Stosowana Analiza Regresji
|
|
- Emilia Zalewska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Stosowana Analiza Regresji Wykład VI Listopada / 24
2 Jest to rozkład zmiennej losowej rozkład chi-kwadrat Z = n i=1 X 2 i, gdzie X i N(µ i, 1) - niezależne. Oznaczenie: Z χ 2 (n, λ), gdzie: n - liczba stopni swobody, λ = 1 2 n i=1 µ2 i - parametr niecentralności. Fakt. Z χ 2 (n, λ) EZ = n + 2λ, VarZ = 2n + 8λ. Uwaga. Zwykły (n) jest tożsamy z χ(n, 0) i zachodzi: EZ = n, VarZ = 2n dla Z χ 2 (n). 2 / 24
3 rozkład chi-kwadrat Przykład: χ 2 (5) χ 2 (5,5) Tw. Z i χ 2 (n i, λ i ) - niezależne k Z i χ 2 ( k n i, k λ i ). i=1 i=1 i=1 3 / 24
4 Rozkład F Rozkład F jest to rozkład zmiennej losowej W = Z 1/n 1 Z 2 /n 2, gdzie Z 1 χ 2 (n 1 ), Z 2 χ 2 (n 2 ) - niezależne. Oznaczenie: n 1, n 2 - stopnie swobody. W F(n 1, n 2 ), Fakt. W F(n 1, n 2 ) EW = n2 n 2 2, VarW = 2n2 2 (n1+n2 2) n 1(n 2 1) 2 (n 2 4). 4 / 24
5 Jest to rozkład zmiennej losowej W = Z 1/n 1 Z 2 /n 2, gdzie Z 1 χ 2 (n 1, λ), Z 2 χ 2 (n 2 ) - niezależne. Oznaczenie: n 1, n 2 - stopnie swobody, λ - parametr niecentralności. W F(n 1, n 2, λ), Fakt. W F(n 1, n 2, λ) EW = n2 n 2 2 ( 1 + 2λ n 1 ). 5 / 24
6 Przykład: F(5,10) F(5,10,10) / 24
7 Rozkład statystyki F Ogólny test liniowy: ω : Y = X 1 β 1 + ε p parametrów Ω : Y = X 1 β 1 + X 2 β 2 + ε p + q parametrów Testujemy: H 0 : ω przeciwko H 1 : Ω \ ω Statystyka F : F = (SSE ω SSE Ω )/q SSE Ω /(n p q) 7 / 24
8 Rozkład statystyki F Przy H 1 zachodzi: 1 (SSE ω SSE Ω ) niezależne od SSE Ω 2 σ 2 SSE Ω χ 2 (n p q) 3 σ 2 (SSE ω SSE Ω ) χ 2 (q, λ), gdzie λ = σ 2 (Xβ) H 2 Xβ, H 2 = H H 1. Zatem przy hipotezie alternatywnej mamy: F F(q, n p q, λ). może być więc użyty do obliczenia mocy testu (prawd. odrzucenia H 0, gdy H 0 fałszywa). Wykazano, że moc rośnie, gdy n 2 lub λ rośnie, i maleje, gdy n 1 rośnie. 8 / 24
9 Odchylenie modelu ω od modelu Ω (deviance): dev ω,ω = 2 log L Ω(ˆθ Ω NW ) L ω (ˆθ ω NW ), gdzie: ˆθ NW Ω, ˆθ NW ω - estymatory największej wektora nieznanych parametrów występujących w modelach Ω i ω, odpowiednio. Testy oparte o dev ω,ω nazywamy testami ilorazu (LRT - likelihood ratio test). Przy H 0 : ω mają one z reguły asymptotyczny rozkład chi-kwadrat. 9 / 24
10 Dla modelu liniowego: jeśli σ 2 znane: L( ˆβ NW ) = { 1 1 } exp (Yi (2πσ 2 ) n/2 2σ 2 x i ˆβ) 2. Zatem Mamy więc dev ω,ω = 1 σ 2 (SSE ω SSE Ω ). F = 1 q SSE ω SSE Ω ˆσ 2 Ω = 1 q dev ω,ω. jeśli σ 2 nieznane: dev ω,ω = n log SSE ω SSE Ω. Również w tym przypadku test oparty o dev ω,ω jest równoważny testowi F. 10 / 24
11 Dane: D = ((x 1, Y 1 ),..., (x n, Y n )) ˆf D - estymator funkcji regresji w skonstruowany oparciu o D. Cel: ocena błędu popełnianego dla nowej losowej obserwacji (x, Y ) niezależnej od D i pochodzącej z tego samego modelu (błąd ten jest miarą jakości estymatora ˆf D ). Możemy estymować: ( ( Err D = E Y ˆf ) ) 2 D (x) D, lub ( ( ) ) 2 Err = E Y ˆf D (x) = E (Err D ). 11 / 24
12 1.. Próba testowa o liczności m niezależna od danych D, pochodząca z tego samego rozkładu co D: T = ( (x t 1, Y t 1 ),..., (x t m, Y t m) ) Estymator błędu na podstawie T : Êrr D = 1 m m i=1 ( Yi t ˆf 2 D (xi )) t. 12 / 24
13 2. (sprawdzanie krzyżowe) dzielimy próbę D na K części (losowo), dopasowujemy model w oparciu o dane D z wyłączeniem jednej z K części, obliczamy błąd dla wyłączonej części danych, postępowanie powtarzamy dla każdej z K części. Na końcu uśredniamy obliczone błędy. Formalnie: κ : {1,..., n} {1,..., K} - przyporządkowuje każdej obserwacji nr bloku, do którego ona należy. ˆf k (x) - model dopasowany bez użycia k-tej części, k = 1,..., K. Wtedy: Êrr = 1 n n i=1 ( Y i ˆf κ(i) (x i )) / 24
14 Typowo przyjmuje się: K = 5, 10, n. K = n leave-one-out crossvalidation. Wtedy otrzymujemy: PRESS = n e(i) 2, gdzie: e (i) - rezyduum dla i-tej obserwacji w modelu dopasowanym na podstawie n 1 obserwacji z pominięciem i-tej obserwacji. i=1 PRESS - Predicted Residual Sum of Squares. 14 / 24
15 3. : wielokrotne repróbkowanie elementów z oryginalnej próby D (losowanie ze zwracaniem); otrzymujemy m pseudoprób o liczności n każda, na podstawie każdej z nich dopasowujemy model ˆf b, b = 1,..., m; dla każdej obserwacji z pierwotnych danych liczymy średni błąd w modelach nie wykorzystujących tych obserwacji; uśredniamy otrzymane wielkości po wszystkich obserwacjach Êrr = 1 n n i=1 1 C i b C i ( Y i ˆf b (x i )) 2, C i - zbiór indeksów modeli dopasowanych na podstawie pseudoprób nie zawierających i-tej obserwacji. Uwaga: Przy pomocy bootstrapu możemy też przybliżać rozkład estymatorów b i S / 24
16 Jest to rozwiązanie problemu: ( ( ˆβridge 0, ˆβ ridge) p 1 = arg min SSE + λ b dla ustalonego λ > 0, gdzie SSE = ( n i=1 Y i b 0 ) p 1 2. j=1 x ijb j Z Tw. Kuhna-Tackera wynika, że problem ten jest równoważny problemowi programowania wypukłego: ( ˆβridge 0, ˆβ ridge) = arg min b SSE przy war. j=1 b 2 j p 1 bj 2 j=1 ) t(λ). (1) Zatem szukamy minimum SSE przy nałożonym ograniczeniu na normę wektora (b 1,..., b p 1 ) lub, równoważnie, budujemy funkcję kryterialną dodając do SSE karę za dużą wartość normy tego wektora. 16 / 24
17 Uwaga 1. Kara w (1) nie uwzględnia b 0. W przeciwnym razie przesunięcie wektora Y o stałą nie skutkowałoby przesunięciem ˆβ ridge 0 o tę stałą. Uwaga 2. Rozwiązanie (1) jest równoważne wykonaniu dwóch kroków: ˆβ ridge 0 := Ȳ, regresja dla scentrowanych X i Y i bez uwzględnienia b 0 w SSE. Dowód: / 24
18 Mamy: Stąd SSE(λ) = (Y c X c b) (Y c X c b) + λb b b SSE(λ) = 2(Xc ) X c b 2(X c ) Y c + 2λb ˆβ ridge = ((X c ) X c + λi) 1 (X c ) Y c. Zatem sytuacja, gdy mac. (X c ) X c jest nieodwracalna lub bliska nieodwracalnej została zamieniona na sytuację bardziej stabilną numerycznie (macierz (X c ) X c + λi możemy odwrócić). 18 / 24
19 Dekompozycja na wartości szczególne (Singular Values Decomposition) X = UDV, gdzie: U(n p) - ortonormalna, jej kolumny rozpinają tę samą przestrzeń, co kolumny X, D(p p) - diagonalna, na przekątnej: wartości własne X X, V (p p) - ortonormalna, jej kolumny rozpinają przestrzeń wierszy X. Estymatory MNK i ridge można prosto wyrazić używając rozkładu SVD. 19 / 24
20 Dekompozycja na wartości szczególne Dla estymatorów MNK: Ŷ MNK = X(X X) 1 X Y = = UDV (VDU UDV ) 1 VDU Y = p p = UU Y = u j u jy = u j, Y u j. j=1 Zatem ŶMNK - rzut ortogonalny Y na podprzestrzeń rozpiętą przez kolumny mac. X. j=1 20 / 24
21 Dekompozycja na wartości szczególne Dla regresji grzbietowej (przy zał., że X scentrowana): Ŷ ridge = X(X X + λi) 1 X Y = = UDV (VDU UDV + λvv ) 1 VDU Y = = p j=1 u j = UD(D 2 + λi)du Y = dj 2 p d dj 2 + λ u j 2 jy = u j, Y u j dj 2 + λ. Współczynniki rzutu Y na lin(u 1,..., u p ) są ściągane przez przemnożenie przez współczynniki: j=1 d 2 j d 2 j + λ / 24
22 Porównanie MNK i ridge Estymator ˆβ MNK jest nieobciążony o macierzy kowariancji: σ 2 (X X) 1 = σ 2 VD 1 D 1 V. Estymator ˆβ ridge jest obciążony o macierzy kowariancji: σ 2 VD 1 (D 2 + λi) 2 D 4 D 1 V. Na przekątnej: ( d 2 j ) 2 1. d 2 j + λ Zatem dla i = 0,..., p 1. Var ˆβ ridge i Var ˆβ MNK i 22 / 24
23 Metoda (Least Absolute Shrinkage and Selection Operator): Równoważnie: ˆβ lasso = arg min b ˆβ lasso = arg min SSE b ) p 1 2 SSE + λ b j. ( 1 przy war. j=1 p 1 b j t. j=1 23 / 24
24 24 / 24
Stosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q
Bardziej szczegółowoESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoStosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Bardziej szczegółowoMetoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
Bardziej szczegółowoEkonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Weryfikacja liniowego modelu jednorównaniowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 2 Weryfikacja liniowego modelu jednorównaniowego 1 / 28 Agenda 1 Estymator
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoMetody Ekonometryczne
Metody Ekonometryczne Goodness of fit i wprowadzenie do wnioskowania statystycznego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 2 Goodness of fit i wprowadzenie do wnioskowania
Bardziej szczegółowoSpis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Bardziej szczegółowoBłędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
Bardziej szczegółowoMetody Ekonometryczne
Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Bardziej szczegółowoHeteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Bardziej szczegółowoEkonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoTestowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Bardziej szczegółowoTestowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Bardziej szczegółowoDane zgrupowane: każda obserwacja należy do jednej grupy i jest tylko jeden czynnik grupujący
1 Wstęp 1.1 Czym są efekty losowe? Jednokierunkowa ANOVA Na poprzednich zajęciach mówiliśmy o modelach liniowych, o jedno- i dwuczynnikowej analizie wariancji. W tych modelach estymowaliśmy nieznane wartości
Bardziej szczegółowoEkonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoZadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Bardziej szczegółowoEkonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoWYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Bardziej szczegółowoMetoda największej wiarogodności
Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm
Bardziej szczegółowoWybór modelu i ocena jakości klasyfikatora
Wybór modelu i ocena jakości klasyfikatora Błąd uczenia i błąd testowania Obciążenie, wariancja i złożoność modelu (klasyfikatora) Dekompozycja błędu testowania Optymizm Estymacja błędu testowania AIC,
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
Bardziej szczegółowoEkonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowo1.1 Klasyczny Model Regresji Liniowej
1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między
Bardziej szczegółowoTestowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Bardziej szczegółowo2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowoAnaliza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r
Bardziej szczegółowoEkonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoPorównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej
Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Bardziej szczegółowo1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Bardziej szczegółowoEkonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Bardziej szczegółowoIdea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoMetoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Bardziej szczegółowoTestowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Bardziej szczegółowoTestowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Bardziej szczegółowoStatystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Bardziej szczegółowoWykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Bardziej szczegółowoSTATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK
Bardziej szczegółowoWykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
Bardziej szczegółowoTesty własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Bardziej szczegółowoWYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Bardziej szczegółowoRozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Bardziej szczegółowoMikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Bardziej szczegółowoStatystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Bardziej szczegółowoRozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Bardziej szczegółowoWykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Bardziej szczegółowoWeryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Bardziej szczegółowo1.8 Diagnostyka modelu
1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Bardziej szczegółowoMatematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoMikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,
Bardziej szczegółowoMonte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowo1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Bardziej szczegółowoNatalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Bardziej szczegółowoStatystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Bardziej szczegółowoEstymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Bardziej szczegółowoStatystyczna analiza danych (molekularnych) analiza wariancji ANOVA
Statystyczna analiza danych (molekularnych) analiza wariancji ANOVA Anna Gambin 19 maja 2013 Spis treści 1 Przykład: Model liniowy dla ekspresji genów 1 2 Jednoczynnikowa analiza wariancji 3 2.1 Testy
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoEkonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4
Bardziej szczegółowoMikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i KMRL zakłada, że wszystkie zmienne objaśniające są egzogeniczne
Bardziej szczegółowoWykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
Bardziej szczegółowoMetoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Bardziej szczegółowoPorównanie błędu predykcji dla różnych metod estymacji współczynników w modelu liniowym, scenariusz p bliskie lub większe od n
Porównanie błędu predykcji dla różnych metod estymacji współczynników w modelu iowym, scenariusz p bliskie lub większe od n Przemyslaw.Biecek@gmail.com, MIM Uniwersytet Warszawski Plan prezentacji: 1 Motywacja;
Bardziej szczegółowoElementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Bardziej szczegółowoWykład 5 Teoria eksperymentu
Wykład 5 Teoria eksperymentu Wrocław, 22.03.2017r Co to jest teoria eksperymentu? eksperyment - badanie jakiegoś zjawiska polegające na celowym wywołaniu tego zjawiska lub jego zmian oraz obserwacji i
Bardziej szczegółowoWstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów
Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4
Bardziej szczegółowoStatystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Bardziej szczegółowoTestowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoVI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowo1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Bardziej szczegółowoAnaliza kanoniczna w pigułce
Analiza kanoniczna w pigułce Przemysław Biecek Seminarium Statystyka w medycynie Propozycje tematów prac dyplomowych 1/14 Plan 1 Słów kilka o podobnych metodach (PCA, regresja) 2 Motywacja, czyli jakiego
Bardziej szczegółowoHipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.
Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Bardziej szczegółowo