Przewodnik do ćwiczeń ze statystyki
|
|
- Ksawery Janiszewski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Przewodk do ćwczeń ze tatytyk Podtawowe defcje Próbka loowa, tatytycza Próbką loową jet ograczoy zbór oberwacj dokoay a pewej hpotetyczej lub realej zborowośc zwaej populacją. Waże jet, że oberwacje ą ezależe wzytke mają jedakową zaę wytąpea. Przy loowym wyborze daych z populacj, wartośc w poblżu średej powy pojawać ę częścej. Dokładość Im wękza dokładość, tym mejza różca wytępuje mędzy wartoścą prawdzwą średą wartoścą merzoą. W praktyce wartośc prawdzwej częto e zamy. Precyzja Im blżej względem ebe położoe ą wyk oberwacj, tym wękza jet precyzja pomarów (ozaczeń). Marą precyzj jet waracja lub odchylee tadardowe. Im mejza jet waracja tym bardzej precyzyje ą wyk aaltycze. precyzja dokładość Rozkład ormaly Najważejzym rozkładem w tatytyce jet rozkład ormaly Gaua-Laplace a. Jego fukcja gętośc prawdopodobeńtwa określoa dla wzytkch rzeczywtych wartośc wyraża ę wzorem: Fukcja rozkładu prawdopodobeńtwa fukcja p() określoa a pewym zborze X, taka, że X PX p p cągłej. p oraz dla zmeej loowej kokowej oraz f dla zmeej loowej Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa
2 f M e M ozacza wartość oczekwaą zmeej - to odchylee tadardowe zmeej. Grafcza prezetacja reguły 3σ Jedym z ważych twerdzeń opartym a założeu o rozkładze ormalym zmeej X jet tzw. reguła trzech gm. Mów oa, że realzacje zmeej loowej e będą ę różły ( plu a mu) od wartośc oczekwaej węcej ażel o trzy odchylea tadardowe, co opuje rówae: P M 3 X M Geerowae lczb loowych o zadaych rozkładach możlwe jet w Ecelu dzęk arzędzu aalzy daych Geerowae lczb peudoloowych. Podobe jak Htogram 3 (arzędze umożlwające grafcze przedtawee rozkładów), Statytyka opowa, Próbkowae e ależą do paketu Aaly Toolpak z dodatków Ecela. (patrz: zadaa do rozwązaa). Oblczae ektórych parametrów dla daych populacj lub próby op fukcj dotępych w programe Ecel: (Wtaw->Fukcje->Statytycze) Średa arytmetycza próbk 4 ŚREDNIA(zakre) Zmea loowa fukcja określoa a zborze zdarzeń elemetarych, przyporządkowująca każdemu zdarzeu elemetaremu pewą lczbę. Zmee loowe ozaczamy zazwyczaj dużym lteram X, Y, Z 3 Htogram grafcza metoda przedtawaa rozkładu zmeej loowej, czyl wykre, a którym prawdopodobeńtwa p k przedtawoe ą jako pola protokątów. 4 Na podtawe wartośc średej próbk wokujemy o wartośc średej populacj wartośc prawdzwej. W zwązku z powzechym wytępowaem błędów loowych wartość średej próbk praktycze e może być rówa wartośc prawdzwej. Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa
3 Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 3 Waracja 5 z próby WARIANCJA(zakre) Iy zap Waracja dla całej populacj 6 WARIANCJA.POPUL(zakre) Iy zap (wartość jet zaa) μ Odchylee tadardowe dla próby ODCH.STANDARDOWE(zakre) Iy zap Odchylee tadardowe dla populacj ODCH.STANDARD.POPUL(zakre) Iy zap (wartość jet zaa) μ Odchylee średe d ODCH.ŚREDNIE(zakre) 5 Waracja jet marą rozprozea wyków czy też precyzj. W zależośc od tego czy mamy do czyea z populacją, czy próbką. Warto zwrócć uwagę a fakt, że ze wzrotem różca pomędzy dwoma welkoścam mu zakać. 6 Populacja zbór elemetów, zborowość tatytycza, której pewe cechy ą badae za pomocą arzędz metod tatytyczych.
4 Odchylee kwadratowe, to aczej uma kwadratów odchyleń daych puktów od średej arytmetyczej z próby. d ODCH.KWADRATOWE(zakre) Błąd tadardowy (wartośc średej) S E =ODCH.STANDARDOWE(zakre)/PIERWIASTEK() Wyzukwae elemetu o ajwękzej ajmejzej wartośc MAX(zakre) MIN(zakre) Oblczae krotośc wytępowaa elemetów CZĘSTOŚĆ(tabela dae, tabela przedzały) Oblczee lośc daych w zborze ILE.LICZB(zakre) Oblczee elemetu wytępującego ajczęścej (mody, modalej, domaty) WYST.NAJCZĘŚCIEJ(zakre) Oblczae meday MEDIANA(zakre) Geerowae fukcj rozkładu ormalego ROZKŁAD.NORMALNY(zmea, średa, odch.tad, fukcja) gdze fukcja = 0, dla fukcj gętośc, dla dytrybuaty oblczoa fukcja rozkładu ormalego dla 0, 3,3 zotała umezczoa w komórkach B:B6 atępująco: {=ROZKŁAD.NORMALNY(A:A6;0;;0)} Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 4
5 Przedzały ufośc Ry. 5. Ilutracja P X Z / Są to przedzały, w których ezay parametr zajdze ę z zadawalającym prawdopodobeńtwem. Wraz ze wzrotem pozomu ufośc 7 zwękza ę rozpętość przedzału ufośc. Prawdopodobeńtwo zwązae z przedzałam ufośc azywa ę pozomem ufośc. Jet oo podawae w jedej z dwóch form: p lub p, gdze to pozom totośc (ryzyko błędu) Najczęścej określaym pozomem ufośc jet pozom dla (5%). Natomat z teoretyczego puktu wdzea pozom ufośc może być dowoly. Im mejze jet, tym przedzał ufośc będze wękzy. Spoób określaa przedzału ufośc zależy od welu czyków. Należą do ch rodzaj rozkładu, zae ezae parametry rozkładu lczebość próby. Model I W programe Ecel jet tylko jeda fukcja dotycząca określaa przedzału ufośc ( Z ) (gdze Z-jet oblczoą ufoścą) dla średej z populacj (podajemy a fukcja lczy ufość wykorzytując jak pokazao a ry. 5) dla rozkładu ormalego: UFNOŚĆ(alfa; odch.tadardowe; lczebość) Z Z - odchylee tadardowe dla populacj Z - jet wartoścą tatytyk odczytaą z tablc rozkładu ormalego, przy zadaym prawdopodobeńtwe w Ecelu moża wykorzytać fukcję ROZKŁAD.NORMALNY.S.ODW(prawdopodobeńtwo) lczebość próby powa być wękza od 30 prawdopodobeńtwo podajemy. Korzytając z powyżzej fukcj dodatkowo ależy oblczyć średą arytmetyczą dla daych z próby, a wówcza otrzymamy lewy ( Z ) oraz prawy ( Z ) koec przedzału ufośc. Powyżze oblczea moża przeprowadzć gdy wartość średa dla populacj jet ezaa (oblczamy średą z daych) a odchylee tadardowe populacj jet zae). 7 Pozom ufośc prawdopodobeńtwo, z jakm wartość ezaego parametru ma ę zaleźć w zukaym przedzale ufośc p. Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 5
6 Model II Populacja geerala ma rozkład ormaly. Wartość średa oraz odchylee tadardowe w populacj ą ezae. A próba lczy mej ż 30 elemetów 30. Końce przedzału ufośc oblcza ę atępująco: Lewy koec przedzału ( t ), prawy ( t ), odchylee tadardowe z próby, P t t. t - ma rozkład t-tudeta o - topach wobody, atomat Wartość t oblcza ę za pomocą fukcj: ROZKŁAD.T.ODW(prawdopodobeńtwo; tope_wobody) Stope_wobody podtawamy -, prawdopodobeńtwo podajemy. Model III Populacja geerala ma rozkład dowoly. Wartość średa oraz odchylee tadardowe w populacj ą ezae. A próba lczy węcej ż 30 elemetów 30. Końce przedzału ufośc oblcza ę atępująco: Z Z - odchylee tadardowe dla próby Z - jet wartoścą tatytyk odczytaą z tablc rozkładu ormalego, przy zadaym prawdopodobeńtwe w Ecelu moża wykorzytać fukcję ROZKŁAD.NORMALNY.S.ODW(prawdopodobeńtwo) - lczebość próby powa być wękza od 30 prawdopodobeńtwo podajemy. Błąd względy zacuku B Z 00% - średa oblczoa a potawe próby - odchylee tadardowe populacj geeralej, Z - wartość tadaryzowaej zmeej loowej rozkładu ormalego dla zadaego wpółczyka ufośc, lczebość badaej próby ROZKŁAD.NORMALNY.S.ODW(prawdopodobeńtwo) Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 6
7 Błąd makymaly zacuku wartośc średej t d - odchylee tadardowe z próby, t - wartość zmeej loowej rozkładu t-studeta dla zadaego wpółczyka ufośc - top wobody, ROZKŁAD.T.ODW(prawdopodobeńtwo; tope_wobody) lczebość badaej próby Lczebość próby Z N d - odchylee tadardowe populacj geeralej, Z - wartość tadaryzowaej zmeej loowej rozkładu ormalego dla zadaego wpółczyka ufośc, ROZKŁAD.NORMALNY.S.ODW(prawdopodobeńtwo) d makymaly błąd zacuku średej. Tet a wykryce błędu grubego Błąd gruby objawa ę teem jedego wyku zacząco odtającego od pozotałych uzykaych w daej er pomarów. Źródłem tego błędu może być eoczekwae zaburzee układu pomarowego lub czyto ludzka pomyłka (p. podcza zapywaa daej). Błęda decyzja o pozotaweu lub odrzuceu tego rezultatu ( podejrzaego pomaru ) będze mała egatywy wpływ a końcową wartość średej. Dlatego moża połużyć ę odpowedm tetem tatytyczym p. tetem Doa, aby a gruce tatytyk utalć czy podejrzay wyk ależy, czy też e, do tego amego rozkładu ormalego co pozotałe rezultaty. Przed wykoaem tetu ależy uporządkować zbór wyków według wzratających wartośc: Błędem grubym może być obarczoa albo ajwękza ( ), albo ajmejza wartość ( ) w próbce. Natępe oblcza ę wartośc parametrów m ma w zależośc od lczby wykoaych pomarów według wzorów:. dla 3, 7 m oraz ma. dla 8, 3. dla 3, 40 m m 3 oraz oraz ma ma 3 Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 7
8 Natępym krokem jet wybrae do dalzych oblczeń parametru m (jeśl m ma ozacza to, że epewym pomarem jet ) lub ma (jeśl ma m, dla podejrzaego ). Z tabel odczytuje ę wartość parametru kryt dla odpowedej lczby pomarów porówuje ę ją z wybraą wartoścą ma lub m. Jeżel kryt ma to podejrzay ależy pozotawć, jeśl kryt ma to ależy odrzucć, albo wykoać dodatkowe pomary poowe przeprowadzć oblczea od początku dla wzytkch pomarów. Jeżel kryt m to podejrzay ależy pozotawć, jeśl kryt m to ależy odrzucć, albo wykoać dodatkowe pomary poowe przeprowadzć oblczea od początku dla wzytkch pomarów. Tabela. Lczba pomarów () Wartość krytycza parametru Lczba pomarów () Wartość krytycza parametru 95% 99% 95% 99% Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 8
9 Dodatek Przykłady zatoowaa oblczeń tatytyczych zawartych w pakece Dae -> Aalza daych -> Geerowae lczb peudoloowych, Statytyka opowa oraz Htogram Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 9
10 W wydruku oblczoym za pomocą paketu Statytyka opowa pojawają ę dodatkowe pojęca take jak: Tryb oblcza wartość modalą odp. fukcj WYST.NAJCZĘŚCIEJ() Kurtoza jet cechą rozkładu ymetryczego, ale dalekego od ormalego wzorca, gdy jet bardzej wymukły lub bardzej płak ż prawdzwa krzywa ormala. Skośość kośe rozkłady mają wartośc, których czętośc kupają ę z jedej troy rozcągają ę z drugej. Dokoała krzywa rozkładu ormalego ma kośość rówą 0. Lewotroa kośość ma wartość dodatą, a prawotroa - ujemą. Lteratura. Regel W.: Ćwczea z podtaw tatytyk w Ecelu, Mkom, Warzawa Obecy A.: Statytyka matematycza w Ecelu dla zkól ćwczea praktycze, Helo, Glwce Hyk W., Strojek Z.: Aalza tatytycza w laboratorum aaltyczym, WCh UW, Warzawa 006. Wydzał Chem UWr, Ćwczea z formatyk I rok, oprac. Władyław Wrzezcz Stroa 0
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Bardziej szczegółowoEstymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji.
Botatytyka, 018/019 dla Fzyk Medyczej, tuda magterke etymacja etymacja średej puktowa przedzał ufośc średej rozkładu ormalego etymacja puktowa przedzałowa waracj rozkładu ormalego etymacja parametrów rozkładu
Bardziej szczegółowoObliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
Bardziej szczegółowoTablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
Bardziej szczegółowoSTATYSTKA I ANALIZA DANYCH LAB I. 2. Plan laboratorium I techniki statystyki opisowej
STATYSTKA I ANALIZA DANYCH LAB I 1. Dae kotaktowe Mateuz Lago (http://www.c.put.poza.pl/mlago) Moka Grabowka (http://www.c.put.poza.pl/mgrabowka) Forma zajęć: przedtawee pojęca, zagadea lub metody + rozwązywae
Bardziej szczegółowoSTATYSTYKA OPISOWA. Statystyka. Losowanie (pomiar)
STATYSTYKA OPISOWA Statytyka Statytyka opowa Statytyka matematycza Loowae (pomar) Popuacja geeraa (rezutaty potecjaych pomarów) Próbka (rezutaty pomarów) Statytyka opowa zajmuje ę wtępym opracowaem wyków
Bardziej szczegółowo1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Bardziej szczegółowoWyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Bardziej szczegółowoInstrukcja do wykonania zadania. Masa ciała. Wys. Ciała
Itrukcja do wykoaa zadaa W perwzej kolejośc ależy przygotowad tabelę z daym. W ejzej trukcj przyjęto, że do każdego wyku z tabel perwotej dodao wartośd 6. Zatem tabela wygląda atępująco: Icjały Grupa Płeć
Bardziej szczegółowoPodstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
Bardziej szczegółowoAnalityka chemiczna. Podstawy statystyki. Marek Kręglewski tel
Aaltyka chemcza Podtawy tatytyk Marek Kręglewk mkreg@amu.edu.pl, tel. 689387 Program zajęć Op wyjaśee poobu porządkowaa przedtawaa daych dośwadczalych. Rozkład dla zmeej loowej dykretej cągłej. Zagadea
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
Bardziej szczegółowoPOPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Bardziej szczegółowoTESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Bardziej szczegółowoStatystyczne charakterystyki liczbowe szeregu
Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc
Bardziej szczegółowoPodstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Bardziej szczegółowoAKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych
Bardziej szczegółowoPodstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Bardziej szczegółowoPlanowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
Bardziej szczegółowo1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Bardziej szczegółowoPomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
Bardziej szczegółowoŚrednia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
Bardziej szczegółowoN ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Bardziej szczegółowoMateriały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Bardziej szczegółowoOBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
Bardziej szczegółowoNiepewności pomiarów. DR Andrzej Bąk
Nepewośc pomarów DR Adrzej Bąk Defcje Błąd pomar - różca mędz wkem pomar a wartoścą merzoej welkośc fzczej. Bwa też azwa błędem bezwzględm pomar. Poeważ wartość welkośc merzoej wartość prawdzwa jest w
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej
Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.
Bardziej szczegółowoPodstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.
Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Bardziej szczegółowoINSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
Bardziej szczegółowoL.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
Bardziej szczegółowo. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne
TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowok k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2
Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc
Bardziej szczegółowoŚrednia harmoniczna (cechy o charakterze ilorazu np. Prędkość, gęstość zaludnienia)
Mary przecęte Średa arytmetycza Dla szeregu rozdzelczego cechy skokowej x k x k Średa harmocza (cechy o charakterze lorazu p. Prędkość, gęstość zaludea) x H k x Średa geometrycza x x x... G x średa arytmetycza
Bardziej szczegółowoROZKŁADY ZMIENNYCH LOSOWYCH
ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X
Bardziej szczegółowoL.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).
Bardziej szczegółowoMiary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek.
Węcej doumetów a troe: www.rawczy.hotl.pl Aalza trutury zmerza do wydobyca a jaw charaterytyczych właścwośc zborowośc porówaa ch z ą zborowoścą. Każde badae, tóre w efece ma dać wzechtroą oceę zjawa doprowadzć
Bardziej szczegółowoma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Bardziej szczegółowoOKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)
Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały
Bardziej szczegółowoZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ
ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem
Bardziej szczegółowodev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?
Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych
Bardziej szczegółowoStatystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
Bardziej szczegółowoPomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
Bardziej szczegółowoPierwszym etapem analizy danych jest wykonanie szeregu rozdzielczego prostego (w skrócie nazywany szeregiem rozdzielczym) i kumulacyjnego
Statytyka opowa: tabularycze grafcze przedtawae daych, rozkład empryczy cechy, mary położea, cetrale, rozprozea, kośośc, płazczea Zmee przedtawa ę w potac zeregów tatytyczych, tj. cągu welkośc tatytyczych,
Bardziej szczegółowo[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7
6. Przez 0 losowo wybrayh d merzoo zas dojazdu do pray paa A uzyskują próbkę x,..., x 0. Wyk przedstawały sę astępująo: jest to próbka losowa z rozkładu 0 0 x 300, 944. x Zakładamy, że N ( µ, z ezaym parametram
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowoJEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Bardziej szczegółowoStatystyka Opisowa Wzory
tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:
Bardziej szczegółowoPODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE
Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999
Bardziej szczegółowoVI. TWIERDZENIA GRANICZNE
VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych
Bardziej szczegółowoSTATYSTYKA I stopień ZESTAW ZADAŃ
Stattka ZADAIA STATYSTYKA I topeń ZESTAW ZADAŃ dr Adam Sojda. Aalza truktur jedowmarowego rozkładu emprczego..... Badae wpółzależośc w dwuwmarowm rozkładze emprczm. 8 3. Aalza zeregów czaowch.... 4. Aalza
Bardziej szczegółowoStatystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna
Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version WIII/1
Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.
Bardziej szczegółowoĆwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych
Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
Bardziej szczegółowoTARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Bardziej szczegółowoLekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna
TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj
Bardziej szczegółowoStatystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych
dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby
Bardziej szczegółowoJego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoMETODY OPISU STRUKTURY ZBIOROWOŚCI
METODY OPISU STRUKTURY ZBIOROWOŚCI Wkaźk atężea WSKAŹIK STRUKTURY I ATĘŻEIA Iloraz lczby jedotek jedej zborowośc ( ) do lczby jedotek drugej zborowośc (m ). Wyraża ę wzorem: W m Gdze: W wkaźk atężee; lczebośd
Bardziej szczegółowoBadania niezawodnościowe i statystyczna analiza ich wyników
Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe
Bardziej szczegółowoZadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
Bardziej szczegółowoAnaliza danych pomiarowych
Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety
Bardziej szczegółowoINSTRUKCJA DO CWICZENIA NR 6
INSTRUKCJA DO CWICZENIA NR 6 Temat ćwczea: Pomar twardośc metodą Rockwella Cel ćwczea Celem ćwczea jet ozaczee twardośc metal metodą Rockwella pozae zwązków pomędzy twardoścą a bdową tych materałów ym
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
Bardziej szczegółowoMetoda Monte-Carlo i inne zagadnienia 1
Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów
Bardziej szczegółowoSTATYSTYKA OPISOWA WYKŁAD 3,4
STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s
Bardziej szczegółowoZJAZD 1. STATYSTYKA OPISOWA wstępna analiza danych
ZJAZD Przedmotem statystyk jest zberae, prezetacja oraz aalza daych opsujących zjawska losowe. Badau statystyczemu podlega próbka losowa pobraa z populacj, aczej populacj geeralej. Na podstawe uzyskaych
Bardziej szczegółowoKALIBRACJA NIE ZAWSZE PROSTA
KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel
Bardziej szczegółowoWykład 2 Elementy statystyki.
Wykład 2 Elemey ayyk. Sayyka opowa.. Słowk podawowych poęć: Populaca geerala-zborowość poddawaa ayyczemu badau (p. klec ec elekomukacyych, elefoy określoe mark, rozmowy elefocze) Cecha-właość elemeów populac
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Bardziej szczegółowoStatystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary.
Statystyka opsowa Roma Syak Statystyka opsowa Stawa sę pytaa: pytae co? poprzedza pytae jak?. Najperw potrzeba jest mara, potem moża badać zmay tej mary. Potrzebe są mary zborcze, charakteryzujące zborowośc
Bardziej szczegółowoWyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
Bardziej szczegółowo( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Bardziej szczegółowoPorównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
Bardziej szczegółowoIV. ZMIENNE LOSOWE DWUWYMIAROWE
IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję
Bardziej szczegółowoma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Bardziej szczegółowoLaboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
Bardziej szczegółowoW loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Bardziej szczegółowoWSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Bardziej szczegółowoStatystyczna analiza danych przedziały ufności
07-- Probablstyka statystyka Statystycza aalza daych przedzały ufośc Wykład 7 dr ż. Barbara Swatowska Wstęp Podstawowe cele aalzy zborów daych Uogóloy ops poszczególych cech/zeych statystyka opsowa; aalza
Bardziej szczegółowoSTATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, tr. 3 STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI Dorota Kozoł-Kaczorek Katedra Ekoomk Rolcta Mędzyarodoych Stoukó Gopodarczych Szkoła
Bardziej szczegółowo5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
Bardziej szczegółowof f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu
METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu
Bardziej szczegółowoZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n
ZAJĘCIA Metody opu truktury atężea, metody opu tedecj cetralej, klaycze metody opu dyperj. WSKAŹIK STRUKTURY I ATĘŻEIA METODY OPISU STRUKTURY I ATĘŻEIA Wkaźk atężea Iloraz lczby jedotek jedej zborowośc
Bardziej szczegółowoWYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
Bardziej szczegółowoMETODY ANALIZY DANYCH DOŚWIADCZALNYCH
POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych
Bardziej szczegółowoZe względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.
Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest
Bardziej szczegółowoŚrednia harmoniczna Za pomocą średniej harmonicznej obliczamy np. średnią prędkość jazdy samochodem.
Statystyka Statystyka jest auką, która zajmuje sę zberaem daych ch aalzą. Praca statystyka polega główe a zebrau dużej lośc daych opsujących jakeś zjawsko ch aalze terpretacj. Ne będzemy zajmować sę oczywśce
Bardziej szczegółowoWnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Bardziej szczegółowo