Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
|
|
- Henryka Urbaniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego. Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna określona na pewnej dziedzinie, której wartości są ustalane w sposób losowy. W praktyce dziedziną, na której zdefiniowana jest funkcja, jest najczęściej przedział czasowy (taki proces stochastyczny nazywany jest szeregiem czasowym) lub obszar przestrzeni (wtedy nazywany jest polem losowym). Jako przykłady szeregów czasowych można podać: fluktuacje giełdowe, sygnały, takie jak mowa, dźwięk i wideo, dane medyczne takie jak EKG i EEG, ciśnienie krwi i temperatura ciała, losowe ruchy takie jak ruchy Browna. Matematycznie, proces stochastyczny jest zazwyczaj definiowany jako rodzina zmiennych losowych: t T X t gdzie: X t jest zmienną losowa, a T to zbiór indeksów procesu stochastycznego. Zbiór wartości zmiennych losowych X t nazywamy przestrzenią stanów procesu stochastycznego, zaś pojedyncza wartość zmiennej losowej to stan procesu stochastycznego. Procesy stochastyczne zdefiniowane na dyskretnej przestrzeni stanów nazywane są łańcuchami. Procesy stochastyczne dzielimy na deterministyczne i niedeterministyczne. Proces deterministyczny jest w kazdej chwili czasu jednoznacznie określony. Charakteryzuje się tym, że na podstawie bieżącej próbki jesteśmy w stanie przewidzieć wartości procesu w przyszłości. Przykładem procesu deterministycznego jest trend liniowy. Procesy niedeterministyczne, nazywane procesami stochastycznymi, charakteryzują się tym, że ich wartości w danej chwili czasu nie da się przewidzieć. Można jedynie określić przedział w którym z określonym prawdopodobieństwem znajduje się ich wartość. Proces stochastyczny możemy traktować jako funkcję czasu i interpretować na dwa odmienne sposoby. Dla ustalonej chwili czasu proces stochastyczny jest zmienną losową, dla ustalonej wartości zmiennej losowej jest funkcją czasu, nazywaną realizacją procesu stochastycznego. Procesy stochastyczne dzielimy na procesy ergodyczne i nieergodyczne. Procesy ergodyczne, to procesy które mogą być opisane przez momenty rzędu co najwyżej 2. Ich wartość oczekiwana w danej chwili jest równa wartości średniej z dowolnej realizacji. Szczególnym przypadkiem są procesy stacjonarne, czyli takie w których istnieją zależności opisujące momenty, które są niezależne od czasu. Porcesy nieergodyczne, to takie dla których nie istnieją żadne stałe w czasie charakterystyki. 1
2 Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Biały szum Jeżeli proces jest stacjonarny a zmienne losowe z których się on składa są niezależne od siebie i pochodzą z rozkładu o średniej 0 i stałej wariancji równej σ 2. ε iid (0, σ 2 ) Jeżeli reszt są niezależne od siebie, to zachowują się w sposób czysto losowy. Znają wartość reszty z okresu t nie jesteśmy w stanie przywidzieć czy reszta w okresie t + 1 będzie dodatnia, czy też ujemna. W całkowicie odmienny Rysunek 1: Biały szum y x sposób zachowują się zmienne losowe, które są skorelowane. Dodatnia korelacja zmiennych sprawia, że jeżeli wartość w okresie t jest dodatnia to będzie większe prawdopodobieństwo, że w okresie t + 1 będzie dodatnia, niż ujemna. Natomiast jeżeli w okresie t wartość była ujemna, to będzie wyższe prawdopodobieństwo otrzymania w okresie t + 1 wartości ujemnej niż wartości dodatniej. Jeżeli porównamy rysunki to zauważymy, że na rysunku z dodatnią autokorelacją wykres realizacji pojedynczych zmiennych przecina oś zerową znacznie rzadziej niż wykres białego szumu. Dodatnia autokorelacja jest znacznie częściej występującą formą autokorelacji, niż autokorelacja ujemna. Jest ona powszechnym zjawiskiem w przypadku modeli szacowanych na szeregach czasowych. Występuje w przypadku, gdy zjawisko losowe zaburzające przeciętny poziom zmiennych ma wpływ na ich wartości w więcej niż jednym okresie. 2
3 Rysunek 2: Dodatnia autokorelacja y x Ujemna autokorelacja zmiennych losowych powoduje, że większe jest prawdopodobieństwo zmiany znaku przez zmienną losową. Jeżeli w okresie t ma ona wartość dodatnią, to w okresie t + 1 ze znacznie większym prawdopodobieństwem będzie ona ujemna niż dodatnia. Natomiast jeżeli w okresie t jest ujemna, to ze znacznie większym prawdopodobieństwem będzie ona w okresie t + 1 dodatnia. Jeżeli porównamy wykres procesu stochastycznego z Rysunek 3: Ujemna autokorelacja y x ujemną autokorelacją z wykresem białego szumu, to zauważymy, że znacznie częściej przecina on poziom 0. Proces AR 3
4 Istnieje wiele form autokorelacji. Każda z nich prowadzi do innej postaci macierzy wariancji-kowariancji składnika losowego σ 2 Ω. Najbardziej rozpowszechnioną formą autokorelacji jest proces autoregresyjny pierwszego rzędu. W takim przypadku przyjmuje on postać: ε t = ρε t 1 + φ t (1) gdzie φ iid (0, σ 2 ) jest wektorem zmiennych losowych o niezależnym rozkładzie ze średnią zero i stałą wariancją wynoszącą σ 2. Zakładamy, że wartość składnika losowego jest równa ρ razy wartość składnika z poprzedniego okresu plus innowacja φ t. Nowy komponent φ t ma średnią zero, stałą wariancję i jest niezależny w wymiarze czasu. Możemy ten wzór uogólnić. Proces autoregresyjny rzędu p ma następującą postać analityczną. Proces MA ε t = ρ 1 ε t 1 + ρ 2 ε t ρ t p ε t p + φ t (2) Inną często spotykaną formą autokorelacji jest proces średniej ruchomej Moving Average. Błąd z okresu t jest średnią z pewnej ilości okresów. y t = µ + ε t θε t 1 (3) Podobnie jak w przypadku procesu AR możemy wzór uogólnić. Proces średniej ruchomej rzędu q dany jest przez Operator opóźnień y t = µ + ε t θ 1 ε t 1 θ 2 ε t 2... θ q ε t q (4) Użytecznymi narządziemi skracającym zapis postaci analitycznej modeli dynamicznych są oprerator opóźnień i operator różnicowy. Operator opóznień jest zdefiniowany następująco: Lx t = x x 1 Ten operator możemy w obliczeniach traktować jak liczbę. Ma on następujące własności: La = a L 2 x t = L(Lx t ) = Lx t 1 = x t 2 L p x t = x t p 4
5 0.0.2 Operator różnicowy Drugim użytecznym narzędziem jest operator różnicowy x t = x t x t 1 Ten operator również może w obliczeniach być traktowany jak liczba. Ma on następujące własności: a = 0 2 x t = x t = (x t x t 1 ) = (x t x t 1 ) (x t 1 x t 2 ) p x t =... = (x t x t 1 )... (x t (p+1) x t p ) x t = x t 1 + x t x t = (1 L)x t Możemy połączyć użycie obu operatorów: 2 x t = (1 L) 2 x t = (1 2L + L 2 )x t = x t 2x t 1 + x t 2 = x t x t 1 Dodatkowo zauważmy, że: (1 L) 2 x t = (1 L)(1 L)x t = (1 L)(x t x t 1 ) = (x t x t 1 ) (x t 1 x t 2 ) Dynamiczne równanie regresji możemy przedstwić jako: y t = α + β i L i x t + ε t = α + B(L)x t + ε t i=0 gdzie B jest wielomianem zmiennej L: B(L) = β 0 L 0 + β 1 L 1 + β 2 L Wielomian operatora opóźnień to wyrażenie postaci: A(L) = 1 + al + (al) 2 + (al) = al i i=0 jeśli a < 1, wtedy: A(L) = 1 1 al 5
6 0.0.3 Model ARIMA Nazwa modelu jest zbitką trzech nazw. AR pochodzi od procesu autoregrasyjnego, I od procesu zinterowanego, a MA od procesu średniej ruchomej. Postać analityczna modelu jest dość skomplikowana: d y t = µ + γ 1 d y t 1 + γ 2 d y t γ p d y t p + ε t θ 1 ε t 1... θ q ε t q ale zapis można uprościć stosując wielomiany operatora opóźnień i operator różnicowy: C(L)[(1 L) d y t ] = µ + D(L)ε t Innym sposobem zapisu modelu jest ARIMA(p, d, q), gdzie p oznacza rząd procesu autoregresyjnego, q rząd procesu średniej ruchomej, a d rząd integracji procesu Stacjonarność Lemat 1 Proces stochastyczny jest słabo (wariancyjnie) stacjonarny jeśli var(x i ) = σ 2 < oraz cov(x t, x t+h ) = cov(x t+j, x t+j+h ) = γ h dla dowolnych t, j, h. Intuicyjnie proces stochastyczny jest stacjonarny jeżeli ma skończoną wariancję oraz kowariancje między obserwacjami nie zależą od czasu, a jedynie od odległości między obserwacjami. Lemat 2 Proces zintegrowany stopnia zero, oznaczamy I(0). Można przedstawić go w postaci x t E(x t ) = i=0 ε t i, gdzie ε t IID (0, σ 2 ) - biały szum. Lemat 3 Proces stochastyczny x t nazywamy procesem zintegrowanym rzędu d jeżeli d x t jest I(0) Pierwiastki jednostkowe i Test Dickey a-fullera Jeżeli proces stochastyczny zawiera pierwiastek który leży wewnątrz bądź na obrzeżu koła jednostkowego, to jest procesem niestacjonarnym. Test Dickey a- Fullera wykrywa obecność pierwiastków jednostkowych. Jeżeli mamy model autoregresji w którym zmienna y t jest szeregiem czasowymi postaci: y t = ρy t 1 + ε t (5) Chcemy sprawdzić czy zmienna y t jest stacjonarna. Wydaje się, że wystarczy przeprowadzić test czy ρ = 1 za pomocą statystyki t-studenta. 6
7 Jeżeli składnik losowy w równaniu (5) jest procesem białego szumu, to jeśli ρ < 1 to ten proces jest zintegrowany stopnia zero. Lecz w przypadku gdy ρ = 1 równianie reprezentuje proces błądzenia losowego. Wtedy proces generujący y t jest niestacjonarny. W takim przypadku statystyka t nie będzie miała rozkładu t-studenta i nie możemy jej wartości używać do standardowych testów. Rozwiązaniem problemu testowania stopnia integracji jest procedura zaproponowana przez Dickey a i Fullera i nazwana od nazwisk autorów testem DF. Test DF weryfikuje hipotezę, że w równaniu (5) ρ = 1, czyli że mamy pierwiastek jednostkowy. Dlatego ten test również jest nazywany testem pierwiastka jednostkowego. Zapiszmy równanie (5) w postaci: i testujemy hipotezę zerową: y t = (1 + δ)y t 1 + ε t y t y t 1 = δy t 1 + ε t y t = δy t 1 + ε t (6) H 0 : δ = 0 H 1 : δ < 0 odrzucenie hipotezy zerowej δ = 0 na rzecz hipotezy alternatywnej oznacza że y t nie ma pierwiastków w kole jednostkowym, jest zintegrowane stopnia zero I(0). Statystyka testowa t nie ma rozkładu t-studenta. Wartości krytyczne odczytujemy z tablic wartości testu Dickey a-fullera. Wszystkie wartości krytyczne są w lewym ogonie rozkładu i są znacznie niższe od statystyk t-studenta. Wartości krytyczne testu Dickey-Fuller a otrzymywane są za pomocą symulacji Monte Carlo, więc są one obciążone pewnym błędem. Dlatego niektóre tablice podają nie jedną, a dwie wartości krytyczne dolną i górną. Pomiędzy nimi leży obszar braku konkluzji Test ADF Test Dickey a-fullera nie uwzględnia faktu, że składnik losowy równania (5) może zawierać autokorelację. W przypadku występowania autokorelacji estymatory MNK są nieefektywne. Wobec tego stosuje się Rozszerzony test Dickey a-fullera (Augmented Dickey-Fuller test). W równaniu regresji po prawej stronie umieszcza się opóźnione wartości zmiennej zależnej. Równanie przyjmuje postać: k y t = δy t 1 + γ i y t i + ε t (7) i=1 7
8 Sposób testowania oraz wartości krytyczne testu są identyczne jak w teście Dickey-Fullera Kointegracja i Test Engla-Grengera Jeżeli mamy równanie regresji w którym zmienne x t i y t są szeregami czasowymi, to te szeregi mogą zawierać trendy czasowe. Wobec tego są one niestacjonarne. Jeżeli istnieje między nimi długookresowy związek, to mówimy że procesy x t i y t są skointegrowane jeżeli odchylenia od ścieżki długookresowej są stacjonarne. Formalna definicja kointegracji podana przez Engla i Grengera jest następująca: Lemat 4 Mówimy, że szeregi czasowe są skointegrowane stopnia (d, b) co zapisujemy: x t, y t CI(d, b) jeżeli: 1. Oba szeregi są zintegowane stopnia b 2. istnieje kombinacja liniowa tych zmiennych a 1 x t + a 2 y t, która jest zintegrowana stopnia d b Lemat 5 Wektor [a 1, a 2 ] nazywamy wektorem kointegrującym. Testowanie kointegracji jest analogiczne do testowania integracji. Sprawdzamy czy kombinacja liniowa zmiennych jest I(0). Test przeprowadzamy za pomocą procedury zaproponowanej przez Engla i Grengera. 1. Testujemy stopień integracji zmiennych związanych z badaną długookresową zależnością. Jeżeli w modelu mamy więcej niż dwie zmienne to stopień integracji zmiennej zależnej nie może być wyższy niż stopień integracji którejkolwiek ze zmiennych objaśniających. Ponadto liczba zmiennych o stopniu integracji wyższym od zmiennej zależnej modelu, powinna być albo równa zero, albo powinny być dwie takie zmienne. 2. Jeżeli znamy postać wektora kointegrującego [1, β] to test Dickey a- Fullera na kointegrację polega na obliczeniu statystyki t-studenta dla parametru δ w regresji u t = δu t 1 + ε t (8) gdzie: u t = y t βx t 8
9 i porównaniu jej z wartością krytyczną z tablic dla testu DF. Dla testu ADF procedura jest analogiczna. Obliczamy statystykę t dla parametru δ z równania: k u t = δu t 1 + δ i u t i + ε t (9) Jeżeli relacja długookresowa nie jest znana a prori to najpierw szacujemy MNK parametry wektora kointegrującego. i=1 y t = β 1 x β k x k + ν t Następnie do równania (8) lub (9) w zależności od postaci testu zamiast u t wstawiamy oszacowane wektor reszt ν, więc: lub w przypadku testu ADF: ν t = δν t 1 + ε t ν t = δν t 1 + k δ i ν t i + ζ t i=1 Podobnie jak w przypadku testu integracji statystyka wartości krytyczne dla statystyki t-studenta odczytujemy z tablic testu DF. Gdy musimy oszacować wektor kointegrujący wartości krytyczne dla statystyki testowej zależą również od liczby szacowanych parametrów wektora kointegrującego m Mechanizm korekcji błędem (ECM) Jeżeli dwa szeregi czasowe x t i y t są niestacjonarne i skointegrowane, to ich kointegracja powoduje, że składnik losowy relacji długookresowej nie zwiększa się. Engle i Grenger udowodnili, że każdy szereg skointegrowany ma reprezentację za pomocą mechanizmu korekty błędem. Twierdzenie odwrotne jest również prawdziwe, tzn. każdy mechanizm korekty błędem można przedstawić za pomocą szeregów skointegrowanych. Rozpatrzmy model: y t = βx t + ε t (10) gdzie y t oraz x t są I(1). Przypuśćmy że y t i x t są CI(1, 1) z wektorem kointegrującym [ 1, β]. Wobec tego model (10) można przedstawić za pomocą mechanizmu korekty błędem y t = α 1 x t + α 2 (y t 1 βx t 1 ) + ε t (11) 9
10 gdzie α 2 < 0. Ten model szacuje się również za pomocą dwustopniowej procedury Engla-Grengera. W pierwszym kroku szacujemy równanie (10) za pomocą MNK i testujemy hipotezę o stacjonarności reszt. Jeśli są stacjonarne to szacujemy (11) zastępując β otrzymanym w pierwszym kroku estymatorem. W ten sposób w równaniu (11) wszystkie zmienne są stacjonarne. 10
0.1 Modele Dynamiczne
0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od
0.1 Modele Dynamiczne
0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Metoda Johansena objaśnienia i przykłady
Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010
szeregu czasowego Wst p do ekonometrii szeregów czasowych wiczenia 1 19 lutego 2010 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci 2 3 4 5 6 7 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi
Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006
Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Wprowadzenie do szeregów czasowych i modelu ARIMA
Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA
2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym
2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Przykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Finansowe szeregi czasowe
24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.
1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe
Prognozowanie i Symulacje. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Analiza stacjonarności szeregów czasowych 1 Analiza stacjonarności szeregów czasowych Modele niestacjonarne Szeregi TS i DS
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text
Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 1: Opis ogólny i plan pracy Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych
Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?
Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Z Wikipedii, wolnej encyklopedii.
Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12
Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Modelowanie ekonometryczne
Modelowanie ekonometryczne Kamil Skoczylas Kamilskoczylas@wp.pl 1. Wstęp Otaczający nas świat to zbiór różnych zjawisk. W zależności od zainteresowań człowiek staje się obserwatorem niektórych z nich.
Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH
Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Zastosowanie Excela w matematyce
Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie