Grawitacja po feynmanowsku. Lesław Rachwał (IFT UW) Wykład SKFiz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grawitacja po feynmanowsku. Lesław Rachwał (IFT UW) Wykład SKFiz"

Transkrypt

1 Grawitacja po feynmanowsku Lesław Rachwał (IFT UW) Wykład SKFiz

2 Czym jest grawitacja? - jedno z oddziaływań fundamentalnych - niepodobne do innych znanych, ale nie jest wyjątkowe - niezmiernie słabe w fizyce wysokich energii ( G N =6, GeV ) - klasycznie opisywane relatywistyczną teorią pola

3 Trzy drogi do klasycznej grawitacji Zasada równoważności i lokalne układy inercjalne Podejście Feynmana Teoria cechowania grupy Poincare'go + brak torsji

4 Grawitacja Newtona w 3 wymiarach przestrzennych (oddziaływanie kontaktowe): (prawo powszechnego ciążenia) M m r = G N F (~ prawo Coulomba) 3 r Pole grawitacyjne newtonowskie (lokalnie): =m = r =4 G N r F (równanie Poissona) Pole globalnie: S d A= g g = 4 G N V dv (~ prawo Gaussa Opis teleologiczny (wariacje całki działania ): S g = V 1 d r 4 G N 3 Teoria liniowa zasada superpozycji Na podstawie R.F. Charakter praw fizycznych

5 Ruch masy próbnej w potencjale newtonowskim Równania ruchu Newtona: r = = Zasada wariacyjna: A = r,0 [ ] 0 d x 1 dx dx S m= d 1 S el = d [ x e A x ] niezależny od czasu rozkład masy r, statyczna przestrzeń, absolutny czas newtonowski Co jest więc tu nieścisłe?

6 Pierwsza przyczyna relatywistyczne pole grawitacyjne Równoważność masa bezwładna-energia: E=m in c Zasada równoważnosći mas bezwładnych i grawitacyjnych: min =m gr1=mgr Statyczne słabe pole newtonowskie ma gęstość energii! 1 w= 8 G N 1 w= 0 E W elektrostatyce Pole grawitacyjne jest więc samo swoim źródłem! (samooddziaływanie, teoria nieliniowa) 00 Klasyczne pole fizyczne relatywistycznie: w=t Źródłem tensor energii-pędu sprzężenie do zachowanego prądu energii-pędu T w gr = c T =0

7 Tensorowe pole grawitacyjne W lagranżjanie oddziaływania: L el = e A j = 8 G N L gr = T h Pole grawitacyjne relatywistycznie opisuje symetryczny tensor hµν(x) (uogólnienie potencjału wektorowego Aµ(x) ) ℏ=c= 0 =1 W płaskiej czasoprzestrzeni Minkowskiego hµν pole o spinie W części kinetycznej dla hµν(x) Źródło pola grawitacyjnego: Tensor energii-pędu układu Działanie dla całego układu: 1,, L kin = h h, h, h T =T mat T gr S=Sgr Smat S int Jak wygląda dokładne Sint (z uwzględnieniem pola grawitacyjnego)?

8 Budowa teorii samouzgodnionej h = T Równania pola grawitacyjnego dokładne: h = T k 1 a =a a 0-wy krok: T 0 =T mat T =T mat T T A = j (CED) = T h T gr h 1-y krok: 1 1 gr 1 gr 1 h, =a h = T, 1 h =O h 1 T itd. Kolejne rzędy w szeregu rozwinięcia w małym parametrze λ Teoria uzgadnia się (spójność równań ruchu, pola i zasady zachowania energii i pędu) w kolejnych potęgach λ T 1 =0 O gr

9 Znana teoria pola samouzgodnionego Elektrostatyka liniowego jednorodnego izotropowego dielektryka w kondensatorze płaskim: Q 0= D D = = =const o E S 0 E = E 0= 0 Procedura iteracyjna liniowa w każdym kroku (i >0) : i i i 1 P = 0 E i i E =E E d 0 P i E d = 0 Zbieżna gdy χ < 1, a rozwiązanie samouzgodnione dla χ > -1 (kontynuacja analityczna), równania liniowe, gdzie źródło? P = 0 E E= E0 1 = P Ed = 0 E D 0 = 0 r E = E0 Ed E = 0 r E 1 = E0 r=1

10 Zachowanie prądów Elektrodynamika (teoria liniowa, cechowanie abelowe): j j =0 D = iq A A A' = A Teoria Yanga-Millsa (cechowanie nieabelowe, samooddziaływanie): j =j mat j YM j =0 D= iq A A A' = A fa D j mat =0 Grawitacja (nieliniowa, samooddziaływanie, infinit. cechowanie): mat gr T =0 T =T T h h' =h D T mat =T mat ; =0 poch. kowariantna [, ]= h, h, h, k x = h x k D T mat =k T mat [, ] T na podstawie r-ń mat ruchu

11 Teoria zgodna we wszystkich rzędach Samozgodny tensor energii pola grawitacyjnego χµν(x) Efekt nieliniowy T mat, =0 T, =0 Pomaga zasada wariacyjna, funkcjonał F [hµν] S F =F F F 3 4 F = T mat h Kowariantne grawitacyjnie zachowanie źródeł: tensora energii-pędu materii k T mat, x [, ] T mat x =0 funkcjonalne równanie różniczkowe: k F h T mat ; F [, ] =0 h, =0

12 Szukamy rozwiązania Warunek ujednoznaczniające F [hµν]: co najwyżej drugie pochodne hµν(x), równoważny problem: niezmienniczość F w rzędzie ξ pod wpływem transformacji infinitezymalnych: x =x ' Transformacja pola kµν(x) przy infinit. przesunięciu k ' =k k, k Oznaczenia: 1 k = k, k, k =det k G =k [, ] Transformacje gradientów hµν,σ(x), [µν,σ](x), Gτµν(x) h ', =h, h,, h,, h, h, h,, h, [, ] '=[, ] [, ], [, ], [, ], [, ], h, G' =G R G =G,, G G,, G G G, G G, G,

13 Wreszcie równania Einsteina! Transformacje tensora Rτµνσ(x): R' =R, R, R F = dv 4, R, R R, 1 F = dv 4 k R k Dwa niezmienniki: 0 k Zwariujmy F względem hµν(x) F 1 k R 1 1 = = k R k R h x h R =R Równania OTW: 1 k R k R = T R=k R 1 R k R = T T ;=0 T ; =0 T =

14 Widok z góry Zbudowaliśmy spójną relatywistyczną teorię pola grawitacyjnego, nieliniową, samouzgodnioną, bez rozwijania w potęgach λ 1 opisaną działaniem Einsteina Hilberta: 4 S ' gr = d x R k sprzężoną do zachowanego kowariantnie grawitacyjnie źródła w postaci tensora energii-pędu samej materii T =0 S int = d 4 x T mat k x mat ; S=S mat S ' gr S int O istnieniu pola grawitacyjnego decyduje niezerowość tensora pola 1 Rµν(x), (tam gdzie materia) R = T k k T analogiem cechowalnego potencjału hµν(x) Pole grawitacyjne hµν(x) powstało na płaskiej czasoprzestrzeni Minkowskiego, ale czy dalej na niej żyje, czy (t,x,y,z) są najbardziej naturalnymi współrzędnymi opisującymi procesy fizyczne w obecności pola grawitacyjnego? d =dt dx dy dz

15 Przyczyna druga ruch relatywistyczny Ruch p. materialnego swobodny (bez żadnych oddziaływań): S 0 = d = dz dz = dz dz d z Ruch ładunku punktowego w elektrodynamice: m dz S=S0 S int = d dz j x =e d z x 4 Ruch grawitującej masy: dz dz e d A z d z dz m =ef z dz 4 T x =m d x z S int = d x T x h x = m d z z h z 4 dz m S=S0 S int = d z z m d z z h z = 1 = m d k z z z [k x = h x ]

16 Równania ruchu mas w grawitacji d k z h, z z =0 k z = 1 h, h, z z [, ]= h, h, h, k z = [, ] z z Zróżniczkujmy po parametrze α: k z z = k z z h, z z z =0 Stałość wzdłuż trajektorii masy próbnej: k z z =const ds =1 ds=d sanalog czasu własnego w obecności pola grawitacyjnego z naturalna czteroprędkość kinetyczna unormowanie: k z z =1 Naturalny parametr s: ds k z z =

17 Teoria zgodna we wszystkich rzędach Samozgodny tensor energii pola grawitacyjnego χµν Efekt nieliniowy T mat =0, Pomaga zasada wariacyjna, funkcjonał F[hµν] F = T h F =F F F 3 4, T =0 4 Najprostszy tensor energii pędu: T mat x =m ds x z s z z punktu materialnego bez spinu 4 Gęstość przyspieszenia: T x = m ds x z s z mat, Przyspieszenie tylko na skutek grawitacji: k T mat, x [, ] T mat x =0 k z = [, ] z z k Niekowariantne grawitacyjnie zachowanie źródeł: tensora energii-pędu T mat ; F h =0 F [, ] =0 h,

18 Naturalna skala czasu nie tylko gradienty ale i same d k z h, z z =0 potencjały grawitacyjne hµν(x) Załóżmy, że w pewnym obszarze czasoprzestrzeni: h00 = h0i =hij=0 k 00 =1 k ij=0 k ii= 1 1 Dla masy próbnej (s =0): S= m d k z z z = d m = d [ 1 t x y z ] Podstawienie naturalnej skali czasu m S= d [ t ' x y z ] t' =t 1 lokalnie dla ustalonego r tylko grawitująca masa próbna (nic się nie dzieje), wprowadźmy inne oddziaływania w lagranżjanie układu (materia + oddziaływania) L nongr T = L nongr, Tensor energii-pędu pól materii: L, =L nongr h T,

19 Grawitacyjna dylatacja czasu L nongr L L= 1 L,t H =T = L nongr nongr,t,t Podstawienie t' = 1 t sprowadza działanie w obecności pola grawitacyjnego 00,t S gr = d x 1 dtl nongr,,i, 1 1 / 3 1 / 1 / dt' = 1 dt 1 dt do postaci, gdy pola grawitacyjnego brak!,t ' = 1,t 1 /,t = gr 1 S gr = d x dt' L nongr,,i,,t' 3 Naturalna współrzędna czasu t'(t) opisuje dylatację czasu w statycznym potencjale grawitacyjnym, reszta fizyki opisywanej Lnongr pozostaje niezmieniona. Rozumowanie Einsteina z fotonami (energia skalą czasu) Grawitacja sprzęga się do zawartości energetycznej ciał E E pot gh nie ma perpetuum mobile = 0 1 c E =ℏ

20 Transformacje (nie)współrzędnych Oszustwo: nie było w ogóle grawitacji! h = r Dla słabych statycznych pól: Można było wykonać transformację współrzędnych (czasu t'(t) ) (mamy taką swobodę) i schowaliśmy grawitację, dla odpowiedniego hµν(x) prawdziwej grawitacji ( R x 0 ) nie da się ukryć! Ale użyjmy transformacji niewspółrzędnych, różniczek: x a x (macierz Jacobiego) x' by zamienić kµν(x) formalnie w ηµν w lagranżjanie oddziaływania z =a x dx polem grawitacyjnym, ale wtedy nasza przestrzeń płaska Minkowskiego (na której żyły pola) dostanie nową metrykę, bo transformacja różniczek: dx ds =d =g Okazuje się, że g x ' =a a =k x Wprowadzamy wreszcie współrzędne na tej rozmaitości: dx ' =

21 Dalsze wnioski Oderwaliśmy się od czasoprzestrzeni Minkowskiego, bo pomiary i procesy w niej były opisane w nienaturalnych współrzędnych (t,x,y,z) (przyczyną wszechobecne oddziaływanie grawitacyjne) Czasoprzestrzeń Minkowskiego nie była dostępna fizycznie! Przykład: gorąca płyta Robertsona: ds ' = 1 T x, y T 0 dx dy W czasoprzestrzeni wszystkie nasze linijki i zegarki są rozszerzalne cieplnie - oddziaływują z polem grawitacyjnym, nie ma absolutnej czasoprzestrzeni, jest względność układów współrzędnych, g x ' =e x ' e x ' Otrzymaliśmy nową rozmaitość czasoprzestrzenną z metryką gµν(x') bez oddziaływań grawitacyjnych, na niej znów możemy dokonywać transformacji współrzędnych (ale tylko nich), lagranżjany są kowariantne geometrycznie (zakrzywiona rozmaitość) ale już nie grawitacyjnie, element objętości k = g

22 Standardowe podejście OTW Czasoprzestrzeń pseudoriemannowską rozmaitością różniczkową E, g Przestrzeń styczna w punkcie lokalny układ inercjalny Swoboda dowolnych transformacji współrzędnych Równania Einsteina 1 R g R =8 G N T x x' Istotne efekty, gdy R x 0 czasoprzestrzeń Ricci-zakrzywiona nie można dyfeomorficznie wypłaszczyć 1 g = g Formalizm geometryczny: d =g dx dx czas własny: A; =A, A pochodne kowariantne: =g, współczynniki Christoffela: ruch po geodezyjnych: Du du = u u =0 R x ' tensor krzywizny: dynamiczna czasoprzestrzeń, brak pola gr. D d [ ]

23 Geometryczne podejście (Jedno z wielu możliwych sposobów opisu grawitacji) Geometrii różniczkowej potrzebujemy już do: opisu w krzywoliniowych układach współrzędnych w przestrzeni Euklidesa i w nieinercjalnych w płaskiej Minkowskiego g 0 R =0 teorii pola na zakrzywionych rozmaitościach: (elektrodynamika w falowodzie) F ; =j opisu gorących płyt (współrzędne absolutne i fizyczne) R 0 R 0 R =0 F [, ]=0 R 0 opisu teorii cechowania (Ricci zakrzywienie w wewnętrznych i zewnętrznych (grawitacja) polowych stopniach swobody). Ale możliwe także inne sprzężenia do grawitacji (nieminimalne): - teoria Bransa-Dickego, - teoria niedynamicznego Ricci-zakrzywienia (jak niedynamiczna topologia czasoprzestrzeni) - sprzężenia z wyższymi pochodnymi i potęgami skalara Ricciego R

24 Nierelatywistyczna grawitacja Newtona Nawet, gdy statyczny rozkład gęstości masy-energii r Nierelatywistyczny ruch v 1 na płaskiej przestrzeni z oddziaływaniem newtonowskim = z = albo ruch efektywnie swobodny z k z z =1 d 0 =dt d r k 00=1 k ij=0 k ii 1 d 1 dt d r Naturalna skala czasu procesów fizycznych: lokalnie dla ustalonego wektora położenia r dt' = 1 r dt Dla wolnych ruchów przestrzeń jest płaska, ale naturalny czas t' jest wewnętrznie wykrzywiony i różnie płynie w różnych miejscach r, ale tak by była zachowana całkowita energia grawitującej masy 1 E=E pot E kin =m m r =const

25 Relatywistyczny ruch w słabym polu Płaska czasoprzestrzeń Minkowskiego ze słabym polem grawitacyjnym (linearyzacja równań ruchu) k z = [, ] z z w pewnym ustalonym układzie inercjalnym h 1 0 czas własny Minkowskiego:d równanie ruchu masy próbnej: h dz dz d =1 d 0 d 0 = d z d z d =k d z d z k z = [, ] z z 00 T = r [ t x j, t ]=[ t t, x j ]= j h = r Czteroprędkość Minkowskiego i kinetyczna : d z u0 = d 0 dz u = d u = 1 h z z u 0 Równania ruchu we współrzędnych płaskich (Minkowskiego): 0 d u0 0 0 =u 0 u 0 u0 3 d 0 d u0 d 0 1 = u 0 1 u0 u 0 u problemy z zachowaniem energii relatywistycznej w ruchu, siła Newtona oraz część równoległa do prędkości (nie jak u Lorentza)

26 Wady i zalety teoriopolowej grawitacji - skomplikowane powiązanie z geometrią czasoprzestrzeni, - początkowe wyróżnianie przestrzeni Minkowskiego jako tła w rachunku perturbacyjnym + grawitacja jako oddziaływanie ze swoim polem, możliwość unifikacji z innymi oddziaływaniami, + obrazek kwantowy oddziaływań przez wymianę cząstek, ruch nieswobodny w polu grawitacyjnym, + łatwe przejście do rachunku perturbacyjnego, kwantowanie zlinearyzowanej teorii grawitacji (pomysł Feynmana), + interpretacja wielkości zachowanych w ruchach i sprzężeń, + proste przejście do teorii supergrawitacji i teorii strun, + niezależność od wyboru układu współrzędnych jest wbudowana, + możliwe oparcie na niezmienniczości względem cechowania, + podobieństwo do innych teorii pola (skalarnych, wektorowych), + inna wersja tej samej fizyki grawitacyjnej,

27 Co jeszcze można tu zrozumieć? - Rozwiązania statyczne i sferycznie symetryczne lub płaskie ( kondensator grawitacyjny) - Ich powiązanie ze standardowymi rozwiązaniami OTW Schwarzschild a Flamm, - problem energii i pędu w ruchu relatywistycznym, a wybór obserwatora, - ujednoznacznienie sprzężeń z innymi polami, kwantowa zasada równoważności - kwantowanie w zakresie dwu i więcej pętli

28 Literatura R.P. Feynman, F. Morinigo, W. Wagner Feynmana wykłady z grawitacji, Prószyński i S-ka 007 (odnośniki do artykułów Gupty, Desera, Kraichnana, Walda, Boulware'a) S. Weinberg Gravitation and Cosmology, John Wiley&Sons 197 B. Schutz Wstęp do ogólnej teorii względności, PWN 1995 C. Misner, K. Thorne Gravitation, Freeman&Co. 1973

29 Podziękowania: konsultacja: - prof. B. Grządkowski (Particles&Gravity I) - dyskusje: Łukasz Rudnicki Adrian Lewandowski - słuchaczom (za wytrwałość :-)) Dziękuję za uwagę!

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19 Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja Wszechświat Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja Geometria w 2D Poszukujemy opisu jednorodnej i izotropowej przestrzeni. Na razie

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Podstawy Fizyki Współczesnej I. Blok I

Podstawy Fizyki Współczesnej I. Blok I Podstawy Fizyki Współczesnej I Podsumowanie wykładu (17.06.2008) Uwaga: zagadnienia oznaczone gwiazdką są nieco bardziej złożone i na ocenę dostateczną jest wymagana jedynie ich pobieżna znajomość. Zadania

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

Elektrodynamika #

Elektrodynamika # Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej

Bardziej szczegółowo

Wstęp do chromodynamiki kwantowej

Wstęp do chromodynamiki kwantowej Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica

Bardziej szczegółowo

Geometria Struny Kosmicznej

Geometria Struny Kosmicznej Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje. 1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Zagadnienia na egzamin ustny:

Zagadnienia na egzamin ustny: Zagadnienia na egzamin ustny: Wstęp 1. Wielkości fizyczne, ich pomiar i podział. 2. Układ SI i jednostki podstawowe. 3. Oddziaływania fundamentalne. 4. Cząstki elementarne, antycząstki, cząstki trwałe.

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Ogólna teoria względności Ogólna Teoria Względności Ogólna Teoria Względności opisuje grawitację jako zakrzywienie czasoprzestrzeni. 1915

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: GEOMETRIA I TOPOLOGIA RÓŻNICZKOWA Nazwa w języku angielskim: DIFFERENTIAL GEOMETRY AND TOPOLOGY Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

V.6 Pęd i energia przy prędkościach bliskich c

V.6 Pęd i energia przy prędkościach bliskich c r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Podstawy fizyki wykład 9

Podstawy fizyki wykład 9 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Z-ID-106. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.

Z-ID-106. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-106 Kod modułu Nazwa modułu Fizyka I Nazwa modułu w języku angielskim Physics I Obowiązuje od roku akademickiego 2018/2019 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

ver teoria względności

ver teoria względności ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

OD MODELU STANDARDOWEGO DO M-TEORII. modele teoriopolowe. elementarnych.

OD MODELU STANDARDOWEGO DO M-TEORII. modele teoriopolowe. elementarnych. J. Lukierski Gdańsk 09. 2003 OD MODELU STANDARDOWEGO DO M-TEORII 1859 1925 1. Podstawowe relatywistyczne modele teoriopolowe. 1968 1971 2. Model standardowy teorii cząstek elementarnych. 1921 1925 3. Pierwsze

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Wykład 2 Mechanika Newtona

Wykład 2 Mechanika Newtona Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

Przeszłość i perspektywy protofizyki

Przeszłość i perspektywy protofizyki Jan Czerniawski Przeszłość i perspektywy protofizyki Koncepcje protofizyki: dział protonauki (przednaukowa refleksja poprzedzająca powstanie dojrzałej postaci fizyki lub teorii fizykalnej) 2 Koncepcje

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Czarna dziura Schwarzschilda

Czarna dziura Schwarzschilda Czarna dziura Schwarzschilda Mateusz Szczygieł Wydział Fizyki Uniwersytet Warszawski 19 listopada 2018 1 / 32 Plan prezentacji 1. Sferycznie symetryczne, statyczne rozwiązanie równań Einsteina. 2. Przesunięcie

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Temat XXXIII. Szczególna Teoria Względności

Temat XXXIII. Szczególna Teoria Względności Temat XXXIII Szczególna Teoria Względności Metoda radiolokacyjna Niech w K znajduje się urządzenie nadawcze o okresie T, mierzonym w układzie K Niech K oddala się od K z prędkością v wzdłuż osi x i rejestruje

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Symetrie w matematyce i fizyce

Symetrie w matematyce i fizyce w matematyce i fizyce Katedra Metod Matematycznych Fizyki Wydział Fizyki, Uniwersytet Warszawski Konwersatorium Wydziału Matematyki Warszawa, 27.02.2009 w matematyce to automorfizmy struktury Zbiór

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych

Bardziej szczegółowo

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis

Bardziej szczegółowo

Elementy elektrodynamiki klasycznej S XX

Elementy elektrodynamiki klasycznej S XX kierunek studiów: FIZYKA specjalność: FIZYKA s I WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Elementy elektrodynamiki klasycznej S XX Formy zajęć wykład konwersatorium seminarium

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 6 stycznia 014 1 Różniczkowanie pól i form 1.1 Pochodna kowariantna Zobaczmy jak we współrzędnych wyglądać będzie równanie różniczkowe

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Holograficzna kosmologia

Holograficzna kosmologia Holograficzna kosmologia Adam Bzowski praca pod kierunkiem prof. Kostasa Skenderisa we współpracy z dr. Paulem McFaddenem Motywacje AdS ds 2 = +dr 2 + e 2r/α dx 2 ds 2 = dt 2 + e 2Ht dx 2 kosmologiczne

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet Wykład 9 3.5.4.1 Prawa Keplera 3.5.4. Wyznaczenie stałej grawitacji 3.5.4.3 Równania opisujące ruch planet 008-11-01 Reinhard Kulessa 1 3.5.4.1 Prawa Keplera W roku 140 n.e. Claudius Ptolemeus zaproponował

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.1-WM-MiBM-P-09_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn / Automatyzacja i organizacja procesów

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy. W pierwszej części są przedstawione podstawowe wiadomości z mechaniki, nauki o cieple, elektryczności i magnetyzmu oraz optyki. Podano także przykłady zjawisk relatywistycznych, a na końcu książki zamieszczono

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

Elektrodynamika cząstek o spinie 1/2

Elektrodynamika cząstek o spinie 1/2 Elektrodynamika cząstek o spinie 1/2 Dodatkowa gama^0, aby mieć odpowiedniość z oddziaływaniem nierelatywistycznym dla składowych, gdy A^mu=A^0 Tak powstają tzw. Reguły Feynmana Przykłady Spiny Spiny s,s'

Bardziej szczegółowo

Czy da się zastosować teorię względności do celów praktycznych?

Czy da się zastosować teorię względności do celów praktycznych? Czy da się zastosować teorię względności do celów praktycznych? Witold Chmielowiec Centrum Fizyki Teoretycznej PAN IX Festiwal Nauki 24 września 2005 Mapa Ogólna Teoria Względności Szczególna Teoria Względności

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Zasady względności w fizyce

Zasady względności w fizyce Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW. 5-6 maja 2017 r.

Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW. 5-6 maja 2017 r. Studencka Konferencja Fizyki Teoretycznej i Matematycznej SKFiz UW 5-6 maja 2017 r. Rada Naukowa: dr Javier de Lucas Araujo, KMMF FUW dr hab. Katarzyna Grabowska, KMMF FUW dr hab. Piotr Sołtan, KMMF FUW

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Fizyka. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu Fiz010WMATBUD_pNadGen1D5JT Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska Inżynieria środowiska

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I WYDZIAŁ MECHANICZNY (w j. angielskim) Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim FIZYKA OGÓLNA Nazwa w języku angielskim GENERAL PHYSICS Kierunek studiów (jeśli dotyczy) MiBM Specjalność

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo