Regresja ważona. Co, gdy nie ma stałej wariancji? Tu prawdziwe σ 2 =1 (dużo powtórzeń, więc wariancje są dobrze oszacowane) PAR Wykład 5 1/8
|
|
- Robert Białek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dobry chrześcijanin powinien wystrzegać się matematyków i tych wszystkich, którzy tworzą puste proroctwa. Istnieje niebezpieczeństwo, że matematycy zawarli przymierze z diabłem, aby zgubić duszę człowieka i wtrącić go w odmęty piekieł. - św. Augustyn Regresja ważona Co, gdy nie ma stałej wariancji? > strongx momentum energy crossx sd crossx zależy liniowo od zmiennej energia ( w jednostkach odwrotnych). Na każdym poziomie pędu (momentum) wielokrotnie zmierzono energię i crossx oraz obliczono jego odchylenie standardowe. W takim przypadku stosuje się ważoną regresję liniową > g <- lm(crossx energy, strongx, weights=sdˆ-2) > summary(g) lm(formula = crossx ~ energy, data = strongx, weights = sd^-2) Weighted Residuals: (Intercept) e-08 *** energy e-06 *** Residual standard error: on 8 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 3.71e-06 Tu prawdziwe σ 2 =1 (dużo powtórzeń, więc wariancje są dobrze oszacowane) PAR Wykład 5 1/8
2 Gdyby nie stosować regresji ważonej, to > gu <- lm(crossx energy, strongx) > summary(gu) lm(formula = crossx ~ energy, data = strongx) Residuals: (Intercept) e-07 *** energy e-06 *** Residual standard error: on 8 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 1.165e-06 > plot(crossx energy, data=strongx) > abline(g) > abline(gu,lty=2) PAR Wykład 5 2/8
3 Testowanie dopasowania Dobre dopasowanie jest wtedy, gdy błąd średniokwadratowy jest nieobciążonym estymatorem σ σ 2 jest znane Testem dopasowania będzie > g <- lm(crossx energy, strongx, weights=sdˆ-2) > summary(g) lm(formula = crossx ~ energy, data = strongx, weights = sd^-2) Weighted Residuals: (Intercept) e-08 *** energy e-06 *** Residual standard error: on 8 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 3.71e-06 Tu prawdziwe σ 2 =1 Czy to jest dobre dopasowanie? PAR Wykład 5 3/8
4 > 1.66^2*8 [1] > 1-pchisq(22.045,8) [1] Czyli jest złe dopasowanie! PAR Wykład 5 4/8
5 > g2 <- lm(crossx energy + I(energyˆ2), weights=sdˆ-2, strongx) > summary(g2) lm(formula = crossx ~ energy + I(energy^2), data = strongx, weights = sd^-2) Weighted Residuals: (Intercept) e-08 *** energy I(energy^2) *** Residual standard error: on 7 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 7 DF, p-value: 6.554e-08 > 0.679^2*7 [1] > 1-pchisq( ,7) [1] Tu jest dobre dopasowanie > x <- seq(0.05,0.35,by=0.01) > lines(x,g2$coef[1]+g2$coef[2]*x+g2$coef[3]*xˆ2,lty=2) PAR Wykład 5 5/8
6 2. σ 2 jest nieznane Możliwe wtedy gdy mamy powtórzone x dla tego samego y. Fe loss loss strata w mg na skutek korozji Fe zawartość żelaza w sopie miedzioniklu [%] > g <- lm(loss Fe, data=corrosion) > summary(g) lm(formula = loss ~ Fe, data = corrosion) Residuals: (Intercept) < 2e-16 *** Fe e-09 *** Residual standard error: on 11 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 11 DF, p-value: 1.055e-09 PAR Wykład 5 6/8
7 Potraktujmy to zadanie jako model analizy wariancji z grupam, wyznaczonymi przez poziom Fe: > factor(corrosion$fe) [1] Levels: ga <- lm(loss ~ factor(fe), data=corrosion) summary(ga) lm(formula = loss ~ factor(fe), data = corrosion) Residuals: (Intercept) e-12 *** factor(fe) ** factor(fe) e-05 *** factor(fe) e-06 *** factor(fe) e-06 *** factor(fe) e-07 *** factor(fe) e-08 *** Residual standard error: on 6 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 6 and 6 DF, p-value: 4.152e-07 points(corrosion$fe,ga$fit,pch=18) PAR Wykład 5 7/8
8 Porównanie obu modeli > anova(g,ga) Analysis of Variance Table Model 1: loss ~ Fe Model 2: loss ~ factor(fe) Res.Df RSS Df Sum of Sq F Pr(>F) ** Model 1 jest istotnie inny od Modelu 2 [Rysunek 5.4] PAR Wykład 5 8/8
Permutacyjna metoda oceny istotności regresji
Permutacyjna metoda oceny istotności regresji (bez założenia normalności) f
Regresja liniowa w R Piotr J. Sobczyk
Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące
Diagnostyka modelu. Dowód [5.4] Dowód [ ]
Diagnostyka modelu Dowód [5.4] Dowód [5.5-5.6] Przykład > head(savings) sr pop15 pop75 dpi ddpi Australia 11.43 29.35 2.87 2329.68 2.87 Austria 12.07 23.32 4.41 1507.99 3.93 Belgium 13.17 23.80 4.43 2108.47
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago
Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Analiza wariancji Piotr J. Sobczyk 19 November 2016
Analiza wariancji Piotr J. Sobczyk 19 November 2016 Zacznijmy zajęcia od klasycznego przykładu czyli testu Studenta dla dwóch prób. x 1,i N(µ 1, σ 2 ), i = 1,..., n 1 x 2,i N(µ 2, σ 2 ), i = 1,..., n 2
Ogólny model liniowy
Ogólny model liniowy Twórcy Autor statystyki testowej Wyprowadził wzór na gęstość rozkładu statystyki testowej Ronald Aylmer Fisher ( 1890-1962 ) angielski genetyk George W. Snedecor (1881-1974) amerykański
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy ANALIZA PORÓWNAŃ WIELOKROTNYCH GDY WARIANCJE SĄ NIERÓWNE lsales.bim
Regresja - zadania i przykłady.
Regresja - zadania i przykłady. W5 e0 Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu
Regresja liniowa. Etapy analizy regresji. Założenia regresji. Kodowanie zmiennych jakościowych
Etapy analizy regresji Regresja liniowa 1. zaproponowanie modelu, 2. sprawdzenie założeń dotyczących zmiennych, 3. wyszukanie wartości odstających, wpływających i dźwigni, 4. oszacowanie istotności modelu
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: Eksploracja (mining) Problemy: Jedna zmienna 2000 najwi ększych
Statystyka w analizie i planowaniu eksperymentu
23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT. Część I: analiza regresji
Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT Część I: analiza regresji Krok 1. Pod adresem http://zsi.tech.us.edu.pl/~nowak/adb/eksport.txt znajdziesz zbiór danych do analizy. Zapisz plik na dysku w dowolnej
Regresja - zadania i przykłady.
Regresja - zadania i przykłady. W5 e0 Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: 2000 największych spółek światowych z 2004 (Forbes Magazine)
Statystyka w analizie i planowaniu eksperymentu
28 marca 2012 Analiza wariancji klasyfikacja jednokierunkowa - wst ep Przypuśćmy, że chcemy porównać wieksz a (niż dwie) liczbe grup. Aby porównać średnie w kilku grupach, można przeprowadzić analize wariancji.
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ
WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
ANOVA podstawy analizy wariancji
ANOVA podstawy analizy wariancji Marcin Kolankowski 11 marca 2009 Do czego służy analiza wariancji Analiza wariancji (ang. ANalysis Of VAriance - ANOVA) służy do wykrywania różnic pomiędzy średnimi w wielu
1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe
Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Regresja liniowa oraz regresja wielokrotna w zastosowaniu zadania predykcji danych. Agnieszka Nowak Brzezińska Wykład III-VI
Regresja liniowa oraz regresja wielokrotna w zastosowaniu zadania predykcji danych. Agnieszka Nowak Brzezińska Wykład III-VI Analiza regresji Analiza regresji jest bardzo popularną i chętnie stosowaną
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez
Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Wyznaczanie przedziału 95%CI oznaczającego, że dla 95% prób losowych następujące nierówności są prawdziwe: X t s 0.025 n < μ < X + t s
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH
Wykład 1 Prosta regresja liniowa - model i estymacja parametrów. Regresja z wieloma zmiennymi - analiza, diagnostyka i interpretacja wyników. Literatura pomocnicza J. Koronacki i J. Ćwik Statystyczne systemy
(LMP-Liniowy model prawdopodobieństwa)
OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV
Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Jednoczynnikowa analiza wariancji. Wnioskowanie dla jednoczynnikowej ANOV-y. Porównywanie poszczególnych średnich
(Wykład 13) Jednoczynnikowa analiza wariancji Wnioskowanie dla jednoczynnikowej ANOV-y Format danych Hipotezy i model ANOVA Tabela ANOVA i test F Porównywanie poszczególnych średnich Jednoczynnikowa ANOVA
Oszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Jednoczynnikowa analiza wariancji i porównania wielokrotne (układ losowanych bloków randomized block design RBD) Układ losowanych bloków Stosujemy, gdy podejrzewamy,
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Regresja logistyczna. Regresja logistyczna. Przykłady DV. Wymagania
Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Stosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VI... 16 Listopada 2011 1 / 24 Jest to rozkład zmiennej losowej rozkład chi-kwadrat Z = n i=1 X 2 i, gdzie X i N(µ i, 1) - niezależne. Oznaczenie: Z χ 2 (n, λ), gdzie:
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Analiza mediacji i moderacji. X - predyktor M - mediator Y - zmienna zależna. Dr Paweł Kleka /50. Trochę historii.
Analiza mediacji i moderacji Dr Paweł Kleka 2019-04-04 X - predyktor M - mediator Y - zmienna zależna 3/50 Trochę historii Mediacja 4/50 Mediacja całkowita Analiza wielkości efektu pośredniego wg Barona
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Analiza wariancji i kowariancji
Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Analiza regresji Konspekt do zaj : Statystyczne metody analizy danych
Opis zaj Analiza regresji Konspekt do zaj : Statystyczne metody analizy danych Agnieszka Nowak-Brzezi«ska 28 pa¹dziernika 2009 Celem zaj jest realizacja praktyczna zagadnie«zwi zanych z analiz regresji,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X