Modelov an ı v yukov ych dat, obt ıˇznosti probl em u Radek Pel anek
|
|
- Dagmara Kowalik
- 6 lat temu
- Przeglądów:
Transkrypt
1 Modelování výukových dat, obtížnosti problémů Radek Pelánek
2 Kontext odlišné od zbytku předmětu nikoliv standardní pojmy, ale aktuální výzkum na FI osobní zkušenosti, ilustrace postupného vývoje (cca 8 let) využití modelů, simulací výzkumná skupina Adaptive Learning
3 Účel přednášky ilustrace různých přístupů v jedné oblasti: výpočetní statistické ilustrace praktického kontextu modelování: sběr dat volby při návrhu modelů, parametry evaluace aplikace
4 Téma a otázky aplikační doména: online (adaptabilní) výukové systémy Co ovlivňuje obtížnost problémů? Jak predikovat obtížnost problémů? Jak detekovat schopnosti studentů? Jak ovlivňují zpětné vazby sběr dat a vyhodnocování modelů?
5 Obtížnost a výpočetní modelování případové studie Sokoban, Sudoku: sběr dat analýzy dat, hledání metrik obtížnosti výpočetní modely
6 Sokoban 4 min 49 min
7 Sběr dat vlastní web logování všech tahů 35 levelů, vždy 4 bedny cca 2000 odehraných her, data robustní
8 Výsledky čas
9 Stavový prostor čas strávený lidmi
10 Výpočetní model dynamické procházení stavového prostoru snaha simulovat chování člověka (nikoliv myšlení) jednoduchý model, kombinace dvou tendencí dobrý nápad ideální posun směrem k cíli bloudění náhoda čím bĺıž k cíli, tím méně náhody
11 Lidé a model
12 Metriky obtížnosti
13 Sudoku
14 Sběr dat fed-sudoku.eu: cca 1000 zadání, časy pro 100 řešitelů data od webmastera sudoku.org.uk: cca 1000 zadání, cca 1000 řešitelů, jen průměrný čas stažené skriptem z webu czech-sudoku.com: použito cca 20 zadání logy her (každý tah) stažené z webu / od webmastera
15 Naivní metrika: počet čísel v zadání
16 Výpočetní model logické techniky pro odvození další pozice (hidden single, naked single, hidden pair, X-wing,...) náhodně vybere jedno z možných doplnění a pak pokračuje
17 Výpočetní model: příklad
18 Výpočetní modely: principy běžný přístup: hodně logických technik, mnoho parametrů náš model: málo technik, málo parametrů snazší vyhodnocení lepší přenositelnost lepší vhled
19 Jednoduchý výpočetní model jen dvě základní logické techniky (hidden single, naked single) selže jednoduchá logika prohledávání hledá pole, kde je potřeba nejmenší počet kroků k vyvrácení špatných kandidátů aproximace složitějších logických technik
20 Model vs lidé: srovnání pro konkrétní hru Pozn. Možná aplikace usnadnění řešení, generování nápověd (aplikace tohoto principu na výukové úlohy DP Martin Vardan)
21 Model vs lidé: srovnání pro konkrétní hru
22 Počet možných tahů a obtížnost
23 Výsledky: kombinovaná metrika
24 Výsledky koeficient determinace r 2 fed-sudoku.eu sudoku.org.uk metric all simple all simple number of givens 6% 5% 2% 12% Serate 49% 30% 74% 28% Serate LM 61% 36% 75% 43% Fowler s 47% 28% 76% 41% Refutation sum 47% 70% Dependency 45% 54% 49% 62% Combined (RD) 54% 78% Combined (SFRD) 66% 57% 91% 66%
25 Shrnutí zkušeností Sokoban, Sudoku statické metriky nefungují dynamické výpočetní modely jednoduché, abstraktní modely, málo parametrů, fungují docela dobře nejsou úplně přímočaré spousta dobrých nápadů nefungovala metrika vzorek lidí i pro úlohy s jednoduchými pravidly těžké překonat
26 Tutor web tutor.fi.muni.cz současně: sběr dat o řešení využití dat pro predikce, doporučování úloh predikce pomocí statistického modelu model, který není vůbec specifický pro konkrétní úlohu inspirace: doporučující systémy (recommender systems), např. Amazon, Netflix asi 30 úloh (logické, matematické, informatické)
27 Tutor: úlohy
28 Tutor: předpovědi tutor.fi.muni.cz
29 Model obtížnosti úloh log(t) c a b θ
30 Odhad parametrů dostupná data: uživatel i vyřešil úlohu j v čase t ij potřebujeme současně odhadnout: schopnosti uživatelů θ parametry problémů a, b, c metody strojového učení (stochastic gradient descent) analogické doporučujícím systémům (např. Netflix hodnocení filmů) vyhodnocení: úspěšnost predikcí (RMSE)
31 stejná základní obtížnost vysoká diskriminace vysoká náhodnost "na jistotu"
32 Slepé mapy slepemapy.cz státy, města, pohoří,... základní data: uživatel, místo, správnost odpovědi model: predikuje pravděpodobnost správné odpovědi variace na Elo systém (hodnocení hráčů, šachy) adaptabilní chování na základě predikcí modelu podobné principy použity u: anatom.cz, matmat.cz, poznavackaprirody.cz a dalších
33 Slepé mapy obtížnost států model využívá mimo jiné: globální znalost studenta, obtížnost států
34 Výukové systémy simulace adaptivní výukový systém: model pro predikci úspěšnosti algoritmus pro výběr otázky studenti zpětné vazby, netriviální chování využití simulace (simulovaní studenti) dopad různých nastavení systému zkoumání zpětné vazby mezi modelem a algoritmem
35 Umíme česky (anglicky, matiku) aktuálně vyvíjené systémy: umimecesky.cz umimeanglicky.cz umimematiku.cz důraz na: členění obsahu do jemných konceptů (za využití analýzy dat) mastery learning
36 Mastery learning a simulace mastery learning student řeší, dokud téma dostatečně nezvládá nastavení kritéria pro mastery learning komplikované využití simulací porovnání různých kritéríı ve zjednodušených scénářích analýza citlivosti parametrů
37 Analýza citlivosti pro mastery kritérium Experimental Analysis of Mastery Learning Criteria
38 Výpočetní vs statistické modely výpočetní simulace chování člověka specifické pro problém, vhled využitelné pro nápovědy náročná příprava statistické popisné metody strojového učení povrchnější, menší vhled snadnější použití, široce aplikovatelné
39 Úvaha o technikách a problémech Když máte v ruce kladivo, všechno na světě vám připadá jako hřebík... technika problém problém technika
40 Shrnutí modely: výpočetní, statistické kvantitativní vyhodnocení nad daty aplikace modelů v reálných systémech možnost zapojení (např. BP, DP) máme spousty zajímavých dat a nezodpovězených otázek...
Uvod Symbolick e modelov an ı Neuronov e s ıtˇ e Shrnut ı Modelov an ı myˇslen ı Radek Pel anek
Modelování myšlení Radek Pelánek Modelování a myšlení Myšlení, modelování, počítače (zjednodušeně) kognitivní modelování umělá inteligence cíl: zachytit, jak funguje mysl důraz na jednoduchost, věrnost,
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
PA152,Implementace databázových systémů 2 / 25
PA152 Implementace databázových systémů Pavel Rychlý pary@fi.muni.cz Laboratoř zpracování přirozeného jazyka http://www.fi.muni.cz/nlp/ 19. září 2008 PA152,Implementace databázových systémů 1 / 25 Technické
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Zásuvný modul QGISu. QGIS plugin pro práci s katastrálními daty
Zásuvný modul QGISu pro práci s katastrálními daty Anna Kratochvílová, Václav Petráš České vysoké učení technické v Praze Fakulta stavební 19. dubna 2012 Obsah 1 Úvod 2 Nástroje a knihovny 3 Funkcionalita
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Design of Experiment (DOE) Petr Misák. Brno 2016
Design of Experiment (DOE) Petr Misák Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví Brno 2016 Úvod - Experiment jako nástroj hledání slavné vynálezy - žárovka, antibiotika
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
IB047. Pavel Rychlý. 21. února
Úvod do korpusové lingvistiky a počítačové lexikografie pary@fi.muni.cz Centrum zpracování přirozeného jazyka 21. února 2018 Technické informace http://www.fi.muni.cz/ pary/ib047/ Technické informace http://www.fi.muni.cz/
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Přehled aplikací matematického programovaní a
Přehled aplikací matematického programovaní a operačního výzkumu Martin Branda Matematicko-fyzikální fakulta Univerzita Karlova v Praze Výpočetní aspekty optimalizace Martin Branda (KPMS MFF UK) 1 / 15
Představení projektu
Moderní zpřístupnění historických pramenů Představení projektu P. Král 1,2 K. Halla 3 R. Široký4 L. Lenc 2 J. Martínek 1 1 Katedra informatiky a výpočetní techniky, FAV ZČU v Plzni 2 Nové technologie pro
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Vladimír Ulman Centre for Biomedical Image Analysis. 10th October, 2007 FI MU, Brno
Gáborovy filtry nebo spíš rychlé počítání Gausse Vladimír Ulman Centre for Biomedical Image Analysis th October, 7 FI MU, Brno Vladimír Ulman (CBIA, FI MU) Gáborovy filtry th October, 7 / 39 Gáborovy filtry
Shrnutí. Vladimír Brablec
Řešení problému SAT s využitím lokálního prohledávání Vladimír Brablec Seminář z umělé inteligence II, 2010 Motivace Obsah referátů Články, podle nichž je prezentace vytvořena 1 Selman B., Kautz H., Cohen
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Hry. šachy, backgammon, poker
Hry šachy, backgammon, poker Hry vs. Prohledávání stavového prostoru Máme dva hráče, kteří se střídají na tahu definované možné tahy, cílové pozice, výhru 1.hráče v cílových pozicích, protihráč má výhru
Rekrutacja List Motywacyjny
- Początek Szanowny Panie, Vážený pane, Formalny, odbiorcą jest mężczyzna, którego nazwiska nie znamy. Zamiennie możemy użyć jednego z dwóch zwrotów formalnych Vážená paní, Formalny, odbiorcą jest kobieta,
Úvod do umělé inteligence, jazyk Prolog
Úvod do umělé inteligence, jazyk Prolog Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Organizace předmětu PB016 Co je umělá inteligence Úvod do umělé inteligence 1/12 1 / 21 Organizace
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Úvod do umělé inteligence Prohledávání stavového prostoru -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: Problém osmi dam Prohledávání stavového prostoru Prohledávání do hloubky Prohledávání
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Matematický ústav UK Matematicko-fyzikální fakulta. Ukázky aplikací matematiky
Lineární a nelineární problémy v geometrickém modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Ukázky aplikací matematiky Zbyněk Šír (MÚ UK) - Lineární a nelineární problémy v geometrickém
Obkládačky a dlaždičky Płytki ścienne i podłogowe: SIGHT šedá szary
SIGHT 2 Obkládačky a dlaždičky Płytki ścienne i podłogowe: SIGHT šedá szary SIGHT Fascinující design pro přirozený moderní akcent: SIGHT série obkládaček a dlaždiček ze slinutého materiálu vilbostone vytváří
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Obsah: CLP Constraint Logic Programming. Úvod do umělé inteligence 6/12 1 / 17
Problémy s omezujícími podmínkami Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Problémy s omezujícími podmínkami Úvod do umělé inteligence 6/12 1 / 17 Průběžná
z předmětu Matematika 2: Funkce dvou a více
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Testování znalostí studentů příprava ke zkoušce z předmětu Matematika 2: Funkce
Logický agent, výroková logika
Logický agent, výroková logika leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Logický agent Logika Výroková logika Inference důkazové metody Úvod do umělé inteligence 8/2 / 33 Logický
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
ČVUT FEL, K October 1, Radek Mařík Ověřování modelů II October 1, / 39
Ověřování modelů II Radek Mařík ČVUT FEL, K13132 October 1, 2014 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, 2014 1 / 39 Obsah 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
z geoinformatických dat
z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě
Kombinatorika a komplexní aritmetika
a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Lineární regrese. Skutečné regresní funkce nejsou nikdy lineární! regrese extrémně užitečná jak svou koncepcí, tak prakticky.
Lineární regrese Lineární regrese je jednoduchý přístup k učení s učitelem (supervizovanému učení). Předpokládá, že závislost Y na X 1, X 2,..., X p je lineární. Skutečné regresní funkce nejsou nikdy lineární!
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Katedra kybernetiky
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE PLZEŇ, 2018 JAN BENEŠ Před svázáním místo této stránky vložit zadání práce s podpisem děkana. PROHLÁŠENÍ Předkládám
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
vystavit agenta realitě místo přepisování reality do pevných pravidel
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu PA026 Projekt z umělé inteligence Učení Úvod
Obsah: Rozhodovací stromy. Úvod do umělé inteligence 11/12 2 / 41. akce
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Hodnocení úspěšnosti učícího algoritmu Úvod do umělé inteligence /2 / 4 Učení Učení
Martin Dlask (KSI FJFI) 3. března 2016
Využití zlomkových stochastických procesů pro analýzu signálu a časových řad Seminář strojového učení a modelování Martin Dlask (KSI FJFI) http://people.fjfi.cvut.cz/dlaskma1/ 3. března 2016 Martin Dlask
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Petr Beremlijski, Marie Sadowská
Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
GENETICKÉ PROGRAMOVÁNÍ S JAZYKEM BRAINFUCK
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS GENETICKÉ PROGRAMOVÁNÍ
Platforma pro analýzu, agregaci a vizualizaci otevřených dat souv
Platforma pro analýzu, agregaci a vizualizaci otevřených dat souvisejících s územním plánováním University of West Bohemia March 4, 2014 Obsah 1 2 3 Obsah 1 2 3 Otevřená data (Open data) jsou horkým tématem
Škola matematického modelování 2017
Počítačová cvičení Škola matematického modelování 2017 Petr Beremlijski, Rajko Ćosić, Marie Sadowská Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko Ćosić, Marie Sadowská Katedra
K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta
N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
IV107 Bioinformatika I
IV107 Bioinformatika I Přednáška 1 Katedra informačních technologií Masarykova Univerzita Brno Jaro 2011 Outline Úvod do bioinformatiky Organizační záležitosti Zaměření bioinformatiky Objekty: geny, molekuly,
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 10 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Volba kartografického zobrazení olivněna několika faktory: účel mapy uživatel mapy kartografické vlastnosti
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek,
Lucie Mazurová. AS a
Dynamické modelování úmrtnosti Lucie Mazurová AS 13.10. a 27.10.2017 Riziko úmrtnosti a) volatilita - odchylky od očekáváných hodnot způsobené náhodným charakterem délky života b) katastrofické riziko
Pracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )
Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016 Jak vizualizovat? Požadované vlastnosti nástroje opakovatelnost, spolehlivost separace formy a obsahu flexibilita,
Fakulta elektrotechnická
České vysoké učení technické v Praze Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Ladění regulátorů v pokročilých strategiích řízení Praha, 21 Autor: Bc. Petr Procházka Prohlášení Prohlašuji, že jsem svou
ke studiu struktury elektrické vodivosti
Využití geomagnetických satelitních dat ke studiu struktury elektrické vodivosti v litosféře a zemském plášti Projekt,,Podpora začínajících pracovníků výzkumu (1K53) MŠMT ČR řešitel: Ctirad Matyska klíčová
BIBLIOTECZKA PRZEDSIĘBIORCY KNIHOVNIČKA PODNIKATELE. Zamówienia publiczne w Republice Czeskiej dostawy i usługi
Zamówienia publiczne w Republice Czeskiej dostawy i usługi Podział zamówień publicznych ze względu na rodzaj zamówienia Ustawa nr 137/2006 o zamówieniach publicznych (Zákon č. 137/2006 Sb., o veřejných
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Statistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno
Získávání a analýza obrazové informace Využití v biomedicíně II: Fúze obrazů Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU)
Michal Mašek Genetické algoritmy v evoluční robotice
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Michal Mašek Genetické algoritmy v evoluční robotice Kabinet software a výuky informatiky Vedoucí diplomové práce: RNDr. František
Paralelizace numerických metod
Paralelizace numerických metod Jiří Hozman jiri.hozman@tul.cz Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky Přednáška k předmětu
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
HOBGARSKA KARKONOSZE
M I E J S C A J A N I N A HOBGARSKA KARKONOSZE Fotografie powstały w latach 2002 2005 M I E J S C E Do miejsc się trafia, przybywa, traci się je i wspomina. Ale też, jak twierdzi Nina Hobgarska, to miejsca
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010