OŚRODKI JEDNOSKŁADNIKOWE

Wielkość: px
Rozpocząć pokaz od strony:

Download "OŚRODKI JEDNOSKŁADNIKOWE"

Transkrypt

1 OŚRODKI JEDNOSKŁADNIKOWE 4. ENERGIA Energia wysęje w różnyc osaciac (n. jako energia elekryczna magneyczna cemiczna srężysości jądrowa id.) kóre są zazwyczaj bardzo od siebie odmienne KLASYFIKACJA ENERGII ABELA 4.1 Klasyfikacja energii Energia Zewnęrzna Wewnęrzna Kineyczna Rc Rc cielnego Poencjalna Oddziaływań dalekiego zasięg Oddziaływań bliskiego zasięg Energia rc energia makroskoowego rc ciała. Energia rc cielnego energia caoycznego rc jego aomów i molekł. Energia oddziaływań dalekiego zasięg energia grawiacji i energia elekromagneyczna. Energia oddziaływań bliskiego zasięg energia wiązań (energia srężysości energia cemiczna energia jądrowa). 1

2 Fizyka bdowli wykorzysje bilans energii wewnęrznej (bilans energii w osaci zredkowanej) będący odsawą wszelkiego rodzaj warianów równania rzeływ cieła. 4.. PRZEMIANY ENERGII Rozmaie osacie energii mogą legać rzemianom (konwersjom) rzy czym energia całkowia (sma energii cząskowyc różnego rodzaj) zawsze ozosaje niezmienna. Bilans energii całkowiej rzed rozoczęciem dowolnego roces i o jego zakończeni daje aki sam wynik ilościowy rzy czym w bilansie końcowym wskek sra energeycznyc część energii wysąi od osacią energii rc cielnego. Energia rc cielnego zwiększa emerarę ciała i jego ooczenia skąd lega rozroszeni w rzesrzeń w osaci romieniowania odczerwonego (cielnego). ABELA 4. Konwersje energii wewnęrznej Energia K G E W Kineyczna (K) ak ak ak Grawiacji (G) ak nie nie Elekromagneyczna (E) ak nie ak Wewnęrzna (W) ak nie ak

3 4.3. GĘSOŚĆ ENERGII WEWNĘRZNEJ Energia wewnęrzna U [J] dowolnej części ośrodka wyełniającego ewien dowolny obszar rzesrzeni jes fnkcją jej masy m czyli U U( m) du dm dv ψ gęsość masowa energii wewnęrznej [J/kg] BILANS ENERGII WEWNĘRZNEJ Moleklarne rzenoszenie energii wewnęrznej nazywamy rzewodzeniem cieła. Srmień cielny Q [W] rzeływający rzez dowolną łaszczyznę orowadzoną wewnąrz ośrodka o wekorze normalnym n jes fnkcją ola jej owierzcni A czyli Q Q( A) dq ( n)da gęsość srmienia cielnego [W/m ]. Zgodnie z założeniem FOURIERA mo ( n ) n φ wekor gęsości srmienia cielnego [W/m ]. 3

4 Γ n<0 n Ω n n>0 Rys Wekor gęsości srmienia cieła Ponieważ energia wewnęrzna odlega konwersji z energią elekromagneyczną i kineyczną zaem w ośrodk wysąią dwa źródła in σ σ e r r( D) r gęsość zewnęrznego źródła cieła (cieło wydzielane wskek olaryzacji i namagnesowania cząsek) [W/m 3 ]. r ( D) gęsość mocy narężeń wewnęrznyc (cieło wydzielane wskek okonywania oorów rzeływ maerii w ośrodk oraz jego odkszałceń n. rzy zginani ręa) [W/m 3 ]. 4

5 r n n w Ω Γ Rys. 4.. Srmienie i źródła energii wewnęrznej Podsawiając owyższe zależności oraz równania ψ do ψ ψ φ mo ψ σ e ψ σ in ψ orzymjemy różniczkowe (lokalne) równanie bilans energii wewnęrznej ( ) ( ) r r( D) zwane bilansem energii w osaci zredkowanej. Ponieważ energia wewnęrzna będąca częścią składową energii całkowiej nie msi być zacowana dlaego eż w owyższym równani wysęją jej źródła będące miarą szybkości jej rodkcji koszem energii kineycznej i elekromagneycznej. 5

6 6 Korzysając z zależności orzymjemy skąd o względnieni równania bilans masy dosajemy równanie FOURIERA-KIRCHHOFFA-NEUMANA D r r 4.4. PRAWO FOURIERA Równanie fizyczne oisjące rzewodzenie cieła w ośrodk ciągłym określa rawo FOURIERA k emerara [K] k wsółczynnik rzewodzenia cieła [W/(m K)]. Powyższe równanie dobrze oisje rzewodzenie cieła w soykanyc w zagadnieniac fizyki bdowli ermicznie izoroowyc ośrodkac ciągłyc (większość maeriałów bdowlanyc owierze ara wod-

7 na i woda) rzy emerarze jaka może wysąić w rzegrodzie bdowlanej bądź eż w jej ooczeni RÓWNANIE PRZENOSZENIA CIEPŁA Szywny rzewodnik cieła W rzyadk szywnego rzewodnika cieła (ośrodka nieodkszałcalnego) r( D) 0 i równanie FOURIERA-KIRCHHOFFA-NEUMANA rzyjmje osać r Ponieważ w akim rzyadk zaem gdzie ( ) c c c jes ciełem właściwym ośrodka rzy sałej objęości [J/(kg K)]. 7

8 Powyższe zależności oraz rawo FOURIERA ozwalają srowadzić równanie FOURIERA-KIRCHHOFFA-NEUMANA do równania rzewodzenia cieła c ( k ) r oisjącego rozkład emerary w nieodkszałcalnym ośrodk ciągłym. W rzyadk 0 owyższe równanie rzyjmie osać c ( k ) r z kórej wynika klasyczne równanie FOURIERA ( a ) r gdzie a k c jes wsółczynnikiem wyrównywania emerary [m /s]. 8

9 4.5.. Przenoszenie cieła w łynac W rzyadk łynów (cieczy i gazów) rzeczywisyc (lekic) ensor narężeń można rzedsawić w osaci ciśnienie [Pa] I ensor jednoskowy. W akim rzyadk r I S ( D) r( S D) moc narężeń izoroowyc (ciśnieniowyc) r ( S D) moc narężeń lekic (arcie wewnęrzne leka dyssyacja). W rzyadk łynów idealnyc (nielekic) r r. ( S D) 0 i w konsekwencji ( D) Powyższa zależność ozwala zaisać równanie FOURIERA-KIRCHHOFFA-NEUMANA w osaci r Wrowadzając enalię właściwą [J/kg] ( S D) r 9

10 10 w rzyadk kórej 1 1 oraz wykorzysjąc równanie bilans masy srowadzamy owyższe równanie do nasęjącej osaci: r D S r Ponieważ oraz zaem owyższe równanie można zaisać jako r β k c D S r

11 W owyższym równani c jes ciełem właściwym rzy sałym ciśnieni [J/(kg K) β ( ) wsółczynnikiem eksansji cielnej [1/K] naomias mocą komresji. β Gdyby wykorzysać ocodną maerialną o owyższe równanie miałoby bardziej króką i zwarą osać gdzie ( k ) β& r( S ) r c & D & & Z analizy jednowymiarowego laminarnego (warswowego) rzeływ łyn lekiego rzez rrę w warnkac normalnyc (emerara okojowa ciśnienie amosferyczne) wynika że moc komresji generje gradien emerary rzęd: 11

12 10-4 K/cm w rzyadk owierza rakowanego jako gaz idealny 10-8 K/cm w rzyadk wody zaś moc narężeń lekic wywołje gradien emerary rzęd: 10-6 K/cm w rzyadk owierza 10-9 K/cm w rzyadk wody. Z oszacowań yc wynika że w rzyadk roblemów rzeływ cieła związanego z makroskoowym rcem wody i owierza w rzegrodac bdowlanyc rozważane człony źródłowe możemy ominąć. W akic rzyadkac owyższe równanie redkje się do ogólnie znanej osaci c ( k ) r W rzyadk łyn w sanie bezrc 0 owyższe równanie rzyjmje osać c ( k ) r Równanie o różni się od równania rzewodzenia cieła w szywnym rzewodnik ylko ciełem właściwym c zamias c ). ( Cieła właściwe łączy nasęjący związek c c β ( κ ) 1

13 gdzie κ ( ) jes wsółczynnikiem ściśliwości [1/Pa]. W rzyadk ciał sałyc c c Naomias w rzyadk wody emerarze okojowej c 0995c Przyadki szczególne Jeżeli a cons o z owyższego równania dosajemy równanie niesalonego (niesacjonarnego) rzewodzenia cieła a r ( ) oeraor LAPLACE A. Równanie o w rosokąnym kładzie odniesienia 0 yz ma osać a y z r ( y z ) W rzyadk rzewodzenia cieła sacjonarnego (salonego w czasie) 0 i bezźródłowego r 0 równanie owyższe redkje się do równania LAPLACE A 13

14 14 z y z y 0 Jeśli rzewodzenie cieła ma miejsce w obszarze łaskim (dwwymiarowym) o w rzyadk niesacjonarnym y y a zaś w sacjonarnym y y 0 W częso soykanym rzyadk liniowym (jednowymiarowym) niesacjonarnym a naomias w sacjonarnym d d 0 Z owyższego równania wynika że rozkład emerary w rozarywanym rzyadk jes liniowy 1 C C 1C C sałe całkowania.

Głównie występuje w ośrodkach gazowych i ciekłych.

Głównie występuje w ośrodkach gazowych i ciekłych. W/g ermodynamiki - ciepło jes jednym ze sposobów ransporu energii do/z bila, zysy przepływ ciepła może wysąpić jedynie w ciałach sałych pozosających w spoczynku. Proces wymiany ciepla: przejmowanie ciepła

Bardziej szczegółowo

DYNAMIKA PŁYNÓW. Przepływ płynów Strumień płynu Płyn idealny Linie prądu Równanie ciągłości strugi Prawo Bernoulli ego Zastosowania R.C.S. i PR.B.

DYNAMIKA PŁYNÓW. Przepływ płynów Strumień płynu Płyn idealny Linie prądu Równanie ciągłości strugi Prawo Bernoulli ego Zastosowania R.C.S. i PR.B. DYNAMIKA PŁYNÓW Przeływ łynów rumień łynu Płyn idealny Linie rądu Równanie ciągłości srugi Prawo Bernoulli ego Zasosowania R.C.. i PR.B. PRZEPŁYW PŁYNÓW Przedmioem badań dynamiki łynów (hydrodynamiki i

Bardziej szczegółowo

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Pojęcia podstawowe 1

Pojęcia podstawowe 1 Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń ROK 4 Krzenięcie i zasilanie odlewów Wersja 9 Ćwicz. laboratoryjne nr 4-04-09/.05.009 BADANIE PROCESU KRZEPNIĘCIA ODLEWU W KOKILI GRUBOŚCIENNEJ PRZY MAŁEJ INTENSYWNOŚCI STYGNIĘCIA. Model rocesu krzenięcia

Bardziej szczegółowo

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości. Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te

Bardziej szczegółowo

Dyskretny proces Markowa

Dyskretny proces Markowa Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

Przejmowanie ciepła z powierzchni grzejnika płaszczyznowego

Przejmowanie ciepła z powierzchni grzejnika płaszczyznowego Przejmowanie cieła z owierzchni grzejnika łaszczyznowego Mgr inż. Tomasz Cholewa Sreszczenie: Zakład Jakości Powierza Zewnęrznego i Wewnęrznego Wydział Inżynierii Środowiska Poliechnika Lubelska.cholewa@wis.ol.lublin.l

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

LABORATORIUM Z FIZYKI TECHNICZNEJ Ć W I C Z E N I E N R 4 SPRAWDZANIE PRAWA PROMIENIOWANIA STEFANA-BOLTZMANNA

LABORATORIUM Z FIZYKI TECHNICZNEJ Ć W I C Z E N I E N R 4 SPRAWDZANIE PRAWA PROMIENIOWANIA STEFANA-BOLTZMANNA Ćwiczenie 6: Srawdzanie rawa Sefana Bolzmanna Projek Plan rozwoju Poliechniki Częsochowskiej wsółfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projeku: POKL11--59/8

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

ZEROWA ZASADA TERMODYNAMIKI

ZEROWA ZASADA TERMODYNAMIKI ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

Rozdział 5. Detekcja ciężkich jonów

Rozdział 5. Detekcja ciężkich jonów Rozdział 5 Deekcja i idenyfikacja jonów 63 Deekcja ciężkich jonów Do rejesracji jonów sosuje się klasyczne meody deekcji cząsek naładowanych. Najczęściej spoykane rodzaje deekorów o : Scynylaory (plasik)

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP.4320/81/12/13

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP.4320/81/12/13 Fizyka Klasa VII Szkoły Podsawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP.4320/81/12/13 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz

Bardziej szczegółowo

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP./43201/81/13/14

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP./43201/81/13/14 Fizyka Klasa VII Szkoły Podsawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Opinia PPP./43201/81/13/14 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z FIZYKI w klasie II gimnazjum sr. 1 4. Jak opisujemy ruch? oblicza średnią

Bardziej szczegółowo

Wymagania edukacyjne z fizyki do klasy 7. Klasyfikacja śródroczna

Wymagania edukacyjne z fizyki do klasy 7. Klasyfikacja śródroczna Wymagania edukacyjne z fizyki do klasy 7 Klasyfikacja śródroczna Ocena dopuszczająca i dosaeczna wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i masę (1.3, 4.1, 4.2)

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 7

Przedmiotowy System Oceniania Klasa 7 Fizyka Świa fizyki Klasy 7 8 Szkoła podsawowa Klasa 7 1. Wykonujemy pomiary Tema według programu 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz na co dzień mierzymy długość,

Bardziej szczegółowo

8. Zakładane osiągnięcia ucznia (Plan wynikowy)

8. Zakładane osiągnięcia ucznia (Plan wynikowy) Fizyka Świa fizyki Klasy 7 8 Szkoła podsawowa 8. Zakładane osiągnięcia ucznia (Plan wynikowy) Klasa 7 Tema lekcji 1 4 Wielkości fizyczne, kóre mierzysz na co dzień 5 6 Pomiar warości siły ciężkości 7 8

Bardziej szczegółowo

Plan wynikowy Klasa 7

Plan wynikowy Klasa 7 Plan wynikowy Klasa 7 1. Wykonujemy pomiary 1 4 Wielkości fizyczne, kóre mierzysz na co dzień 5 6 Pomiar warości siły ciężkości wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość

Bardziej szczegółowo

WYMAGANIA NA OCENY Z FIZYKI KLASA 7

WYMAGANIA NA OCENY Z FIZYKI KLASA 7 WYMAGANIA NA OCENY Z FIZYKI KLASA 7 Tema lekcji Wielkości fizyczne, kóre mierzysz na co dzień Pomiar warości siły ciężkości Ocena - dopuszczający i dosaeczny wymienia przyrządy, za pomocą kórych mierzymy

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary Plan wynikowy Klasa 7 Tema lekcji i podsawowe 1. Wykonujemy pomiary 1 4 Wielkości fizyczne, kóre mierzysz na co dzień wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i

Bardziej szczegółowo

Plan wynikowy Klasa 7

Plan wynikowy Klasa 7 Plan wynikowy Klasa 7 Nr Tema lekcji Wymagania konieczne 1 4 Wielkości fizyczne, kóre mierzysz na co dzień 5 6 Pomiar warości siły ciężkości 7 8 Wyznaczanie gęsości subsancji wymienia przyrządy, za pomocą

Bardziej szczegółowo

Wymagania z fizyki, klasa 7

Wymagania z fizyki, klasa 7 Wymagania z fizyki, klasa 7 Nr Tema lekcji Wymagania konieczne i podsawowe 1 4 Wielkości fizyczne, kóre mierzysz na co dzień 5 6 Pomiar warości siły ciężkości 7 8 Wyznaczanie gęsości subsancji 1. Wykonujemy

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Ć W I C Z E N I E N R C-5

Ć W I C Z E N I E N R C-5 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ

Bardziej szczegółowo

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się PŁYNY RZECZYWISTE Płyny rzeczywiste Przeływ laminarny Prawo tarcia Newtona Przeływ turbulentny Oór dynamiczny Prawdoodobieństwo hydrodynamiczne Liczba Reynoldsa Politechnika Oolska Oole University of Technology

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Klasa 7

Wymagania edukacyjne na poszczególne oceny Klasa 7 Wymagania edukacyjne na poszczególne oceny Klasa 7 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz na co dzień mierzymy długość, emperaurę, czas, szybkość

Bardziej szczegółowo

II.1. Zagadnienia wstępne.

II.1. Zagadnienia wstępne. II.1. Zagadnienia wsępne. Arysoeles ze Sagiry wyraźnie łączy ruch z czasem: A jes niemożliwe, żeby zaczął się albo usał ruch, gdyż jak powiedzieliśmy ruch jes wieczny, a ak samo i czas, bo czas jes albo

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE

Fizyka Klasa VII Szkoły Podstawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Fizyka Klasa VII Szkoły Podsawowej WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz na co dzień mierzymy długość,

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu

Bardziej szczegółowo

Przedmiotowy System Oceniania Klasa 7

Przedmiotowy System Oceniania Klasa 7 Klasa 7 1. Wykonujemy pomiary Tema według programu Wymagania konieczne 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz na co dzień mierzymy długość, emperaurę, czas, szybkość

Bardziej szczegółowo

Wymagania podstawowe (dostateczna)

Wymagania podstawowe (dostateczna) Klasa 7 1. Wykonujemy pomiary Tema według programu 1.1. Wielkości fizyczne, wymienia przyrządy, za pomocą kórych kóre mierzysz na co dzień mierzymy długość, emperaurę, czas, szybkość i masę mierzy długość,

Bardziej szczegółowo

DŁAWIENIE IZENTALPOWE

DŁAWIENIE IZENTALPOWE DŁAWIENIE IZENALPOWE Jeżeli r > σ to dominującymi siłami są siły rzyciągania i energia otencjalna cząstek rzyjmuje wartości ujemne. Oznacza to, że aby zwiększyć odległość omiędzy cząstkami należy zwiększyć

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Semesr I 1. Wykonujemy pomiary Tema zajęć Wielkości fizyczne, kóre

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki 1. Wykonujemy pomiary

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki 1. Wykonujemy pomiary Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki 1. Wykonujemy pomiary Tema według 1.1. Wielkości fizyczne, kóre mierzysz na co dzień 1.2. Pomiar warości siły ciężkości 1.3. Wyznaczanie

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl IX OLIMPIADA FIZYCZNA (959/960). Soień III, zadanie doświadczalne D. Źródło: Komie Główny Olimiady Fizycznej; Aniela Nowicka: Olimiady Fizyczne IX i X. PZWS, Warszawa 965 (sr. 6 69). Nazwa zadania: Działy:

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Równania różniczkowe cz astkowe rzȩdu pierwszego

Równania różniczkowe cz astkowe rzȩdu pierwszego Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz

MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz MECHANIKA PŁYNÓW Materiały omocnicze do wykładów oracował: ro. nzw. dr hab. inż. Wiesław Grzesikiewicz Warszawa aździernik - odkształcalne ciało stałe Mechanika łynów dział mechaniki materialnych ośrodków

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe

M. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe M. Corowski Podstawy Kriogeniki, wykład 4. 3. Metody uzyskiwania niskic temeratur - ciąg dalszy 3.. Dławienie izentalowe Jeżeli gaz rozręża się adiabatycznie w układzie otwartym, bez wykonania racy zewnętrznej

Bardziej szczegółowo

Promieniowanie synchrotronowe i jego zastosowania

Promieniowanie synchrotronowe i jego zastosowania Universias Jagellonica Cracoviensis Promieniowanie synchroronowe i jego zasosowania Wykład II J.J. Kołodziej Pokój: G-- IFUJ Łojasiewicza Tel.+ 664 4838 jj.kolodziej@uj.edu.pl Wykłady na WFAiS semesr leni

Bardziej szczegółowo

OPTYMALNE PROJEKTOWANIE ELEMENTÓW KONSTRUKCYJNYCH WYKONANYCH Z KOMPOZYTÓW WŁÓKNISTYCH

OPTYMALNE PROJEKTOWANIE ELEMENTÓW KONSTRUKCYJNYCH WYKONANYCH Z KOMPOZYTÓW WŁÓKNISTYCH Zeszyty Naukowe WSInf Vol 13, Nr 1, 2014 Elżbieta Radaszewska, Jan Turant Politechnika Łódzka Katedra Mechaniki i Informatyki Technicznej email: elzbieta.radaszewska@.lodz.l, jan.turant@.lodz.l OPTYMALNE

Bardziej szczegółowo

[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny

[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny Cyfrowe rzewarzanie sygnałów --. Sygnały i sysemy dyskrene (LTI, SLS).. Sysemy LTI Pojęcie sysemy LTI oznacza liniowe sysemy niezmienne w czasie (ang. Linear Time - Invarian ). W lieraurze olskiej częściej

Bardziej szczegółowo

Promieniowanie synchrotronowe i jego zastosowania

Promieniowanie synchrotronowe i jego zastosowania Universias Jagellonica Cracoviensis Promieniowanie synchroronowe i jego zasosowania Wykład II J.J. Kołodziej Pokój: G--11, IFUJ Łojasiewicza 11 Tel.+1 664 4838 jj.kolodziej@uj.edu.pl Wykłady na WFAiS,

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.

Bardziej szczegółowo

Wymagania edukacyjne fizyka klasa VII

Wymagania edukacyjne fizyka klasa VII Wymagania edukacyjne fizyka klasa VII ocena dopuszczająca wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i masę mierzy długość, emperaurę, czas, szybkość i masę wymienia

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSYUU ECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI POLIECHNIKI ŚLĄSKIEJ INSRUKCJA LABORAORYJNA emat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA DLA KONWEKCJI WYMUSZONEJ W RURZE

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

Ć W I C Z E N I E N R C-6

Ć W I C Z E N I E N R C-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-6 WYZNACZANIE SPRAWNOŚCI CIEPLNEJ GRZEJNIKA ELEKTRYCZNEGO

Bardziej szczegółowo

3. Prąd elektryczny. 3.1Prąd stały. 3.2Równanie ciągłości, 3.3Prawo Ohma. 3.4Prawa Kirchhoffa. 3.5Łączenie oporów

3. Prąd elektryczny. 3.1Prąd stały. 3.2Równanie ciągłości, 3.3Prawo Ohma. 3.4Prawa Kirchhoffa. 3.5Łączenie oporów 3 Prą elekryczny 3Prą sały 3ównanie ciągłości, 33Prawo Ohma 34Prawa Kirchhoffa 35Łączenie oporów 45 3Prą sały Prą elekryczny o uporząkowany ruch nośników Prą może płynąć w przewonikach, ale akże elekroliach

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Płytowe wymienniki ciepła. 1. Wstęp

Płytowe wymienniki ciepła. 1. Wstęp Płytowe wymienniki cieła. Wstę Wymienniki łytowe zbudowane są z rostokątnych łyt o secjalnie wytłaczanej owierzchni, oddzielonych od siebie uszczelkami. Płyty są umieszczane w secjalnej ramie, gdzie są

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM ROK SZKOLNY: 2016/2017 Wymagania na ocenę dopuszczająca: wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 5-37 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 32 321 Fax:

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

I. KINEMATYKA, DYNAMIKA, ENERGIA

I. KINEMATYKA, DYNAMIKA, ENERGIA iagoras.d.l I. KINEMATYKA, DYNAMIKA, ENERGIA KINEMATYKA: Ruch i soczynek są względne w zależności od wyboru układu odniesienia ciało w ym samym momencie może znajdować się w ruchu lub być w soczynku (n.

Bardziej szczegółowo

I. KINEMATYKA, DYNAMIKA, ENERGIA

I. KINEMATYKA, DYNAMIKA, ENERGIA iagoras.d.l I. KINEMATYKA, DYNAMIKA, ENERGIA KINEMATYKA: Położenie ciała w rzesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i soczynek są

Bardziej szczegółowo