MATEMATYKA DYSKRETNA (MAT 182) semestr letni 2002/2003. Typeset by AMS-TEX
|
|
- Karolina Majewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 MATEMATYKA DYSKRETNA (MAT 182) semestr letni 2002/2003 Typeset by AMS-TEX
2 MATEMATYKA DYSKRETNA (MAT 182) 1 LITERATURA PODSTAWOWA I UZUPE LNIAJA CA V Bryant, Aspekty kombinatoryki, WNT - Warszawa, 1997 (t lumaczenie z je zyka angielskiego) I Prze- Z Palka, A Ruciński, Wyk lady z Kombinatoryki - Cz liczanie, WNT - Warszawa, 1998 K A Ross, Ch R B Wright, Matematyka dyskretna, PWN, Warszawa 1996 (t lumaczenie z je zyka angielskiego) J A Bondy, U S R Murty, Graph Theory with Applications, American Elsevier Publishing Co, Inc, 1976 (w je zyku angielskim) strona WWW: jaworski/ REGU LY GRY Jednym z warunków uzyskania zaliczenia z ćwiczeń jest ucze szczanie na zaje cia nieusprawiedliwione opuszczenie trzech zaje ć powoduje, skreślenie z listy uczestników kursu W przypadku usprawiedliwionej takiej nieobecności należy uzyskać zaliczenie materia lu z opuszczonych zaje ć O formie i terminie takiego zaliczenia decyduje prowadza cy ćwiczenia Uzyskanie oceny bardzo dobrej lub dobrej z odpowiedniej cze ści egzaminu pisemnego be dzie traktowane jako zaliczenie usprawiedliwionych nieobecności O końcowej ocenie na zaliczenie decydować be dzie la czna liczba uzyskanych w czasie trwania kursu punktów Każdy z uczestników może uzyskać maksymalnie 101 punktów: 40 punktów za pierwsza cze ść egzaminu pisemnego 40 punktów za druga cze ść egzaminu pisemnego 21 punktów za aktywny udzia l w ćwiczeniach (patrz niżej) W czasie trwania kursu studenci otrzymuja 9 zestawów zadań do samodzielnego rozwia zania w domu - zestawy be da doste pne na wyżej podanej stronie WWW Brak rozwia zań zadań (zadań bez
3 2 SEMESTR LETNI 2002/2003 gwiazdki) z tych zestawów traktowany be dzie jako nieprzygotowanie do zaje ć Na pocza tku zaje ć student wype lniaja c liste obecności deklaruje swoje (nie)przygotowanie Naste pnie losowo wybrani spośród przygotowanych studenci przedstawiaja swoje rozwia zania Stwierdzenie w tej fazie ewidentnego nieprzygotowania może spowodować utrate aż 10 punktów z puli za aktywny udzia l w ćwiczeniach ( la cznie nie mozna jednak stracić wie cej niż 21 punktów w czasie trwania semestru) Dla studentów pragna cych uzyskać na zaliczenie ocene bardzo dobra przeznaczone sa zadania z gwiazdka z zestawów Za przygotowany zestaw student otrzymuje 3 punkty, ale la cznie nie można uzyskać wie cej niż 21 punktów nie znaczy to, że przygotowanie wie cej niż siedmiu zestawów nie be dzie w inny sposób premiowane Oznacza to również, że dwa razy (wliczaja c w to nieobecności) można być nieprzygotowanym i nie pocia ga to za soba żadnych konsekwencji Punkty za przygotowanie zestawu można uzyskać tylko uczestnicza c w odpowiednich zaje ciach - nie przewiduje,,zaliczania zestawów z zajeć na których student by l nieobecny Warunkiem zaliczenia ćwiczeń jest uzyskanie co najmniej 51 punktów Osoby, które uzyskaja la cznie mniej niż 51 punktów, nie otrzymaja zaliczenia ćwiczeń, co jest równoważne ocenie niedostatecznej z egzaminu w pierwszym terminie W takim przypadku be dzie można przysta pić do egzaminu ustnego dopiero w sesji poprawkowej, oczywiście tylko jeżeli uzyska zaliczenie dla wszystkich takich osób przeprowadzone zostanie jedno kolokwium zaliczeniowe z ca lości materia lu O ocenie z egzaminu pisemnego decyduje liczba uzyskanych punktów z obu cze ści tego egzaminu Z każdego testu można maksymalnie uzyskać 40 punktów Nieobecność podczas egzaminu (egzaminów pisemnych) usprawiedliwić można jedynie na podstawie zwolnienia lekarskiego wpisanego w ksia żeczke zdrowia
4 MATEMATYKA DYSKRETNA (MAT 182) 3 Metody dowodu implikacji dowód wprost Jak sama nazwa wskazuje, metoda dowodu wprost polega na za lożeniu, że p jest prawda i pokazaniu, że wówczas również q jest prawda Przyk lad 11 Udowodnić wprost, że jeżeli a jest liczba ca lkowita taka, że a 2 jest podzielne przez 3, to a 2 1 jest również podzielne przez 3 Przyk lad 12 Udowodnić wprost, że jeżeli x jest liczba taka, że x 2 5x + 6 = 0, to x = 2 lub x = 3 Metody dowodu implikacji dowód nie wprost Metoda dowodu nie wprost opiera na tautologii rachunku zdań, zwanej prawem kontrapozycji: (p q) ( q p) Stosuja c te metode zak ladamy, że q jest fa lszem i pokazujemy, że p jest również fa lszem Przyk lad 13 Udowodnić nie wprost, że jeżeli iloczyn dwóch liczb ca lkowitych a i b jest liczba parzysta, to a jest liczba parzysta lub b jest liczba parzysta Przyk lad 14 Udowodnić nie wprost, że jeżeli n jest iloczynem dwóch dodatnich liczb ca lkowitych a i b, to a n lub b n Metody dowodu implikacji dowód przez zaprzeczenie Metoda dowodu przez zaprzeczenie (zwanego także dowodem przez sprowadzenie do sprzeczności) opiera na równoważności: (p q) (p q), Stosuja c to podejście zak ladamy, że p jest prawda a q fa lszem i pokazujemy, że prowadzi to do sprzeczności, to znaczy, pokazujemy że (p q) jest fa lszem
5 4 SEMESTR LETNI 2002/2003 Przyk lad 15 Udowodnić przez zaprzeczenie, że pośród trzynastu ludzi dwóch lub wie cej ma swoje urodziny w tym samym miesia cu Przyk lad 16 Udowodnić przez zaprzeczenie naste puja ce stwierdzenie: Niech m 1, m 2,, m n be da dodatnimi liczbami ca lkowitymi Jeżeli m 1 + m m n n + 1 kul w lożymy do n szufladek, to pierwsza szufladka be dzie zawierać co najmniej m 1 kul lub druga szufladka zawierać be dzie co najmniej m 2 kul, lub, lub n ta szufladka zawierać be dzie co najmniej m n kul Zasada indukcji matematycznej Niech p(n) be dzie zdaniem, które dla każdego naturalnego n może być zdaniem prawdziwym lub fa lszywym Aby udowodnić, że zdanie p(n) jest prawdziwe dla wszystkich liczb naturalnych n, gdzie n n 0, wystarczy pokazać, że (a) zdanie p(n 0 ) jest prawdziwe, (b) dla każdego k n 0, p(k) p(k + 1), tzn zdanie p(k + 1) jest prawdziwe jeżeli tylko zdanie p(k) jest prawdziwe Przyk lad 17 Znaleźć i udowodnić wzór na sume pierwszych n liczb naturalnych Przyk lad 18 Znaleźć i udowodnić wzór na sume pierwszych n sześcianów, tzn na sume n 3 Przyk lad 19 Pokazać, że dla każdego naturalnego n 1, wyrażenie 6 n n+1 jest podzielne przez 43
6 MATEMATYKA DYSKRETNA (MAT 182) 5 Przyk lad 110 Pokazać, że dla każdego naturalnego n 4, 3 n > n 3 Przyk lad 111 Pokazać, że suma n pierwszych wyrazów cia gu arytmetycznego o pierwszym wyrazie a i o różnicy d, równa jest n(2a + (n 1)d) 2 Przyk lad 112 Pokazać, że jeżeli sa spe lnione warunki pocza tkowe a 0 = 12, a 1 = 29 oraz dla n 2 zachodzi wzór rekurencyjny a n = 5a n 1 6a n 2, to dla każdego naturalnego n: a n = 5 3 n n Zasada szufladkowa Zasada szufladkowa polega na prostej obserwacji, że jeżeli rozmieścimy n przedmiotów w m szufladkach, gdzie n > m, to istnieje szufladka, która zawiera co najmniej dwa przedmioty Ogólniej: Jeżeli rozmieścimy n przedmiotów w m szufladkach, gdzie n > k m, to w którejś szufladce znajdzie co najmniej k + 1 przedmiotów Przyk lad 113 Uzasadnić, że w każdym mieście licza cym co najmniej 15 miliona mieszkańców znajdziemy co najmniej cztery osoby o tej samej liczbie w losów na g lowie, jeżeli przyjmiemy, że rośnie ich na ludzkiej g lowie co najwyżej Przyk lad 114 W turnieju pi lkarskim, w którym docelowo każda drużyna ma zagrać z każda bierze udzia l n zespo lów Uzasadnić, że w dowolnym momencie trwania turnieju znajda dwie drużyny, które rozegra ly do tego momentu te sama liczbe meczów
7 6 SEMESTR LETNI 2002/2003 Przyk lad 115 Pokazać, że jeżeli w trójka cie równobocznym o boku d lugości 4 umieścimy 17 punktów, to znajdziemy dwa, mie dzy którymi odleg lość nie przekracza 1 Przyk lad 116 Pokazać, że wśród n + 1 dowolnych liczb ca lkowitych znajda dwie, których różnica dzieli przez n Przyk lad 117 Pokazać, że dla dowolnego zbioru z lożonego z dzie ciu różnych liczb naturalnych mniejszych od 107 istnieja dwa roz la czne podzbiory, których elementy sumuja do tej samej liczby Przyk lad 118 Pokazać, że dla dowolnych n + 1 różnych dodatnich liczb ca lkowitych mniejszych ba dź równych 2n istnieja dwie, które sumuja do 2n + 1 Przyk lad 119 Każde dwa wierzcho lki sześcioka ta foremnego po la czono odcinkiem zielonym lub czerwonym Wykazać, że zosta l narysowany co najmniej jeden trójka t o bokach tego samego koloru Przyk lad 120 Pokazać, że dla dowolnych n + 1 różnych dodatnich liczb ca lkowitych mniejszych ba dź równych 2n istnieja dwie, które sa wzgle dnie pierwsze Przyk lad 122 Pokazać, że dla dowolnych n dodatnich liczb ca lkowitych istnieje podzbiór, którego suma liczb jest podzielna przez n
8 MATEMATYKA DYSKRETNA (MAT 182) 7 Zadanie 11 ZADANIA Udowodnić wprost, że jeżeli a i b sa nieparzystymi liczbami ca lkowitymi, to a + b jest parzysta liczba ca lkowita Zadanie 12 Udowodnić nie wprost, że jeżeli n 2 jest liczba nieparzysta, to n też jest liczba nieparzysta Zadanie 13 Jeżeli 41 kul wybrano z szufladki zawieraja cej kule czerwone, bia le, niebieskie, zielone i żó lte (zak ladamy, że w każdym kolorze jest wie cej kul niż wybieramy), to co najmniej 12 kul jest czerwonych lub co najmniej 15 kul jest bia lych, lub co najmniej 4 kule sa niebieskie, lub co najmniej 10 kul jest zielonych, lub co najmniej 4 kule sa żó lte Podać dowód tego faktu przez zaprzeczenie Zadanie 14 Udowodnić, że dla każdego naturalnego n 1 (a) n 2 = n(n + 1)(2n + 1) / 6 (b) (2n 1) 3 = n 2 (2n 2 1) (c) n (n + 1) (n + 2) = n(n + 1)(n + 2)(n + 3) / 4 Zadanie 15 Udowodnić, że dla każdego naturalnego n 1 wyrażenie jest podzielne przez 133 Zadanie n n+1 Udowodnij, że dla każdego naturalnego n 17 Zadanie 17 2 n > n 4 Udowodnić, że dla każdego naturalnego n 9 n! > 4 n
9 8 SEMESTR LETNI 2002/2003 Zadanie 18 Udowodnić, że dla dowolnego rzeczywistego x > 1 i dla każdego naturalnego n 1 (1 + x) n 1 + nx Zadanie 19 Udowodnić, że suma n pierwszych wyrazów cia gu geometrycznego o pierwszym wyrazie a i o ilorazie q (q 1) równa jest a(1 q n ) 1 q Zadanie 110 Udowodnić, że jeżeli a 0 = 6, a 1 = 11 oraz dla n 2 a n = 3a n 1 2a n 2, to dla każdego naturalnego n: a n = 5 2 n + 1 Zadanie 111 Grupa 41 studentów zaliczy la sesje sk ladaja ca z trzech egzaminów, w których możliwymi ocenami by ly bdb, db i dst Wykazać, że co najmniej pie cioro studentów zaliczy lo sesje z jednakowym,,zbiorem ocen Zadanie 112 Grupa osób wita mie dzy soba (nie koniecznie każdy z każdym) przez podanie re ki Nikt nie wita z samym soba i żadna para osób nie wita wie cej niż jeden raz Pokazać, że po zakończonym powitaniu be da co najmniej dwie osoby, które podawa ly re ke te sama ilość razy Zadanie 113 Dany jest zbiór z lożony z dzie ciu liczb naturalnych, dwucyfrowych w rozwinie ciu dzie tnym Pokazać, że w tym zbiorze istnieja dwa niepuste podzbiory takie, że sumy liczb obu podzbiorów sa równe Zadanie 114 W każde pole szachownicy n n wpisujemy jedna z liczb: 1, 0, 1 Naste p- nie dodajemy do siebie liczby stoja ce w tym samym wierszu, w tej samej kolumnie i na tej samej, jednej z dwóch, przeka tnej Pokazać, że wśród otrzymanych sum co najmniej dwie sa równe
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia
KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia 18 grudnia 2006 Zasada szufladkowa, zwana też zasada Dirichleta, a w jez. ang.,,pigeonhole Principle może być sformu lowana naste puja co.
2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH
2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH Typeset by AMS-TEX 2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH 7 Zasada bijekcji. Jeżeli istnieje bijekcja f : A B, tj. f jest funkcja różnowartościowa i,,na (tzn.
DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut
XLIII MIE DZYSZKOLNE ZAWODY MATEMATYCZNE Eliminacje rejonowe Czas trwania zawodów: 150 minut Każdy uczeń rozwia zuje dwadzieścia cztery zadania testowe, w których podano za lożenia oraz trzy (niekoniecznie
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:
PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH
PODSTAWOWE W LASNOŚCI DZIA LAŃ I NIERÓWNOŚCI W ZBIORZE LICZB RZECZYWISTYCH W dalszym cia gu be dziemy zajmować sie g lównie w lasnościami liczb rzeczywistych, funkcjami określonymi na zbiorach z lożonych
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
12. Wykazać, że liczba podzbiorów zbioru {1, 2,..., n}, które nie zawieraja, dwu kolejnych liczb naturalnych
!"$# % # &(' )**"+ 1 Numer telefoniczny może zaczynać sie, od dowolnej z dziesie, ciu cyfr Ile jest siedmiocyfrowych numerów telefonicznych, których wszystkie cyfry sa, : a różne; b nieparzyste 9 osób
c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu.
y = ax 2 + bx + c WIELOMIANY KWADRATOWE Zajmiemy sie teraz wielomianami stopnia drugiego, zwanymi kwadratowymi. Symbol w be dzie w tym rozdziale oznaczać wielomian kwadratowy, tj. w(x) = ax 2 + bx + c
Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8
EGZAMIN DYPLOMOWY, cze ść I (testowa) 22.06.2009 INSTRUKCJE DOTYCZA CE WYPE LNIANIA TESTU 1. Nie wolno korzystać z kalkulatorów. 2. Sprawdzić, czy wersja testu podana na treści zadań jest zgodna z wersja
13 Zastosowania Lematu Szemerédiego
13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{
2a )2 a b2. = 2 4a ====== x + b. nawias
Wielomiany kwadratowe Wielomian a + + c nazywamy kwadratowym lu wielomianem drugiego stopnia, jeśli a jest licza różna od 0. W dalszym cia gu zak ladamy, że a i a 0. Możemy napisać a + + c = a ( + a )
Pojȩcie przestrzeni metrycznej
ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,
ZASADA SZUFLADKOWA DIRICHLETA
ZASADA SZUFLADKOWA DIRICHLETA Andrzej FRYSZKOWSKI SZCZECIN, 27 MARCA 2014 Andrzej FRYSZKOWSKI () ZASADA SZUFLADKOWA DIRICHLETA SZCZECIN, 27 MARCA 2014 1 / 25 BROSZURA OMG I (2005/2006) (opracowanie: Joanna
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
g liczb rzeczywistych (a n ) spe lnia warunek
. Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 14 stycznia 2013 1 Kraty 1. Pokazać, że każda klasa kongruencji kraty (K, +, ) jest podkrata kraty (K, +, ). 2. Znaleźć wszystkie kongruencje kraty 2 3, gdzie 2 jest
Zasady wystawiania oceny z przedmiotu Statystyka i SKJ procesów.
Statystyka i SKJ procesów. Ocena końcowa jest średnią arytmetyczną ważoną z ocen z ćwiczeń (waga 0,6 lub 0,8) i egzaminu końcowego (waga 0,4 lub 0,2). 1. Oceny ze 3 sprawdzianów kontrolnych: a. Rachunek
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
Dziedziny Euklidesowe
Dziedziny Euklidesowe 1.1. Definicja. Dziedzina Euklidesowa nazywamy pare (R, v), gdzie R jest dziedzina ca lkowitości a v : R \ {0} N {0} funkcja zwana waluacja, która spe lnia naste ce warunki: 1. dla
Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.
1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja
TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX
TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski 20 Typeset by AMS-TEX 8. GRAFY PLANARNE. 8.1. Grafy p laskie i planarne. TEORIA GRAFÓW. MATERIA LY VI. 21 Mówimy, że graf jest uk ladalny
Zliczanie n = n(n+1) n 2 = n(n+1)(2n+1). 6 Wyprowadź w podobny sposób wzory na sume
Zliczanie 1. Podaj interpretacje kombinatoryczna wzoru 1+2+3+...+n = n(n+1) 2 ( ) n+1 =. 2 2. Na p laszczyźnie mamy n prostych takich, że żadne dwie nie sa równoleg le i żadne trzy nie przecinaja sie w
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
Niezmienniki i pó lniezmienniki w zadaniach
Niezmienniki i pó lniezmienniki w zadaniach Krzysztof Che lmiński Wydzia l Matematyki i Nauk Informacyjnych Politechnika Warszawska MiNI-Akademia Matematyki Warszawa, 2 marca, 2013 Na czym polega metoda
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
5. Obliczanie pochodnych funkcji jednej zmiennej
Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane
Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.
Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do
P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja
19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca
Kombinatoryka. 7. Niechk 1.Ilerozwia zańwliczbachca lkowitychnieujemnychmarównanie. x 1 +x 2 + +x k =n?
1. Numertelefonicznymożezaczynaćsie oddowolnejzdziesie ciucyfr.ilejest siedmiocyfrowychnumerówtelefonicznych,którychwszystkiecyfrysa : a. różne; b. nieparzyste. 2. 9osóbustawiasie wszereg.ilejestróżnychustawień,wktórychwybranetrzy
Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?
1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3
1. NAUCZANIE JĘZYKÓW NOWOŻYTNYCH (OBOWIĄZKOWYCH) W RAMACH PROGRAMU STUDIÓW STACJONARNYCH (CYKL A I B) I NIESTACJONARNYCH
1 Szczegółowe przepisy wykonawcze na rok akadem. 2010/11 wprowadzające w życie Zarządzenie Rektora PWT we Wrocławiu w sprawie nauczania języków obcych na PWT we Wrocławiu z dnia 29 września 2009 r. 1.
Statystyka w analizie i planowaniu eksperymentu
5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,
c ze wzoru dwumianowego Newtona obliczyć sumy: a) 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi,
3 Korzystaja c ze wzoru dwumianowego Newtona obliczyć sumy: a) n ( n n k) ; b) 4 W rozwinie ciu dwumianowym: ( 4 a) ) 1, 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi, ( ) b) 3 13, 5 +
W zbiorze liczb rzeczywistych wyróżnia sie pewne podzbiory. Zaczniemy od najważniejszego, tj. od zbioru liczb naturalnych.
LICZBY NATURALNE, CA LKOWITE, WYMIERNE W zbiorze liczb rzeczywistych wyróżnia sie pewne podzbiory. Zaczniemy od najważniejszego, tj. od zbioru liczb naturalnych. Definicja 9.1 (zbioru liczb naturalnych)
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Przedmiotowy System Oceniania Język polski
Przedmiotowy System Oceniania Język polski II etap edukacyjny PSO jest spójny z Wewnątrzszkolnym Systemem Oceniania opracowanym na podstawie Rozporządzenia Ministra Edukacji Narodowej z dnia 30 kwietnia
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Liczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
Szeregi liczbowe wste
3 grudnia 2007 orawi lem dowód twierdzenia o rzybliżeniach dziesie tnych Zajmiemy sie teraz cia gami nieskończonym, ale zaisywanymi w ostaci sum. Definicja 2. (szeregu) Niech (a n ) be dzie dowolnym cia
V Warsztaty Matematyczne I LO im. Stanisława Dubois w Koszalinie. Zadania i rozwiązania
V Warsztaty Matematyczne I LO im. Stanisława Dubois w Koszalinie Zadania i rozwiązania 27-29 września 2011 Zadania- grupa młodsza Konkurs- dzień pierwszy 1. Niech n będzie liczbą całkowitą większą od 2.
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Prawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Udowodnimy najpierw, że,,dla dostatecznie dużych x liczby a k x k i a 0 + a 1 x + + a k x k maja ten sam znak. a k
WIELOMIANY STOPNIA WYŻSZEGO NIŻ DWA Przypominamy, że wielomianem k tego stopnia nazywamy funkcje f postaci f(x) = a 0 + a 1 x + a 2 x 2 + + a k x k, gdzie wspó lczynnik a k jest liczba różna od 0. Piszemy
Matematyka A, egzamin, 17 czerwca 2005 rozwia zania
Matematyka A, egzamin, 7 czerwca 00 rozwia zania Mam nadzieje, że nie ma tu b le dów poza jakimiś literówkami, od których uwolnić sie trudno. Zache cam do obejrzenia rozwia zań zadań z egzaminu dla matematyki
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 9A/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Niestacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Informatyka Profil: Praktyczny
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
SPRAWDZIAN KOMBINATORYKA
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI SPRAWDZIAN KOMBINATORYKA 12 GRUDNIA 2011 CZAS PRACY: 45 MIN. ZADANIE 1 Spośród liczb {1, 2, 3,..., 1000} losujemy jednocześnie dwie, które
ROZDZIA l 13. Zbiór Cantora
ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać
Statystyka matematyczna 2015/2016
Statystyka matematyczna 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS2-2SM Nazwa jednostki
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2015 Kierunek studiów: Zarządzanie i inżynieria
Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe
Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:
1 Znaleźć wszystkie możliwe tabelki dzia lań grupowych na zbiorze 4-elementowym.
Algebra I Bardzo dobrym źród lem zadań (ze wskazówkami do rozwia zań) jest M Bryński, J Jurkiewicz - Zbiór zadań z algebry, doste pny w bibliotece Moje zadania dla studentów z *: https://wwwmimuwedupl/%7eaweber/zadania/algebra2014/grupyzadpdf
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA DYSKRETNA Nazwa w języku angielskim DISCRETE MATHEMATICS Kierunek studiów (jeśli dotyczy): Matematyka
= (3x 2)(2x 3). Sta d wnioskujemy, że 6x 3 x 2 20x + 12 = =(x + 2)(3x 2)(2x 3), co kończy zadanie.
. Roz lożyć na czynniki 6 0 +. Rozwia zanie. Szukać możemy ca lkowitych lub ogólniej wymiernych pierwiastków tego wielomianu. Jedynymi kandydatami sa u lamki postaci p q przy czym q musi być dzielnikiem
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 12.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Zdrowia obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Pielęgniarstwo Profil: Praktyczny
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 9/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Przedmiotowy system oceniania z języka angielskiego
Przedmiotowy system oceniania z języka angielskiego Spis treści I. Główne założenia PSO... 2 II. Kategorie oceny postępów... 2 III. Formy sprawdzania wiedzy:... 2 IV. Wymagania na poszczególne oceny...
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
KOMBINATORYKA 1 WYK LAD 10 Zbiory cze
KOMBINATORYKA 1 WYK LAD 10 Zbiory cze ściowo uporza dkowane 17 maja 2012 W rozdziale tym omówimy jedno z fundamentalnych poje ć kombinatoryki, jakim jest zbiór cze ściowo uporza dkowany. Pokażemy w jaki
PRZYGOTOWAWCZYCH KLASY PIERWSZE.. Obliczyć sume. cyfr liczby N
ROZWIAZANIA ZADAŃ PRZYGOTOWAWCZYCH - 005 KLASY PIERWSZE Zadanie 1. Niech N = 999 }{{... 99}. Obliczyć sume cyfr liczby N 3. n dziewiatek. Zauważmy, że N = 10 n 1. Mamy wiec N 3 = 10 3n 3 10 n + 3 10 n
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Zasady wystawiania oceny z przedmiotu Statystyka i SKJ procesów.
Statystyka i SKJ procesów. Ocena końcowa jest średnią arytmetyczną ważoną z ocen z ćwiczeń (waga 0,6) i egzaminu końcowego (waga 0,4). 1. Oceny ze 3 sprawdzianów kontrolnych: a. Rachunek prawdopodobieństwa,
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN