(1 α)(s t 1 +b t 1 ), 0 < α <1 b t = β(s t S t 1 )+(1 β)b t 1, 0 < β <1 Ŷ t+1 = S t +b t gdzie S t jestwygładzonąwartościązmiennejprognozowanejw chwili t,ab t wygładzonąwartościąprzyrostutrenduwokresie t. Zawartościstartoweprzyjmujesię S 1 = Y 1 oraz b 1 = Y 2 Y 1 lub b 1 = (Y n Y 1 )/(n 1).Jeślidodatkowouwzględnimysezonowość to dostaniemy potrójne wygładzanie wykładnicze, zwane również metodą Wintersa(pojawia się tam dodatkowy parametr γ). Istnieją dwa jego rodzaje w zależności czy przyjmujemy model addytywny czy multiplikatywny sezonowości. Ogólnie wygładzenie wykładnicze jest nazywane filtrem Holta-Wintersa.
14 Filtry wygładzające w R Filtr liniowy realizuje funkcja filter, której pierwszym argumentem jest szereg czasowy, natomiast drugim argumentem jest wektor wag. Filtrowanie wykładnicze realizuje funkcja HoltWinters, której pierwszym argumentem jest szereg czasowy, następne trzy parametry alpha, beta i gamma określają wartości odpowiednich parametrów modelu. Jeśli nie zostaną podane(ustalenie na NULL wyklucza parametr z modelu), funkcja poszuka wartości minimalizujących błąd średniokwadratowy predykcji. Ostatni istotny parametr to seasonal, który może przyjmować wartość additive lub multiplicative w zależności od wybranego modelu sezonowości.
15 Metoda analityczna Najczęściej stosowana jest funkcja liniowa postaci: Y t = α 0 +α 1 t +ε t, gdzie ε t oznaczaskładniklosowy.napodstawiedanychzszeregu empirycznego wyznacza się oszacowanie tej funkcji: Ŷ t = a 0 +a 1 t, gdzie estymatory parametrów wyznaczamy według wzorów: 12 n Y t t t=1 a 1 = n 3 n a 0 = Ȳ a 1 t. 6 n Y t t=1 n 2 n,
16 Autokorelacja Analiza dynamiki zjawisk masowych Aby powyższe wzory były poprawne, odchylenia resztowe muszą być losowe oraz nie może występować autokorelacja(acf) składnika losowego. Autokorelacja występuje wtedy, gdy skutki działania zmienności losowej nie wygasają w danym okresie t, lecz są przenoszone naokresyprzyszłe t +1(autokorelacjarzędupierwszego), t +2 (autokorelacja rzędu drugiego) itd. Autokorelacja rzędu k(popularnie zwana opóźnieniem) jest funkcją, która argumentowi naturalnemu k przypisuje wartość współczynnika korelacji Pearsona pomiędzy szeregiem czasowym, a tym samym szeregiem cofniętym o k jednostek czasu. Formalnie(dla procesów stacjonarnych): gdzie ρ(k) = γ(k) γ(0), γ(k) = cov(y t,y t+k ) = E[(Y t µ)(y t+k µ)] jestautokowariancjąrzędu koraz µ = E(Y t ).
17 Autokorelacja Analiza dynamiki zjawisk masowych Najczęściej spotykaną formą autokorelacji jest autokorelacja dodatnia. Dodatnio skorelowane zaburzenia losowe nie zachowują się całkowicie chaotycznie. Jeśli w okresie t błąd losowy był dodatni,toprawdopodobieństwo,żewokresie t +1będzieon także dodatni, jest wyższe niż prawdopodobieństwo, że w okresie tym będzie on ujemny. Spowodowana jest ona zwykle rozciągnięciem na dłużej niż jeden okres skutków zdarzeń losowych wpływających na poziom zmiennej objaśnianej. Rzadziej spotykaną formą autokorelacji jest autokorelacja ujemna. W takim przypadku prawdopodobieństwo wystąpienia po dodatnim błędzie losowym ujemnego błędu jest wyższe niż prawdopodobieństwo wystąpienia dodatniego błędu. Autokorelacja może być także spowodowana przyjęciem błędnej postaci funkcyjnej dla estymowanego modelu. Sprawdzenie istotności autokorelacji składnika losowego następuje najczęściej za pomocą testu Durbina-Watsona, w którym hipoteza zerowa zakłada brak autokorelacji.
18 Autokorelacja wykresy Do wstępnej oceny autokorelacji można wykorzystać wykresy. a) Brak autokorelacji b) autokorelacja dodatnia c) autokorelacja ujemna a) Autokorelacja dodatnia b) autokorelacja ujemna
19 Test Durbina-Watsona w R Odpowiednia funkcja znajduje się w pakiecie car i nosi nazwę durbinwatsontest.
20 Modelowanie szeregów czasowych z autokorelacją Jeśli autokorelacja występuje szereg czasowy modeluje się poprzez: Proces średniej ruchomej(ma) rzędu q postaci: Y t = c + q β j ε t j, j=0 gdzie ε t jestczynnikiemlosowym(owartościoczekiwanej0 orazwariancji σ 2 ),przyczym ε i oraz ε i+1 sąniezależnedla każdej wartości i.
21 Modelowanie szeregów czasowych z autokorelacją Proces autoregresji(ar) rzędu p postaci: Y t = α 0 + p α i Y t i +ε t. i=1 W procesie AR(p) uwzględniamy wpływ p poprzednich wartości szeregu na jego wielkość w momencie t.
22 Modelowanie szeregów czasowych z autokorelacją Proces autoregresji i średniej ruchomej(arma) rzędu (p, q) postaci: Y t = α 0 + p α i Y t i + i=1 q β j ε t j, j=0 w którym dodajemy dodatkowo efekt wpływu czynnika losowego z poprzednich momentów czasowych na wartość szeregu w momencie t.
23 Modelowanie szeregów czasowych z autokorelacją Scałkowany proces autoregresji i średniej ruchomej(arima) rzędu (p, d, q). Jeśli w danych występuje wyraźny trend (proces jest niestacjonarny rozkłady prawdopodobieństwa zmiennej nie zmieniają się w czasie, parametry takie jak średnia i wariancja także nie ulegają zmianie wraz z przesunięciem w czasie), należy taki trend usunąć przed dalszą analizą. Trend usuwany jest poprzez różnicowanie d razy. Stopień różnicowania określony jest przez stopień wielomianu opisującego trend(pojedyncze różnicowanie usuwa trend liniowy, podwójne kwadratowy itd.). Operacja różnicowania polega na d krotnym zastępowaniu szeregu szeregiem różnic wyrazów sąsiednich. Przy każdej takiej operacji długość szeregu zmniejsza się o jeden. Gdy metodą różnicowania dojdziemy do szeregu stacjonarnego obliczając różnice rzędu d, taki szereg nazywamy szeregiem zintegrowanym stopnia d.
24 Stacjonarność Analiza dynamiki zjawisk masowych Jeśli nie mamy pewności co do stacjonarności szeregu, możemy spróbować zbadać to jednym z dostępnych testów stacjonarności. Do najpopularniejszych należy test Dickeya-Fullera. Hipoteza zerowa stanowi, że szereg jest niestacjonarny. Proces AR oraz ARMA jest stacjonarny jeżeli wszystkie pierwiastki równania charakterystycznego są większe co do wartości bezwzględnej od 1. Jeżeliwmodeluzawartofunkcjęzależnąodczasu t,toprocesjest niestacjonarny. Proces MA jest stacjonarny.
25 Stacjonarność Analiza dynamiki zjawisk masowych Proces Y t = 1 2 Y t 1 +ε t marównaniecharakterystyczne postaci x 2 =0,któremapierwiastekrówny2.Jestto zatem proces stacjonarny. Proces Y t = Y t Y t 2 +ε t marównanie charakterystycznepostaci x 2 4x +4 =0,którema pierwiastek podwójny równy 2. Zatem jest to również proces stacjonarny. Proces Y t = 1 2 Y t Y t 2 +ε t marównanie charakterystycznepostaci x 2 +x 2 =0,którema pierwiastkirówne-2i1.ponieważniesąobawiększecodo wartości bezwzględnej od 1, zatem proces jest niestacjonarny. Proces Y t = 1 4 Y t 2 +ε t marównaniecharakterystyczne postaci x 2 +4 =0,któremadwapierwiastkizespolone postaci ±2i,dlaktórych 2i = =2.Czyliproces jest stacjonarny.
26 Generowanie szeregów czasowych Powyższe procesy można generować w R za pomocą polecenia arima.sim. Generowane są procesy ze średnią 0, więc aby przesunąć proces należy przesunąć wszystkie jego wartości.
27 Określanie rzędu procesu Poza autokorelacją wykorzystuje się również autokorelację cząstkową(pacf). Jest ona podobna do autokorelacji, z wyjątkiem tego, że podczas jej obliczania korelacje z wszystkimi elementami w ramach opóźnienia zostają wyeliminowane. Jeśli opóźnienie zostało określone na 1(tzn. nie ma żadnych elementów pośrednich wewnątrz opóźnienia), to autokorelacja cząstkowa jest równoważna autokorelacji. Autokorelacje wizualizujemy za pomocą korelogramów, na których nanosimy wartości kolejnych autokorelacji, przy zmieniającym się opóźnieniu. Jeśli słupki są małe(między liniami określającymi poziom ufności) możemy wnioskować, że zależność autokorelacyjna nie występuje, w przeciwnym razie możemy zaobserwować jakiego jest rzędu.
28 Określanie rzędu procesu Z korelogramu autokorelacji możemy wnioskować o rzędzie średniej ruchomej, natomiast z korelogramu autokorelacji cząstkowej wnioskujemy o rzędzie procesu autoregresji. ARIMA(1,d,0):ACF opadawykładniczo;pacf maksimum przy opóźnieniu 1, brak korelacji dla innych opóźnień. ARIMA(2, d, 0): ACF kształt sinusoidalny lub kombinacja zaników wykładniczych; PACF duże wartości przy opóźnieniach 1 i 2, brak korelacji dla innych opóźnień. ARIMA(0,d,1):ACF maksimumprzyopóźnieniu1,brak korelacji dla innych opóźnień; PACF gaśnie wykładniczo. ARIMA(0,d,2):ACF dużewartościprzyopóźnieniach1i2, brak korelacji dla innych opóźnień; PACF kształt sinusoidy lub kombinacja zaników wykładniczych. ARIMA(1, d, 1): ACF opada wykładniczo począwszy od opóźnienia 1; PACF opada wykładniczo począwszy od opóźnienia 1.
29 Określanie rzędu procesu Ogólnie w celu określenia rzędów procesu można wykorzystać poniższą tabelę. AR(p) MA(q) ARMA(p,q), p,q >0 ACF Zmniejsza się Zanika po opóźnieniu q Zmniejsza się PACF Zanika po opóźnieniu p Zmniejsza się Zmniejsza się
30 Określanie rzędu procesu Jeśli jednak wciąż nie mamy pewności warto wykorzystać rozszerzoną funkcję autokorelacji(eacf). W wyniku otrzymujemy tabelę, w której w każdym wierszu otrzymujemy ACF aż do opóźnienia qdlakażdegoprocesuarorzędzie k p.rzędy procesu wnioskujemy z położenia wierzchołka trójkąta złożonego z zer. AR/MA X X X X X X X X X X X 1 X 0* X X X X X X X X X X X X X X X X X X X X X X X X X X X
31 Równania Yule a-walkera Twierdzenie Jeśli Y t = p z=1 α zy t z +ε t jeststacjonarnymprocesemar(p), wtedy jego funkcja autokorelacji spełnia następujące równanie rekurencyjne ρ(s) = p α z ρ(s z), s =1,2,... z=1
32 Równania Yule a-walkera Znajdźmy korzystając z powyższego twierdzenia funkcję autokorelacji dla procesu AR(2) postaci Y t = α 1 Y t 1 +α 2 Y t 2 +ε t. Mamy: 1,dla k =0, α 1 1 α ρ(k) = 2,dla k =1, α α 2 +α 2,dla k =2, 0,wp.p.
33 Autokorelacja i autokowariancja z definicji Niech Y t =10+Z t +Z t 1, gdzie Z t,z t 1,...jestciągiemniezależnychzmiennychlosowycho wartości oczekiwanej zero oraz jednostkowej wariancji. Mamy: E(Y t ) = E(Y t+k ) =10, γ(0) = Var(Y t ) =2, γ(1) = E[(Y t µ)(y t+1 µ)] =1, γ(2) = E[(Y t µ)(y t+2 µ)] =0. Oraz ρ(0) =1, ρ(1) =0,5, ρ(2) =0.
34 Stacjonarność procesów ARIMA Sprawdźmy czy proces ARIMA(1,1,1) jest stacjonarny. Proces taki ma postać: Mamy zatem Y t = α Y t 1 +ε t +βε t 1, α <1, b 0. Y t Y t 1 = α(y t 1 Y t 2 )+ε t +βε t 1, Y t = (α+1)y t 1 αy t 2 +ε t +βε t 1. Jest to zatem proces ARMA(2,1). Równanie charakterystyczne części AR ma postać: αx 2 (α+1)x +1 =0. Maonopierwiastki1oraz1/a.Zatemniejesttoproces stacjonarny.
Analiza dynamiki zjawisk masowych. Wprowadzenie
Wprowadzenie Analizę dynamiki zjawisk masowych przeprowadza się na podstawie szeregówczasowych.sątociągi (Y t )wartościbadanegozjawiska obserwowanego w kolejnych jednostkach czasu. Zmienną niezależną jest
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Wprowadzenie do szeregów czasowych i modelu ARIMA
Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Liniowe modele stochastyczne Niech {y n } N n=1 będzie pewnym ciagiem danych
Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?
Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
WYKŁAD: Szeregi czasowe II. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe II Zaawansowane Metody Uczenia Maszynowego Zwroty indeksów finansowych Y t : indeks finansowy w momencie t (wartość waloru, kurs walutowy itp). Określimy zwrot indeksu finansowego
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
wprowadzenie do analizy szeregów czasowych
19 stycznia 2016 Wprowadzenie Prezentacja danych Dekompozycja Preprocessing Model predykcji ARIMA Dobór parametrów modelu ARIMA Podsumowanie Definicje i przykłady Definicje Szeregiem czasowym nazywamy
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU prof. dr hab. Andrzej Sokołowski 2 W tym opracowaniu przedstawiony zostanie przebieg procesu poszukiwania modelu prognostycznego wykorzystującego jedynie przeszłe
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
PROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH. 1. Wprowadzenie. Zdzisław Iwulski* Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3/1 2007 Zdzisław Iwulski* PROGNOZA WYSTĄPIENIA WSTRZĄSU ZA POMOCĄ SZEREGÓW CZASOWYCH 1. Wprowadzenie Z szeregami czasowymi spotykamy się w inżynierii, geologii,
Analiza szeregów czasowych bezrobocia i inflacji w Danii
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Modelowanie ekonometryczne
Modelowanie ekonometryczne Kamil Skoczylas Kamilskoczylas@wp.pl 1. Wstęp Otaczający nas świat to zbiór różnych zjawisk. W zależności od zainteresowań człowiek staje się obserwatorem niektórych z nich.
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu A. Informacje ogólne Nazwa pola Nazwa przedmiotu Treść Analiza Szeregów Czasowych Jednostka
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Analiza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Modele ARIMA prognoza, specykacja
Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Metody Prognozowania
Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
0.1 Modele Dynamiczne
0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów