Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.
|
|
- Sylwia Kaczmarek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy się przewodnikiem, na końcach którego występuje różnica potencjałów. Mówimy wówczas, że na końce przewodnika przyłożone jest napięcie. Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych. Prąd może płynąć w przewodnikach (metale), w półprzewodnikach, a także w cieczach (elektrolitach) i gazach. My zajmować się będziemy prądem w przewodnikach. Wiemy, że w metalach jedynymi naładowanymi cząsteczkami, które mogą się poruszać są elektrony. Ale elektrony poruszają się zawsze, ale to nie oznacza, że zawsze w przewodnikach płynie prąd. Czym zatem różni się ruch elektronów w przewodniku, w którym płynie prąd do przewodnika, w którym prąd nie płynie? Jeżeli przez przewodnik nie płynie prąd, to kierunek ruchu elektronów jest dowolny i przypadkowy. Ale sumaryczny ruch wszystkich elektronów jest zerowy. Oznacza to, że statystycznie tyle samo elektronów porusza się w prawo, co w lewo. Jeżeli jednak na końce przewodnika przyłożone jest napięcie, to więcej elektronów poruszać będzie się w stronę dodatniego potencjału, niż w stronę potencjału ujemnego. Oczywiście nie wszystkie elektrony się poruszają. Część z nich, te najbliżej jąder atomowych, są na trwale związane z atomem. Ale atomy, które znajdują się daleko od jąder są raczej słabo z nimi związane. To właśnie ich uporządkowany ruch nazywamy prądem elektrycznym. Elektrony poruszają się zawsze w stronę potencjału dodatniego. Jednak kiedy nauka o tych zjawiskach jeszcze raczkowała i nie wiedziano, że prąd elektryczny wywołany jest przepływem elektronów właśnie w tym kierunku przyjęto, że prąd płynie z potencjału dodatniego do ujemnego. I tak już zostało. Mimo iż elektrony płyną w przeciwnym kierunku, to oznacza się, że prąd płynie od "plusa" do "minusa". Natężenie prądu elektrycznego By mówić o prądzie elektrycznym w sposób naukowy musimy umieć go jakoś obiektywnie scharakteryzować: Wielkością charakteryzującą prąd jest natężenie prądu, zdefiniowane jako stosunek ładunku q, jaki przejdzie przez dowolny przekrój przewodnika w ciągu czasu t, do tego czasu: Jednostką natężenia prądu jest jeden Amper (1A) i jest ona jednostką podstawową układu SI. Prawo Ohma Przykładając napięcie na końce przewodnika, spowodujemy w nim przepływ prądu. Doświadczenia pokazały, że natężenie tego prądu jest wprost proporcjonalne do przyłożonego napięcia. Gdzie G jest współczynnikiem proporcjonalności i nazywa się go przewodnością, a mierzy się go w simensach (S). Okazuje się, że przewodność zależy od rodzaju przewodnika. Częściej podane prawo przedstawione jest w innej postaci: Wielkość R nazywamy oporem omowym przewodnika, a jednostką oporu jest Om (1Ω) Zależność oporu od przewodnika Gdy na końcach przewodnika nie jest przyłożone napięcie, a na tym przewodniku znajduje się ładunek, to powierzchnia tego przewodnika jest powierzchnią ekwipotencjalną. Ale jeżeli przez przewodnik płynie prąd (przyłożone jest napięcie) to powierzchnia przewodnika nie jest już powierzchnią ekwipotencjalną. Okazuje się
2 jednak, że przekrój poprzeczny przewodnika jest powierzchnią, na której każdy punkt ma równy potencjał. Jeżeli przewodnik jest jednorodny i o jednorodnym przekroju, to okazuje się, że na dwóch powierzchniach, na których potencjał jest różny, różnica potencjału jest proporcjonalna do odległości od końca przewodnika. Można wnioskować, że opór między końcem przewodnika a jego dowolnym przekrojem jest proporcjonalny do spadku potencjału (czyli do długości przewodnika). Doświadczenia pokazują także, że opór przewodnika jest odwrotnie proporcjonalny do pola przekroju przewodnika. Uwzględniając powyższe własności możemy zapisać: Gdzie "l" to długość przewodnika, "S" to pole przekroju, natomiast "ρ" jest opornością właściwą danego materiału (opór przewodnika o długości 1m i powierzchni 1m 2 ). Prawo Ohma dla obwodu Wszystkie znane dotąd materiały przewodzące prąd mają pewien opór (pomijamy nadprzewodniki, bo zastosowanie ich w normalnych warunkach jest niemożliwe). Także źródło napięcia jest zbudowane z takich materiałów, więc ma ono swój własny opór, zwany oporem wewnętrznym. Na schematach często oznacza się opór wewnętrzny jako zewnętrzny opornik umieszczony obok źródła. Każde źródło charakteryzuje się różnicą potencjałów na jego zaciskach. Ta różnica nazywana jest siłą elektromotoryczną (SEM). R z - to opór układu (np. opór żarówki), R w - to opór wewnętrzny źródła, I - prąd płynący w obwodzie, E - SEM. Gdzie U to jest napięcie użyteczne w obwodzie - napięcie na oporze zewnętrznym. Po przekształceniu wzoru na SEM możemy sformułować prawo Ohma dla obwodu: Natężenie prądu w obwodzie jest wprost proporcjonalne do SEM, a odwrotnie proporcjonalne do sumy oporu zewnętrznego i oporu wewnętrznego. Pierwsze prawo Kirchoffa Rozpatrzmy węzeł sieci (punkt, w którym spotykają się przewodniki). Niech do węzła dołączone są trzy przewodniki. W dwóch z nich niech wpływa do węzła prąd I 1 oraz I 2, a trzecim przewodnikiem niech z tego węzła odpływa prąd o natężeniu I 3. Naszym zadaniem jest wyznaczyć, czy istnieje związek między natężeniami prądów wpływającymi do węzła, a natężeniem prądu "odpływającego". Prąd to jak wiemy uporządkowany ruch elektronów. Elektrony wpływające do węzła nie mogą z niego uciec inną
3 drogą niż przewodnik (nie może po prosu zniknąć czy teleportować się) mówi o tym zasada zachowania ładunku. Więc ile prądu "wpłynie" to węzła, tyle z niego musi "wypłynąć". Zatem W ostatnim wzorze n oznacza liczbę gałęzi doprowadzonych do węzła (w naszym przykładzie 3). Pierwsze prawo Kirchoffa możemy zapisać słowami: Algebraiczna suma wszystkich prądów dopływających i odpływających do węzła jest równa zeru. Drugie prawo Kirchoffa Dany jest prosty obwód dwóch oporów i źródła prądu: Obwód ten można przedstawić także umieszczając wszystkie elementy w jednej linii. Rozpatrzmy rozkład potencjału w tym obwodzie. A więc siła elektromotoryczna układu wynosi: Teraz spróbujmy zrobić to samo, lecz dla trochę bardziej skomplikowanego układu:
4 Z rysunku wynika, iż: Na podstawie powyższych przypadków możemy sformułować drugie prawo Kirchhoffa: Suma algebraiczna wszystkich napięć i wszystkich sił elektromotorycznych w oczku obwodu jest równa zero. Oczkiem nazywamy zamkniętą część obwodu lub pojedynczy obwód zamknięty. "Obchodzimy" oczko dookoła. Jeśli "przechodzimy" siłę elektromotoryczną od minusa do plusa, to we wzorze piszemy, jak odwrotnie to. Jeśli "spotykamy" opór i "mijamy" go pod prąd, to piszemy z plusem, a jeśli z prądem to z minusem. Prawo Joule'a-Lenza Prąd, który płynie przez opór wykonuje pracę. Praca ta zamieniana jest na ciepło. W jakiej ilości to ciepło zostanie wydzielone mówi nam prawo Joule'a-Lenza, dlatego czasami mówimy o cieple Joule'a-Lenza. Praca przy przenoszeniu ładunku dodatniego przez prąd o natężeniu I przez opór w czasie t: U - to napięcie między końcami opornika. Praca zamienia się na ciepło i wzory te wyrażają ilość ciepła wydzielającego się na oporniku:
5 Łączenie oporów Kilka oporników połączonych ze sobą tworzą jakiś układ. Cały układ zawsze możemy zastąpić jednym opornikiem i ta zmiana nie będzie miała, żadnego wpływu na cały obwód (opór układu będzie równy temu opornikowi). Opór całego układu nazywamy oporem zastępczym. W zależności od sposobu połączenia oporników ze sobą w inny sposób liczymy opór zastępczy układu. SZEREGOWE Jeżeli oporniki połączymy szeregowo, to przez każdy opornik przepłynie taki sam prąd o natężeniu I, a suma spadków napięć na każdym oporniku, będzie równa napięciu na końcach układu oporników. Zatem: Opór zastępczy oporników połączonych szeregowo równy jest sumie poszczególnych oporów. Łatwo zauważyć, że tak opór zastępczy tak połączonych oporników jest zawsze większy od największego oporu, który wchodzi w skład układu. RÓWNOLEGŁE W tak połączonych opornikach napięcia na każdym z nich są równe, a z pierwszego prawa Kirchoffa wiemy, że: Odwrotność oporu zastępczego układu oporników połączonych równolegle jest równa sumie odwrotności poszczególnych oporów. W tym przypadku opór zastępczy układu jest zawsze mniejszy od najmniejszego oporu wchodzącego w skład
6 u k ł a d u. Łączenie ogniw Podobnie jak oporniki (a także jak kondensatory), również ogniwa możemy łączyć w układy. Dokonuje się tego by osiągnąć żądaną siłę elektromotoryczną i opór wewnętrzny ogniwa. SZEREGOWE Danych jest n jednakowych ogniw (SEM każdego ogniwa równa E) połączonych szeregowo w baterię. SEM takiej baterii będzie równa sumie sił elektromotorycznych każdego źródła: Łącząc ogniwa szeregowo łączymy je tak, by "+" jednego ogniwa połączony był z "-" ogniwa następnego. Ale jeżeli np. ogniwo E 2 połączylibyśmy odwrotnie, to zamiast dodawać do SEM wartość E 2 odjęlibyśmy ją ( E 1 - E 2 + E 3... E n ). Opór wewnętrzny baterii obliczymy korzystając ze wzoru na opór zastępczy oporników połączonych szeregowo: Zatem w obwodzie popłynie prąd: RÓWNOLEGŁE Gdy połączymy jednakowe ogniwa równolegle to SEM baterii będzie równa SEM pojedynczego ogniwa: Natomiast opór wewnętrzny baterii łatwo możemy wyliczyć korzystając ze wzoru na opór zastępczy oporników połączonych równolegle: Zatem prąd jaki popłynie przez układ połączony do takiej baterii wynosi: Łączenie szeregowo-równoległe (łączenie w prostokąt) Mamy m jednakowych baterii, utworzonych z n jednakowo połączonych szeregowo ogniw. Połączmy je równolegle. Tak utworzona bateria będzie miała SEM równą, natomiast opór wewnętrzny tej baterii równy
7 będzie. Zatem prąd jaki popłynie w obwodzie podłączonym do takiego źródła będzie miał n a t ę ż e n i e : Gdzie R to opór wewnętrzny pojedynczego ogniwa budującego baterię, natomiast R zew to opór zewnętrzny w obwodzie (np. opór silniczka połączonego do baterii). Wykorzystując rachunek pochodnych możemy wyliczyć, że wartość tego prądu będzie największa, gdy opór wewnętrzny (R) będzie równy oporowi zewnętrznemu (R zew ). Taki stan w obwodzie nazywamy dopasowaniem. A z powyższego wzoru możemy dowiedzieć się ile potrzeba nam ogniw i jak je należy połączyć, by osiągnąć stan dopasowania. Moc prądu elektrycznego Korzystając z definicji otrzymujemy: Wykorzystując powyższe wzoru i poprzednio przeprowadzone rozumowanie wiemy, że największą pracę może wykonać prąd, gdy osiągniemy stan dopasowania. Warto umieć dopasować źródło prądu do np. silniczka, bo wówczas moc tego silniczka będzie największa.
1 K A T E D R A F I ZYKI S T O S O W AN E J
1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku
Bardziej szczegółowoSTAŁY PRĄD ELEKTRYCZNY
STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam
Bardziej szczegółowoDielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Bardziej szczegółowoPowtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.
Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych
Bardziej szczegółowoPrąd elektryczny 1/37
Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć
Bardziej szczegółowoMateriały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Bardziej szczegółowoPrąd elektryczny - przepływ ładunku
Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest
Bardziej szczegółowoCzym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Bardziej szczegółowoLekcja 5. Temat: Prawo Ohma dla części i całego obwodu
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej
Bardziej szczegółowoWykład FIZYKA II. 2. Prąd elektryczny. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 2. Prąd elektryczny Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ UCH ŁADUNKÓW Elektrostatyka zajmowała się ładunkami
Bardziej szczegółowoPodstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Bardziej szczegółowoPodstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Bardziej szczegółowoPodstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych
Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny
Bardziej szczegółowoŁadunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka
6. Prąd elektryczny zadania z arkusza I 6.7 6.1 6.8 6.9 6.2 6.3 6.10 6.4 6.5 6.11 Na zmieszczonym poniżej wykresie przedstawiono charakterystykę prądowo-napięciową żarówki. 600 500 400 I, ma 300 200 6.6
Bardziej szczegółowoPodstawy elektrotechniki
Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT
Bardziej szczegółowoPodstawy elektrotechniki
Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT
Bardziej szczegółowo2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
Bardziej szczegółowoQ t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Bardziej szczegółowoPrzykłady zadań. Gimnazjum im. Jana Pawła II w Sułowie
4. Moc i praca Przykłady zadań 10 Przykład 4.1 Oblicz moc silnika elektrycznego, przez który przepływa prąd o natężeniu I = 5 A, przy napięciu U = 230 V. Dane: Szukane Wzór U = 230 V P P= U I I = 5 A Rozwiązanie
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Bardziej szczegółowo46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W]
Włodzimierz Wolczyński 46 POWTÓRKA 8 PRĄD STAŁY Zadanie 1 Oblicz i wpisz do tabeli R 1 = 4 Ω RR 22 = = 22 Ω I 2 = 1,5 A R 4 = 2 Ω R 3 = 6 Ω R 1 = 4 Ω R 2 = 2 Ω R 3 = 6 Ω R 4 = 2 Ω r = 1 Ω SEM ogniwa wynosi
Bardziej szczegółowośrednia droga swobodna L
PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa
Bardziej szczegółowoPrzygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe
Przygotowanie do gzaminu Potwierdzającego Kwalifikacje Zawodowe Powtórzenie materiału Opracował: mgr inż. Marcin Wieczorek Obwód elektryczny zespół połączonych ze sobą elementów, umożliwiający zamknięty
Bardziej szczegółowosymbol miernika amperomierz woltomierz omomierz watomierz mierzona
ZADANIA ELEKTROTECHNIKA KLASA II 1. Uzupełnij tabelkę: nazwa symbol miernika amperomierz woltomierz omomierz ----------------- watomierz ----------------- wielkość mierzona jednostka - nazwa symbol jednostki
Bardziej szczegółowoPrzepływ prądu przez przewodnik. jest opisane przez natężenie prądu. Przez przewodnik nie płynie prąd.
PRĄD ELEKTRYCZNY - Przez przewodnik nie płynie prąd. Przepływ prądu przez przewodnik E Gdy E = 0. Elektrony poruszają się (dzięki energii cieplnej) przypadkowo we wszystkich kierunkach. Elektrony swobodne
Bardziej szczegółowoĆWICZENIE 31 MOSTEK WHEATSTONE A
1 Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 31 MOSTEK WHEATSTONE A Kraków, 2016 Spis Treści: I. CZĘŚĆ TEORETYCZNA... 2 ŁADUNEK ELEKTRYCZNY... 2 PRAWO COULOMBA...
Bardziej szczegółowoE1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Bardziej szczegółowoTest powtórzeniowy. Prąd elektryczny
Test powtórzeniowy. Prąd elektryczny Informacja do zadań 1. i 2. Przez dwie identyczne żarówki (o takim samym oporze), podłączone szeregowo do baterii o napięciu 1,6 V (patrz rysunek), płynie prąd o natężeniu
Bardziej szczegółowoŹródła siły elektromotorycznej = pompy prądu
Źródła siły elektromotorycznej = pompy prądu komórki elektrochemiczne ogniwo Volty akumulator generatory elektryczne baterie I urządzenia termoelektryczne E I I Prądnica (dynamo) termopara fotoogniwa ogniwa
Bardziej szczegółowoELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
Bardziej szczegółowoŚr 3 paźdz L5 T4: Prawo łączenia oporów elektrycznych. Praca prądu elektrycznego.
Śr 3 paźdz L5 T4: Prawo łączenia oporów elektrycznych. Praca prądu elektrycznego. K27 planowany termin 10 października (Uwaga: k27 tylko te pytania, które zostaną podczas lekcji pokazane i wyjaśnione.
Bardziej szczegółowoTest powtórzeniowy Prąd elektryczny
Test powtórzeniowy rąd elektryczny 1 Wybierz poprawne uzupełnienia zdania. W metalach kierunek przepływu prądu jest zgodny z kierunkiem ruchu elektronów, jest przeciwny do kierunku ruchu elektronów, ponieważ
Bardziej szczegółowoPrawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.
Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,
Bardziej szczegółowoSPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ
Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia
Bardziej szczegółowoWYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Bardziej szczegółowoKONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska
KONKURS FIZYCZNY CZĘŚĆ 3 Opracowanie Agnieszka Janusz-Szczytyńska ZAGADNIENIA DO KONKURSU ETAP II Kolorem czerwonym zaznaczone są zagadnienia wykraczające poza program nauczania, na zielono zagadnienia,
Bardziej szczegółowoWyznaczanie wielkości oporu elektrycznego różnymi metodami
Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo
Bardziej szczegółowoELEKTROTECHNIKA I ELEKTRONIKA
UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI
Bardziej szczegółowoSegment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska
Segment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska Zad. 1 Wyznacz natężenie prądu I 5, wiedząc że I 1 = 1 A, I 2 = 3 A, I 3 = 5 A, I 4 = 4 A. Odp.: Źrd.: I 5 = 5 A Wasiak, Fizyka od A do
Bardziej szczegółowoWykład 1 Technologie na urządzenia mobilne. Wojciech Świtała
Wykład 1 Technologie na urządzenia mobilne Wojciech Świtała wojciech.switala@cs.put.poznan.pl http://www.cs.put.poznan.pl/~wswitala Sztuka Elektroniki - P. Horowitz, W.Hill Układy półprzewodnikowe U.Tietze,
Bardziej szczegółowoZespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
Bardziej szczegółowoPole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
Bardziej szczegółowoObwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)
Bardziej szczegółowoDruty oporowe [ BAP_ doc ]
Druty oporowe [ ] Cel Przyrząd jest przeznaczony do następujących doświadczeń: 1. Pierwsze prawo Ohma: sprawdzenie związku między różnicą potencjałów na końcach przewodnika liniowego i natężeniem prądu
Bardziej szczegółowoCzłowiek najlepsza inwestycja
Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.
Bardziej szczegółowoE wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.
Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Bardziej szczegółowoGrupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:
Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:
Bardziej szczegółowoELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W
Bardziej szczegółowoPodstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Bardziej szczegółowoPODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze
Bardziej szczegółowoPrąd elektryczny stały
Rozdział 3 Prąd elektryczny stały 3.1 Natężenie i gęstość prądu. Równanie ciągłości W poprzednich rozdziałach były rozpatrywane zjawiska związane z nieruchomymi ładunkami elektrycznymi. Omówimy obecnie
Bardziej szczegółowoPlan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny.
Opracowała mgr Renata Kulińska Plan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny. Cel ogólny: Badanie zależność natężenia prądu od napięcia w obwodzie prądu stałego. Sporządzenie wykresu
Bardziej szczegółowoCzłowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
Bardziej szczegółowoKRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.
KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM ENERGIA - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, kiedy jest wykonywana praca mechaniczna. - Wie, że każde urządzenie
Bardziej szczegółowoPRĄD STAŁY. Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego.
PĄD STAŁY Prąd elektryczny to uporządkowany ruch ładunków wewnątrz przewodnika pod wpływem przyłożonego pola elektrycznego. ŁADUNEK SWOBODNY byłby w stałym polu elektrycznym jednostajnie przyspieszany
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Bardziej szczegółowoMATERIAŁY Z KURSU KWALIFIKACYJNEGO
Wszystkie materiały tworzone i przekazywane przez Wykładowców NPDN PROTOTO są chronione prawem autorskim i przeznaczone wyłącznie do użytku prywatnego. MATERIAŁY Z KURSU KWALIFIKACYJNEGO www.prototo.pl
Bardziej szczegółowoElementy elektroniczne i przyrządy pomiarowe
Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania
Bardziej szczegółowo25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych
Bardziej szczegółowoRozkład materiału nauczania
1 Rozkład materiału nauczania Temat lekcji i główne treści nauczania Liczba godzin na realizację Osiągnięcia ucznia R treści nadprogramowe Praca eksperymentalno-badawcza Przykłady rozwiązanych zadań (procedury
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
Bardziej szczegółowoPrąd przemienny - wprowadzenie
Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą
Bardziej szczegółowoPrąd elektryczny. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Prąd elektryczny Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektryczna energia potencjalna i potencjał Elektryczna energia potencjalna jest związana z rozmieszczeniem
Bardziej szczegółowo3g 26 września, praca domowa
3g 26 września, praca domowa Poniżej jest cała prezentacja z dnia 26 września oraz praca domowa. Uwaga można wkleić odpowiednie kopie zamiast przepisywania (jest mało czasu a sporo trzeba nauczyć się)
Bardziej szczegółowoLekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa
Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D
Bardziej szczegółowoPODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem
Bardziej szczegółowo42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe
Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,
Bardziej szczegółowoPODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM
PODSTAWOWE WADOMOŚC O PĄDZE ELEKTYCZNYM. Co to jest prąd elektryczny? Prąd elektryczny polega na uporządkowanym ruchu nośników ładunku elektrycznego. Nie należy jednak sobie wyobrażać, że gdy płynie w
Bardziej szczegółowoIle wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Bardziej szczegółowoPRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Bardziej szczegółowośrednia droga swobodna L
PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa
Bardziej szczegółowoScenariusz lekcji fizyki w klasie drugiej gimnazjum
Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana
Bardziej szczegółowoTest 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1
Test 4 1. (4 p.) Na lekcji fizyki uczniowie (w grupach) wyznaczali opór elektryczny opornika. Połączyli szeregowo zasilacz, amperomierz i opornik. Następnie do opornika dołączyli równolegle woltomierz.
Bardziej szczegółowoZajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka
1 Zajęcia 1 Nauczyciel: mgr inŝ. Jadwiga Balicka I. Obwody elektryczne prądu stałego 1. Pojęcie terminów: wielkość, wartość, jednostka wielkości Wielkością fizyczną nazywamy cechę zjawiska fizycznego.
Bardziej szczegółowoDr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:
Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych
Bardziej szczegółowoWykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Bardziej szczegółowoPODSTAWY ELEKTOTECHNIKI LABORATORIUM
PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii
Bardziej szczegółowoPrąd elektryczny. 1.1.Pojęcie prądu elektrycznego
Prąd elektryczny 1.1.Pojęcie prądu elektrycznego Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest różnica potencjałów, czyli istnienie napięcia.
Bardziej szczegółowoFizyka dla Informatyki Stosowanej
Fizyka dla nformatyki Stosowanej Jacek Golak Semestr zimowy 06/07 Wykład nr Najważniejsze elementy ostatniego wykładu to Dipol elektryczny i jego potencjał elektryczny Polaryzacja i dielektryk w polu elektrycznym
Bardziej szczegółowoLI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.
Bardziej szczegółowoObwody elektryczne prądu stałego
Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego
Bardziej szczegółowoPrąd i opór elektryczny
Prąd i opór elektryczny Prąd elektryczny to przepływ ładunków elektrycznych Ilustracją jest rysunek przedstawiający strumieo ładunków płynących prostopadle do powierzchni A Natężenie prądu elektrycznego
Bardziej szczegółowoMetodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Bardziej szczegółowoznak minus wynika z faktu, że wektor F jest zwrócony
Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,
Bardziej szczegółowoBadanie krzywej rozładowania kondensatora. Pojemność zastępcza układu kondensatorów.
E Badanie krzywej rozładowania kondensatora Pojemność zastępcza układu kondensatorów elem ćwiczenia jest obserwacja rozładowywania kondensatorów o różnej pojemności, powiązanie wyników tych obserwacji
Bardziej szczegółowoPracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona
Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych
Bardziej szczegółowoELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.
ELEKTROSTATYKA Ładunkiem elektrycznym nazywamy porcję elektryczności. Ładunkiem elementarnym e nazywamy najmniejszą wartość ładunku zaobserwowaną w przyrodzie. Jego wartość jest równa wartości ładunku
Bardziej szczegółowoĆw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Bardziej szczegółowoPomiary elektryczne: Szeregowe i równoległe łączenie żarówek
Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek 1. Dane osobowe Data wykonania ćwiczenia: Nazwa szkoły, klasa: Dane uczniów: A. B. C. D. E. 2. Podstawowe informacje BHP W pracowni większość
Bardziej szczegółowoPodstawy Elektroniki i Elektrotechniki
Podstawy Elektroniki i Elektrotechniki Sławomir Mamica mamica@amu.edu.pl Obwody prądu elektrycznego http://main5.amu.edu.pl/~zfp/sm/home.html Plan. Krótko o elektryczności Ładunek elektryczny Pole elektryczne
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych
Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych
Bardziej szczegółowo1. Właściwości obwodu elektrycznego z elementami połączonymi równolegle
. Właściwości obwodu elektrycznego z elementami połączonymi równolegle Uczeń: Uczeń: a.. Cele lekcji zna prawo Ohma, i. a) Wiadomości wie, że przy połączeniu równoległym rozgałęzieniu ulega natężenie prądu,
Bardziej szczegółowoBadanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Bardziej szczegółowoautor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 23 PRĄD STAŁY CZEŚĆ 1
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 23 PRĄD STAŁY CZEŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU
Bardziej szczegółowoObwody liniowe. Sprawdzanie praw Kirchhoffa
POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel
Bardziej szczegółowoBadanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Bardziej szczegółowo