Statystyka w analizie i planowaniu eksperymentu
|
|
- Stanisława Janicka
- 5 lat temu
- Przeglądów:
Transkrypt
1 28 marca 2012
2 Analiza wariancji klasyfikacja jednokierunkowa - wst ep Przypuśćmy, że chcemy porównać wieksz a (niż dwie) liczbe grup. Aby porównać średnie w kilku grupach, można przeprowadzić analize wariancji.
3 Wykonaliśmy k serii pomiarów. Pomiary w serii i oznaczamy przez X i1,..., X ini N (µ, σ i ). Jak widać w serii i wykonaliśmy n i pomiarów. Przyjmujemy, że zmienne X ij sa niezależne.
4 Wykonaliśmy k serii pomiarów. Pomiary w serii i oznaczamy przez X i1,..., X ini N (µ, σ i ). Jak widać w serii i wykonaliśmy n i pomiarów. Przyjmujemy, że zmienne X ij sa niezależne. Uwaga Wariancje sa równe dla wszystkich grup!!!
5 Analiza wariancji klasyfikacja jednokierunkowa Interesuje nas hipoteza zerowa postaci:
6 Analiza wariancji klasyfikacja jednokierunkowa Interesuje nas hipoteza zerowa postaci: H 0 : µ 1 = µ 2 =... = µ k.
7 Analiza wariancji klasyfikacja jednokierunkowa Interesuje nas hipoteza zerowa postaci: H 0 : µ 1 = µ 2 =... = µ k. Hipoteze alternatywna możemy sformu lować w nastepujacy sposób:
8 Analiza wariancji klasyfikacja jednokierunkowa Interesuje nas hipoteza zerowa postaci: H 0 : µ 1 = µ 2 =... = µ k. Hipoteze alternatywna możemy sformu lować w nastepujacy sposób: Przynajmniej jedna ze średnich różni si e istotnie od pozosta lych
9 Analiza wariancji klasyfikacja jednokierunkowa Statystyka testowa w analizie wariancji jest: gdzie n = n i oraz F = SSA/(k 1) SSE/(n k) SSA = k n i (ȳ i ȳ ) 2, SSE = i=1 k n i (y ij ȳ i ) 2. i=1 j=1 Przy prawdziwości hipotezy zerowej, statystyka testowa F ma rozk lad Snedecora z k 1 i n k stopniami swobody.
10 UWAGA, UWAGA, UWAGA,... Za lożenie o tym, że wariancje we wszystkich grupach sa równe jest istotne dlatego przed zastosowaniem analizy wariancji należy je sprawdzić używajac np. testu Bartletta.
11 Test Bartletta Wykonaliśmy k serii pomiarów. Pomiary w serii i oznaczamy przez X i1,..., X ini N (µ, σ i ). Testujemy nastepuj ac a hipoteze zerowa:
12 Test Bartletta Wykonaliśmy k serii pomiarów. Pomiary w serii i oznaczamy przez X i1,..., X ini N (µ, σ i ). Testujemy nastepuj ac a hipoteze zerowa: H 0 : σ 2 1 = σ 2 2 =... = σ 2 k.
13 Test Bartletta Wykonaliśmy k serii pomiarów. Pomiary w serii i oznaczamy przez X i1,..., X ini N (µ, σ i ). Testujemy nastepuj ac a hipoteze zerowa: H 0 : σ 2 1 = σ 2 2 =... = σ 2 k. Hipoteze alternatywna możemy sformu lować w nastepujacy sposób:
14 Test Bartletta Wykonaliśmy k serii pomiarów. Pomiary w serii i oznaczamy przez X i1,..., X ini N (µ, σ i ). Testujemy nastepuj ac a hipoteze zerowa: H 0 : σ 2 1 = σ 2 2 =... = σ 2 k. Hipoteze alternatywna możemy sformu lować w nastepujacy sposób: Przynajmniej jedna z wariancji różni si e istotnie od pozosta lych
15 Test Bartletta - statystyka testowa Statystyka testowa jest: χ 2 = [(n k)log(s 2 ) c k (n i 1)log(Sn 2 i 1)] i=1
16 Test Bartletta - statystyka testowa Statystyka testowa jest: χ 2 = [(n k)log(s 2 ) c k (n i 1)log(Sn 2 i 1)] gdzie: Sn 2 i 1 = 1 ni n i 1 j=1 (X ij X i ) 2, S 2 = 1 ki=1 n k Sn 2 i 1 oraz c = (k 1) i=1 k 1 ( n i=1 i 1 1 n k )
17 Test Bartletta - statystyka testowa Statystyka testowa jest: χ 2 = [(n k)log(s 2 ) c k (n i 1)log(Sn 2 i 1)] gdzie: Sn 2 i 1 = 1 ni n i 1 j=1 (X ij X i ) 2, S 2 = 1 ki=1 n k Sn 2 i 1 oraz c = (k 1) i=1 k 1 ( n i=1 i 1 1 n k ) Przy prawdziwości hipotezy zerowej, statystyka testowa χ 2 ma rozk lad chi-kwadrat z k 1 stopniami swobody.
18 Zadanie Do pewnych doświadczeń farmakologicznych wybierano sa króliki jednorodne pod wzgledem wagi. Wybrano losowo po 5 królików z poszczególnych grup i otrzymano nastepuj ace wyniki (w kg): A B C D Na poziomie istotności α = 0.1 zweryfikować hipotez e, że wariancja wagi królików we wszystkich czterech grupach jest jednakowa.
19 Rozwiazanie - Test Bartletta Bartlett test of homogeneity of variances data: waga by group Bartlett's K-squared = 2.067, df = 3, p-value =
20 Zadanie W tabeli sa podane wielkości zbioru pszenicy ozimej otrzymane przy zastosowaniu czterech możliwych dawek azotu jako nawozu. Każda z dawek azotu zastosowano na 8 poletkach Zbadać, czy średnia wielkość plonu zależy od użytej ilości nawozu. P 1 P 2 P 3 P
21 Test Bartletta Bartlett test of homogeneity of variances data: plon by group Bartlett's K-squared = , df = 3, p-value =
22 Rozwiazanie - Analiza wariancji Analysis of Variance Table Response: plon Df Sum Sq Mean Sq F value Pr(>F) group Residuals
23 Zadanie W tabeli znajduja sie dane o przeżywalności chrzaszczy macznych hodowanych na różnych pożywkach. Dla tych danych testować bedziemy hipoteze, że miedzy różnymi pożywkami nie ma różnic w przeżywalności chrzaszczy. A B C D E MP MP MP MPR
24 Rozwiazanie - Analiza wariancji Analysis of Variance Table Response: pozywka Df Sum Sq Mean Sq F value Pr(>F) group * Residuals Signif. codes: 0 *** ** 0.01 *
25 Testy a posteriori Uwaga Jeżeli analiza wariancji nie wykaże istotności różnic miedzy rozpatrywanymi grupami, nie przeprowadza sie już dalszych testów. Natomiast kiedy hipoteza zerowa zostanie odrzucona w analizie wariancji, to powstaje pytanie, które z porównywanych populacji sa odpowiedzialne za odrzucenie hipotezy zerowej. Chcemy wiedzieć, które z n średnich różnia sie miedzy soba, a które sa równe.
26 Testy a posteriori Uwaga Narzedzi s lużacych do tego celu jest bardzo dużo na tym wyk ladzie wyróżnimy nastepuj ace 1 Test Bonferoniego;
27 Testy a posteriori Uwaga Narzedzi s lużacych do tego celu jest bardzo dużo na tym wyk ladzie wyróżnimy nastepuj ace 1 Test Bonferoniego; 2 Test Tukeya.
28 Test Bonferroniego Jeżeli porównujemy k grup, to porównanie każdy z każdym wymaga wykonania K = k(k 1) 2 testów. Dla pojedynczego testu statystyka testowa przyjmuje postać: Przy czym t ij = X i X j s 2 1 n i + 1 n j s 2 = SSE n k. Rozk lad statystyki testowej Przy prawdziwości hipotezy zerowej H 0 : µ 1 = µ 2 =... = µ k ; statystyka t ij ma rozk lad studenta z n k stopniami swobody.
29 Test Bonferroniego Uwaga, Uwaga, Uwaga... 1 poziom istotności pojedynczego testu;
30 Test Bonferroniego Uwaga, Uwaga, Uwaga... 1 poziom istotności pojedynczego testu; 2 poziom istotności ca lej procedury. Uwaga Aby poziom istotności ca lej procedury by l na poziomie α poziom istotności pojedynczego testu powinien być na poziomie α/k.
31 Przyklad zastosowania - chrzaszcze Study: LSD t Test for pozywka P value adjustment method: bonferroni Mean Square Error: 18.7 group, means and individual ( 95 %) CI pozywka std.err replication LCL UCL MP MP MP MPR alpha: 0.05 ; Df Error: 16 Critical Value of t:
32 Test Tukeya - krótki komentarz
33 Przyklad zastosowania - chrzaszcze Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = fit) $group diff lwr upr p adj MP2-MP MP5-MP MPR-MP MP5-MP MPR-MP MPR-MP
Statystyka w analizie i planowaniu eksperymentu
19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup
1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe
Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Elementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE
WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano
Analiza wariancji Piotr J. Sobczyk 19 November 2016
Analiza wariancji Piotr J. Sobczyk 19 November 2016 Zacznijmy zajęcia od klasycznego przykładu czyli testu Studenta dla dwóch prób. x 1,i N(µ 1, σ 2 ), i = 1,..., n 1 x 2,i N(µ 2, σ 2 ), i = 1,..., n 2
Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: 2000 największych spółek światowych z 2004 (Forbes Magazine)
Statystyka w analizie i planowaniu eksperymentu
4 kwietnia 2012 Testy nieparametryczne Dotychczas zajmowaliśmy si e praktycznym zastosowaniem testów istotności nasze zadanie sprowadza lo si e do testowania hipotez o parametrach rozk ladu. Teraz b edziemy
Testy dla dwóch prób w rodzinie rozkładów normalnych
Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)
Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych
Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Problemy cz lowieka za szafa Cz lowiek za szafa rzuca razy moneta. Może on rzucać : 1 moneta symetryczna; 2 moneta, która ma or la z dwu stron. Zadania 1 Wymyśl procedure pozwalajac a stwierdzić
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),
Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14
Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,
Testy post-hoc. Wrocław, 6 czerwca 2016
Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy ANALIZA PORÓWNAŃ WIELOKROTNYCH GDY WARIANCJE SĄ NIERÓWNE lsales.bim
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Analiza wariancji i kowariancji
Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Autor: Dariusz Piwczyński 1 Ćwiczenie. Analiza zmienności złożona. Testy wielokrotnych porównań
Autor: Dariusz Piwczyński 1 Ćwiczenie. Analiza zmienności złożona. Testy wielokrotnych porównań Analizę wariancji możemy wykonać w SAS za pomocą procedury ANOVA oraz GLM. ANOVA Analysis of variance (Analiza
Porównanie wielu rozkładów normalnych
Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Wykład 11 Testowanie jednorodności
Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Jednoczynnikowa analiza wariancji
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Jednoczynnikowa analiza wariancji. Wnioskowanie dla jednoczynnikowej ANOV-y. Porównywanie poszczególnych średnich
(Wykład 13) Jednoczynnikowa analiza wariancji Wnioskowanie dla jednoczynnikowej ANOV-y Format danych Hipotezy i model ANOVA Tabela ANOVA i test F Porównywanie poszczególnych średnich Jednoczynnikowa ANOVA
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA
JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji
1 Testowanie hipotez statystycznych
1 Testowanie hipotez statystycznych Zadanie 1 W pewnym eksperymencie psychiatrycznym przeprowadzonym na grupie 42 chorych otrzymano nastepuj wyniki: (w %) 34.8, 33.9, 32.6, 49.4, 44.9, 55.2, 48.5, 40.3,
Analiza wariancji. Źródło: Aczel A. D. Statystyka w zarządzaniu. Barbara Gładysz
Analiza wariancji Źródło: Aczel A. D. Statystyka w zarządzaniu Analiza wariancji jednoczynnikowa Populacja Pole trójkąty 1 4 5 3 7 4 8 kwadraty 1 10 11 3 1 4 13 kółka 1 1 3 3 Populacja Pole trójkąty 1
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Przykłady Ryzyko względne a iloraz szans ANOVA ZMAD. Stanisław Jaworski: ZMAD. Uniwersytet Medyczny
ZMAD Stanisław Jaworski proporcja Stosunek do aborcji (1) Z pewnej ściśle określonej populacji kobiet wylosowano 950 osób. Każdą kobietę zapytano, czy jest za utrzymaniem obecnej ustawy antyaborcyjnej.
Analiza wariancji. Źródło: Aczel A. D. Statystyka w zarządzaniu. Barbara Gładysz
Analiza wariancji Źródło: Aczel A. D. Statystyka w zarządzaniu Analiza wariancji jednoczynnikowa Populacja Pole trójkąty 4 5 3 7 4 8 kwadraty 0 3 4 3 kółka 3 3 Populacja Pole trójkąty 4 5 3 7 4 8 SUMA
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie
Test Scheffego, gdzie (1) n to ilość powtórzeń (pomiarów) w jednej grupie (zabiegu) Test NIR Istnieje wiele testów dla porównań wielokrotnych opartych o najmniejszą istotna różnicę między średnimi (NIR).
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Wykład 8 Dane kategoryczne
Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
Wykład 5 Teoria eksperymentu
Wykład 5 Teoria eksperymentu Wrocław, 22.03.2017r Co to jest teoria eksperymentu? eksperyment - badanie jakiegoś zjawiska polegające na celowym wywołaniu tego zjawiska lub jego zmian oraz obserwacji i
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Jednoczynnikowa analiza wariancji
Jednoczynnikowa analiza wariancji Zmienna zależna ilościowa, numeryczna Zmienna niezależna grupująca (dzieli próbę na więcej niż dwie grupy), nominalna zmienną wyrażoną tekstem należy w SPSS przerekodować
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago
Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,
Regresja liniowa w R Piotr J. Sobczyk
Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy
Ogólny model liniowy
Ogólny model liniowy Twórcy Autor statystyki testowej Wyprowadził wzór na gęstość rozkładu statystyki testowej Ronald Aylmer Fisher ( 1890-1962 ) angielski genetyk George W. Snedecor (1881-1974) amerykański
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
ANALIZA METROLOGICZNA WYNIKÓW BADAŃ NA PRZYKŁADZIE ŁOŻYSK ŚLIZGOWYCH
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku Jadwiga Janowska(Politechnika Warszawska) ANALIZA METROLOGICZNA WYNIKÓW BADAŃ NA PRZYKŁADZIE ŁOŻYSK ŚLIZGOWYCH SŁOWA KLUCZOWE
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Porównanie dwóch rozkładów normalnych
Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Statystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r
Analiza wariancji (ANalysis Of Variance - ANOVA)
Analiza wariancji (ANalysis Of Variance - ANOVA) W poprzednim rozdziale przedstawiono sposób porównywania dwóch wartości średnich. Często jednak zachodzi potrzeba porównywania większej liczby średnich
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.