Regresja liniowa. Etapy analizy regresji. Założenia regresji. Kodowanie zmiennych jakościowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Regresja liniowa. Etapy analizy regresji. Założenia regresji. Kodowanie zmiennych jakościowych"

Transkrypt

1 Etapy analizy regresji Regresja liniowa 1. zaproponowanie modelu, 2. sprawdzenie założeń dotyczących zmiennych, 3. wyszukanie wartości odstających, wpływających i dźwigni, 4. oszacowanie istotności modelu regresji i analiza reszt, 5. oszacowanie istotności współczynników i interpretacja wyniku. Dr Paweł Kleka /76 Założenia regresji 1 1. zmienna zależna i niezależne są ilościowe 2. zmienna zależna ma rozkład normalny 3. relacja niezależna - zależna jest liniowa 4. obserwacje są niezależne 5. liczba obserwacji n > 50 + k wariancja reszt jest homoskedastyczna 1 Zmienne niezależne nominalne i/lub porządkowe mogą być używane w regresji przy pomocy kodowania 0/1 Kodowanie zmiennych jakościowych wykształcenie <- factor(round(runif(10,1,3),0), levels=3:1, labels=c("wyższe", "średnie", "podstawowe")) (df <- cbind(wykształcenie, wyzsze=ifelse(wykształcenie=="wyższe",1,0), srednie=ifelse(wykształcenie=="średnie",1,0), podstawowe=ifelse(wykształcenie=="podstawowe",1,0))) wykształcenie wyzsze srednie podstawowe [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] Aby opisać wykształcenie każdej z osób wystarczy o jedną mniej kolumnę, niż jest kategorii w zmiennej. 10/76 11/76

2 Normalność na oko ;-) Weźmy dwa zbiory 10 liczb wylosowanych o średniej 3: Skośność < 3 Kurtoza < 10 Brak obserwacji > 3SD Brak wartości odstających set.seed(1) # polecenie ustawia generator liczb pseudolosowych na # stałą wartość, aby możliwe było # powtórzenie losowania y <- runif(10,3,6) # 10 liczb losowych x <- runif(10,3,6) # kolejne 10 losowych liczb model1 <- lm(formula = y ~ x) # obliczenie parametrów regresji liniowej summary(model1) # wydruk parametrów regresji 12/76 13/76 Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * x Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 8 degrees of freedom Multiple R-squared: 2.324e-05, Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: Dorysujemy linie regresji model1 <- lm(y~x) plot(y~x, ylim=c(1,10), xlim=c(1,10)) abline(model1) # linia regresji 14/76 15/76

3 x[11] <- 10; y[11] <- 10 # wartość wpływająca model2 <- lm(y~x); plot(y~x, ylim=c(1,10), xlim=c(1,10), pch=20) points(x[11],y[11], col="red", pch=15) # dodatkowy punkt abline(model1); abline(model2, col="red") Parametry modelu pierwszego summary(model1) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * x Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 8 degrees of freedom Multiple R-squared: 2.324e-05, Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: /76 17/76 Parametry modelu drugiego UWAGA summary(model2) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) x ** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 9 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: 14.8 on 1 and 9 DF, p-value: model1 %>% summary() %>% coefficients() %>% round(.,4) Estimate Std. Error t value Pr(> t ) (Intercept) x round(summary(model2)$coefficients,4) Estimate Std. Error t value Pr(> t ) (Intercept) x Dane są losowe a drugi model jest istotny! 18/76 19/76

4 Wartości wpływające [R,B], odstające [G] i dźwignie [O] Progi dla obserwacji odstających Wskaźnik Oznaczenie i wartość krytyczna dźwignia dfbeta lev > 2 i x + 2 N dfbeta > 2 N diffit i diffit > 3 x N ix iloraz kowariancji abs[(1 co v. r)] > 3 N i x i x reszta studentyzowana abs( r st ) > 3 standaryzowana wartość przewidywana h at > 3 i x N odległość Cook a D > 4 N 20/76 N liczba obserwacji, i x liczba predyktorów 21/76 Dystans Cook a i wielkość wpływu Graficzna diagnostyka modelu plot(model2, which=6) plot(model, which=1:6) Więcej na ten temat:?plot.lm Lista modeli obsługiwanych przez plot: methods(plot) 22/76 23/76

5 # zbior danych Anscombe data(anscombe) head(anscombe) Liniowość x1 x2 x3 x4 y1 y2 y3 y /76 plot(x1~y1, data = anscombe) lm(y1~x1,anscombe) %>% summary %>% coefficients() %>% round(.,3) Estimate Std. Error t value Pr(> t ) (Intercept) x lm(y2~x2,anscombe) %>% summary %>% coefficients() %>% round(.,3) Estimate Std. Error t value Pr(> t ) (Intercept) x lm(y3~x3,anscombe) %>% summary %>% coefficients() %>% round(.,3) Estimate Std. Error t value Pr(> t ) (Intercept) x lm(y4~x4,anscombe) %>% summary %>% coefficients() %>% round(.,3) 26/76 Estimate Std. Error t value Pr(> t ) (Intercept) x /76

6 Podsumowanie Kwadratu Anscombe a Cztery regresje a 3 złe par(mfrow=c(2,2)) #ustawienie płótna for(i in 1:4){ model1 <- lm(anscombe[,i+4] ~ anscombe[,i]) plot(anscombe[,i], anscombe[,i+4], ylab=paste0("y",i), xlab=paste0("x",i)); abline(model1)} Te same średnie dla X oraz Y Identyczne korelacje (oraz R 2 ) Taka sama zależność linowa 28/76 29/76 Analiza reszt Model regresji można opisać wzorem: Y i = β 0 + β 1 X i + ϵ i gdzie rozkład ϵ i N(0, σ 2 ) Obserwowany i-ty wynik to Y i przy znanej wartości predyktora X i Przewidywany i-ty wynik to Y i przy znanej wartości predyktora X i i wynosi: Y i = β 0 + β 1X i Zatem reszta to różnica między przewidywaną a obserwowaną wartością e i = Y i Y i Estymacja regresji polega na minimalizacji sumy pionowych odległości między obserwowanymi wynikami a linią regresji Metoda najmniejszych kwadratów minimalizuje n i= 1 e2 i, dlatego przyjmuje się, że e i jest estymatorem ϵ i. 32/76 33/76

7 Właściwości reszt Reszty względem X Oczekiwana wartość n i= 1 e i = 0 Reszty, to ten kawałek Y, który nie został wyjaśniony przez X Wykres reszt pozwala zidentyfikować słaby model 34/76 35/76 Test normalności rozkładu reszt shapiro.test(fit.c$residuals) Shapiro-Wilk normality test data: fit.c$residuals W = , p-value = Heteroskedastyczność 36/76

8 38/76 39/76 y <- dane$ciśnienie; x <- dane$wiek # test heteroskedastyczności, porównanie reszt między dwoma połowami lmtest::gqtest(y ~ x, point =.5) Goldfeld-Quandt test data: y ~ x GQ = , df1 = 18, df2 = 18, p-value = alternative hypothesis: variance increases from segment 1 to 2 Jeżeli istnieje heteroskedastyczność to parametry modelu regresji są błędne (=obciążone systematycznym błędem) Albo istnieje czynnik, który trzeba uwzględnić w modelu, albo potrzebne są transformacje zmiennej Y Transformacje 40/76

9 Pierwiastkowa Logarytmiczna najsłabsza transformacja Y = Y skuteczna, gdy wariancja reszt jest proporcjonalna do średniej warunkowej z Y ze względu na wartości zmiennych objaśniających średnia transformacja Y = lo g Y pożyteczna, gdy waraiancja reszt jest w przybliżeniu proporcjonalna do kwadratu warunkowej średniej z Y 42/76 43/76 Odwrotnościowa bardzo silna Y = 1 Y pożyteczna, gdy wariancja reszt jest w przybliżeniu proporcjonalna do czwartej potęgi warunkowej średniej z Y Transformacja Box-Cox a George Box i David Cox zaproponowali uogólnioną procedurę transformacji opartą o szacowanie wartości współczynnika λ, który pozwala transformować dane do rozkładu normalnego w zależności od zniekształcenia rozkładu orginalnego. Wartości λ oznaczaja potęgę z zakresu -5 do +5, do której powinny być podniesione dane i dla której stwierdzono najniższe odchylenie danych od rozkładu normalnego. Uniwersalność tego podejścia polega na tym, że obejmuje ono i porównuje ze sobą wyniki różnych transformacji, także zerowej. 44/76 45/76

10 Transformacje Box-Cox a λ y nazwa transformacji -2 y 2 = y2 odwrotna potęgowa -1 y 1 = 1 y odwrotna 1 y = y odwrotna pierwiastkowa 0 lo g (y) logarytmowanie, ponieważ y 0 = y 1 2 = y 1 y = y brak pierwiastkowa 2 y = y 2 potęgowa Podsumowanie modelu Ograniczeniem metody Box-Coxa jest działanie tylko na wartościach dodatnich, co może być łatwo spełnione przez dodanie stałej wartości do wszystkich obserwacji w przypadku posiadania zmiennej z wartościami ujemnymi. 46/76 Szacowanie wariancji reszt Wariancja reszt wyrażona jest wzorem 1 σ 2 = e. n 2 2 i i= 1 n y <- dane$ciśnienie; x <- dane$wiek; n <- length(y) fit <- lm(y ~ x) sqrt(sum(resid(fit)^2) / (n - 2)) # obliczone ręcznie [1] summary(fit)$sigma # dostępne w obiekcie _fit_ Regresja hierarchiczna [1] /76

11 Regresja hierarchiczna polega na wprowadzaniu do kolejnych modeli poszczególnych zmiennych wg założeń badawczych i udowodnieniu, że wprowadzenie zmiennej przynosi istotny efekt. Metody wprowadzana predyktorów: wprowadzania - wszystkie zmienne jednocześnie krokowa- w każdej iteracji dodawana jest najlepsza wg F i/lub usuwana jest najgorsza zmienna X i usuwania - usuwające zmienne wg bloku eliminacji wstecznej - usuwanie wg kryterium najmniejszej korelacji cząstkowej selekcji postępującej - dodawane wg kryterium największej korelacji cząstkowej W R realizuje się to za pomocą instrukcji step() Przykład head(swiss) Fertility Agriculture Examination Education Catholic Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy Infant.Mortality Courtelary 22.2 Delemont 22.2 Franches-Mnt 20.2 Moutier 20.3 Neuveville 20.6 Porrentruy /76 55/76 summary(lm1 <- lm(fertility ~., data = swiss)) slm1 <- step(lm1, direction = "both") Call: lm(formula = Fertility ~., data = swiss) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-07 *** Agriculture * Examination Education e-05 *** Catholic ** Infant.Mortality ** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 41 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 5 and 41 DF, p-value: 5.594e-10 Start: AIC= Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality Df Sum of Sq RSS AIC - Examination <none> Agriculture Infant.Mortality Catholic Education Step: AIC= Fertility ~ Agriculture + Education + Catholic + Infant.Mortality Df Sum of Sq RSS AIC <none> Examination Agriculture Infant.Mortality Catholic Education /76 57/76

12 summary(slm1) slm1$anova Call: lm(formula = Fertility ~ Agriculture + Education + Catholic + Infant.Mortality, data = swiss) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-08 *** Agriculture * Education e-08 *** Catholic e-05 *** Infant.Mortality ** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 42 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 4 and 42 DF, p-value: 1.717e-10 Step Df Deviance Resid. Df Resid. Dev AIC 1 NA NA Examination /76 59/76 Porównanie modeli konkurencyjnych Liniowość formula1 <- "Y ~ X1 + X2" formula2 <- "Y ~ X1 + poly(x2,2)" model <- glm(formula) summary(model) anova(model1,model2) Test Harvey a-collier a (harvtest) testuje liniowość zależności Y ~ X W analizie dopasowania krzywych pomocny jest pakiet lmtests 60/76 61/76

13 Interpretacja w zakresie obserwacji Podsumowując Sprawdzanie założeń regresji zmienna zależna jest ilościowa zmienne niezależne są ilościowe lub dwukategorialne liczba obserwacji n > 50 + k (5 15) zmienna zależna ma rozkład normalny (test K-S lub S-W) relacja niezależna - zależna jest liniowa (test Harvey-Collier) obserwacje są niezależne (test Durbina-Watsona) wariancja reszt jest homoskedastyczna (test Goldfelda-Quandta) 62/76 63/76 Graficzna interpretacja R 2 Wariancje w modelu regresji Wariancja całkowita = Wariancja regresji + Wariancja reszt n i= 1 n ( Y i Ȳ) 2 = ( Y i Ȳ) 2 + ( Y i Y i) 2 i= 1 i= 1 n Zatem możemy zdefiniować procent całkowitej wariancji modelu jako n R 2 i= 1( = Y i Ȳ) 2 n i= 1( = 1 Y i Y i) 2 n i= 1( Y i Ȳ) 2 n i= 1( Y i Ȳ) 2 64/76 65/76

14 Relacja między R 2 oraz r Co nam mówi R 2 Ponieważ A ponieważ ( Y i Ȳ) = β 1( X i X ) zatem n R 2 i= 1( = Y i Ȳ) 2 = β 2 n i= 1( X i X ) 2 = Co r(y, X n i= 1( Y i Ȳ) 2 1 n i= 1( Y ) 2 i Ȳ) 2 Zatem R 2 jest dosłownie r do kwadratu. Sd(Y) β 1 = Co r(y, X) Sd(X) R 2 jest procentem wyjaśnionej przez model wariancji zmiennej zależnej 0 R 2 1 R 2 jest kwadratem korelacji dla próby R 2 jest często nadinterpretowana jako dopasowanie modelu, ale: - Zmniejszanie liczby danych zawsze obniża R 2. - Dodawanie kolejnych predyktorów zawsze zwiększa R 2. Czasami R 2 opisuje się jako miarę dobroci dopasowania zakładając, że dopasowanie = 1 - błąd, ale jest to nadużycie pojęcia dopasowanie właściwego dla modeli strukturalnych i nie powinno się go używać w kontekście modeli regresyjnych. 66/76 67/76 Ale czy można ufać R 2? R 2 = 1 SS r SS c SS suma kwadratów c całkowita r regresji 68/76 69/76

15 R 2 nie można ufać, bo jest wrażliwe na wariancję predyktorów wyznacz_r2 <- function(war){ # zmienna zależna x <- seq(1,10,length.out = 100) # zmienna niezależna powiązana z y plus losowy błąd y < *x + rnorm(n = 100,mean = 0,sd = war) summary(lm(y ~ x))$r.squared # tutaj wyliczam R2 w modelu regresji Y ~ X } wariancje <- seq(0.5,20,length.out = 20) # seria 20-tu wariancji od 0.5 do 20 R2 <- sapply(wariancje, wyznacz_r2) # obliczam R2 dla każdej wartości wwariancji plot(r2 ~ wariancje, type="b", pch=20) 70/76 71/76 R 2 nie można ufać, bo jest wrażliwe na kształt zależności set.seed(3) x <- rexp(50,rate=0.005) y <- (x-1)^2 * runif(n = 50, min=0.8, max=1.2) r2 <- summary(lm(y ~ x))$r.squared plot(x,y, pch=20) abline(lm(y~x)) curve((x-1)^2, lty="dashed", add=t) text(50,600000,paste("r2 =",round(r2,3))) # predyktor z rozkładu wykładniczego # zmienna zależna jako funkcja kwadratowa X # plus mały błąd # rysunek punktów # linia regresji - ciągła # linia prawdziwej zależności - przerywana # wartość R2 72/76 73/76

16 R 2 nie można ufać, bo Co robić? Jak żyć? ;-) jest wrażliwe na zakres danych predyktorów Używać R 2 pred R kwadrat przewidywania x <- seq(1, 10, length.out = 100) # predyktor od 1 do 10 set.seed(3) y < *x + rnorm(n = 100, mean = 0, sd = 1) # zmienna wyjaśniana model1 <- lm(y ~ x) # model regresji summary(model1)$r.squared # wartość R2 x1 <- c(.05,.10,.39,.29,.62,.50,.45,.79,.96,.83,.99,.98) x2 <- c(.05,.15,.29,.49,.71,.82,.93,.95,.76,.85,.88,.91) y <- c(.33,.22,.22,.38,.34,.39,.56,.52,.55,.65,.67,.79) model <- lm(y ~ x1+x2) (r.squared <- summary(model)$r.squared) # R kwadrat [1] [1] x <- seq(1, 2, length.out = 100) # predyktor od 1 do 2 set.seed(3) y < *x + rnorm(n = 100, mean = 0, sd = 1) model2 <- lm(y ~ x) summary(model2)$r.squared # wartość R2 res.pred <- residuals(model)/(1-lm.influence(model)$hat) # przewidywane reszty PRESS <- sum(res.pred^2) # suma kwadratów przewidywanych reszt tss <- sum(anova(model)$'sum Sq') # suma kwadratów reszt (r.squared.pred <- 1 - (PRESS/tss)) # R kwadrat przewidywane [1] /76 [1] /76 par(mfrow=c(1,3)) plot(y~x1) plot(y~x2) plot(y~i(x1+x2)) 76/76

Regresja logistyczna. Regresja logistyczna. Przykłady DV. Wymagania

Regresja logistyczna. Regresja logistyczna. Przykłady DV. Wymagania Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV

Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej

Bardziej szczegółowo

Regresja liniowa w R Piotr J. Sobczyk

Regresja liniowa w R Piotr J. Sobczyk Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące

Bardziej szczegółowo

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Regresja ważona. Co, gdy nie ma stałej wariancji? Tu prawdziwe σ 2 =1 (dużo powtórzeń, więc wariancje są dobrze oszacowane) PAR Wykład 5 1/8

Regresja ważona. Co, gdy nie ma stałej wariancji? Tu prawdziwe σ 2 =1 (dużo powtórzeń, więc wariancje są dobrze oszacowane) PAR Wykład 5 1/8 Dobry chrześcijanin powinien wystrzegać się matematyków i tych wszystkich, którzy tworzą puste proroctwa. Istnieje niebezpieczeństwo, że matematycy zawarli przymierze z diabłem, aby zgubić duszę człowieka

Bardziej szczegółowo

Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy

Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: Eksploracja (mining) Problemy: Jedna zmienna 2000 najwi ększych

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie

Bardziej szczegółowo

Ogólny model liniowy

Ogólny model liniowy Ogólny model liniowy Twórcy Autor statystyki testowej Wyprowadził wzór na gęstość rozkładu statystyki testowej Ronald Aylmer Fisher ( 1890-1962 ) angielski genetyk George W. Snedecor (1881-1974) amerykański

Bardziej szczegółowo

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y). Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych

Bardziej szczegółowo

ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8

ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z7

Ekonometria dla IiE i MSEMat Z7 Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 4

Stanisław Cichocki. Natalia Nehrebecka. Wykład 4 Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

Ekonometria egzamin 07/03/2018

Ekonometria egzamin 07/03/2018 imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Permutacyjna metoda oceny istotności regresji

Permutacyjna metoda oceny istotności regresji Permutacyjna metoda oceny istotności regresji (bez założenia normalności) f

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy

Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: 2000 największych spółek światowych z 2004 (Forbes Magazine)

Bardziej szczegółowo

Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT. Część I: analiza regresji

Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT. Część I: analiza regresji Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT Część I: analiza regresji Krok 1. Pod adresem http://zsi.tech.us.edu.pl/~nowak/adb/eksport.txt znajdziesz zbiór danych do analizy. Zapisz plik na dysku w dowolnej

Bardziej szczegółowo

Regresja - zadania i przykłady.

Regresja - zadania i przykłady. Regresja - zadania i przykłady. W5 e0 Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu

Bardziej szczegółowo

Analiza wariancji Piotr J. Sobczyk 19 November 2016

Analiza wariancji Piotr J. Sobczyk 19 November 2016 Analiza wariancji Piotr J. Sobczyk 19 November 2016 Zacznijmy zajęcia od klasycznego przykładu czyli testu Studenta dla dwóch prób. x 1,i N(µ 1, σ 2 ), i = 1,..., n 1 x 2,i N(µ 2, σ 2 ), i = 1,..., n 2

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 1 Prosta regresja liniowa - model i estymacja parametrów. Regresja z wieloma zmiennymi - analiza, diagnostyka i interpretacja wyników. Literatura pomocnicza J. Koronacki i J. Ćwik Statystyczne systemy

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu

Bardziej szczegółowo

, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59

, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59 Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10 Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13 Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 14

Stanisław Cichocki. Natalia Nehrebecka. Wykład 14 Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Lepiej zapobiegać niż leczyć Diagnostyka regresji

Lepiej zapobiegać niż leczyć Diagnostyka regresji Anceps remedium melius quam nullum Lepiej zapobiegać niż leczyć Diagnostyka regresji Na tych zajęciach nauczymy się identyfikować zagrożenia dla naszej analizy regresji. Jednym elementem jest oczywiście

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem

Bardziej szczegółowo

Analizowane modele. Dwa modele: y = X 1 β 1 + u (1) y = X 1 β 1 + X 2 β 2 + ε (2) Będziemy analizować dwie sytuacje:

Analizowane modele. Dwa modele: y = X 1 β 1 + u (1) y = X 1 β 1 + X 2 β 2 + ε (2) Będziemy analizować dwie sytuacje: Analizowane modele Dwa modele: y = X 1 β 1 + u (1) Będziemy analizować dwie sytuacje: y = X 1 β 1 + X 2 β 2 + ε (2) zmienne pominięte: estymujemy model (1) a w rzeczywistości β 2 0 zmienne nieistotne:

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13 Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Regresja - zadania i przykłady.

Regresja - zadania i przykłady. Regresja - zadania i przykłady. W5 e0 Zadanie 1. Poniżej zamieszczono fragmenty wydruków dotyczących dopasowania modelu regresji do zmiennej ozone w oparciu o promieniowanie (radiation), oraz w oparciu

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Egzamin z ekonometrii - wersja ogólna

Egzamin z ekonometrii - wersja ogólna Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z12

Ekonometria dla IiE i MSEMat Z12 Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne

Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Diagnostyka modelu. Dowód [5.4] Dowód [ ]

Diagnostyka modelu. Dowód [5.4] Dowód [ ] Diagnostyka modelu Dowód [5.4] Dowód [5.5-5.6] Przykład > head(savings) sr pop15 pop75 dpi ddpi Australia 11.43 29.35 2.87 2329.68 2.87 Austria 12.07 23.32 4.41 1507.99 3.93 Belgium 13.17 23.80 4.43 2108.47

Bardziej szczegółowo

Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy

Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy ANALIZA PORÓWNAŃ WIELOKROTNYCH GDY WARIANCJE SĄ NIERÓWNE lsales.bim

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

(LMP-Liniowy model prawdopodobieństwa)

(LMP-Liniowy model prawdopodobieństwa) OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogólna Pytania teoretyczne

Egzamin z ekonometrii wersja ogólna Pytania teoretyczne Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo