LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
|
|
- Dawid Turek
- 9 lat temu
- Przeglądów:
Transkrypt
1 LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale świetlne (elektromagnetyczna) związane są z rozchodzeniem się w przestrzeni zmiennego pola elektrycznego E i magnetycznego H, przy czym wektor natężenia pola elektrycznego E jest zawsze prostopadły do wektora natężenia pola magnetycznego H. Kierunki drgań wektorów E i H są prostopadłe do kierunku rozchodzenia się fali, tak więc fala świetlna (elektromagnetyczna) jest falą poprzeczną. W ośrodkach jednorodnych fale elektromagnetyczne rozchodzą się prostoliniowo. Jeżeli jednak światło przechodzi przez niewielkie szczeliny lub otwory o rozmiarach porównywalnych z długością fali, obserwujemy odchylenie od prostoliniowości, czyli tak zwane ugięcie światła. Zjawisko ugięcia (dyfrakcji) światła można wyjaśnić w oparciu o zasadę Huyghensa, głoszącą, że każdy punkt, do którego dotrze zaburzenie (fala) staje się źródłem nowej fali cząstkowej. Wypadkowe zaburzenie rozchodzące się w ośrodku jest sumą wszystkich fal cząstkowych. Bardzo mała długość fal świetlnych widzialnych sprawia, że w życiu codziennym zjawiska związane z dyfrakcją światła obserwujemy bardzo rzadko. W laboratoriach zjawisko dyfrakcji w połączeniu ze zjawiskiem interferencji znalazło zastosowanie przy wyznaczaniu długości fal świetlnych. Ponieważ naszym źródłem światła jest laser emitujący wiązkę o znanej długości fali (635 nm) w tym ćwiczeniu wyznaczymy stałą siatek dyfrakcyjnych dostępnych w pracowni. Stałą siatki dyfrakcyjnej nazywamy odległość pomiędzy środkami dwóch sąsiednich szczelin wytworzonych w materiale nieprzezroczystym i oznaczamy literą d. 1
2 Rozpatrzmy powstawanie obrazu dyfrakcyjnego przy zastosowaniu siatki dyfrakcyjnej. Niech na siatkę pada światło monochromatyczne o długości fali λ. Na ekranie otrzymamy wówczas szereg prążków, na przemian jasnych i ciemnych. Powstanie jasnych prążków na ekranie wynika z interferencyjnego wzmocnienia promieni pochodzących z sąsiednich szczelin siatki. Różnica dróg optycznych promieni pochodzących z sąsiednich szczelin (Rysunek 1) wynosi: = d sin α (1) gdzie: Δ różnica dróg optycznych, d stała siatki, α kąt ugięcia. Rysunek 1. Ugięcie na siatce dyfrakcyjnej szczelinowej
3 Jak wiadomo, wzmocnienie interferencyjne w danym punkcie przestrzeni zachodzi wtedy, kiedy różnica dróg optycznych interferujących promieni jest równa całkowitej wielokrotności długości fali: = kλ () gdzie: k liczba całkowita; k = 0, 1, itd., λ długość fali promieni interferujących. Porównując zależności (1) i () otrzymujemy: d sin α = kλ (3) Dla k = 0 otrzymamy prążek odpowiadający wiązce nieugiętej, dla k = 1 prążek pierwszego rzędy itd. Ze wzoru (3) wynika, że położenie prążków zależy od długości fali λ. W oparciu o tę zależność możemy więc wyznaczyć stałą siatki dyfrakcyjnej.. Opis układu pomiarowego W celu zrealizowania zadań w bieżącym ćwiczeniu należy wykorzystać zestaw optyczny z laserem LOS-1 (Rysunek ). Zestaw ten zawiera elementy umieszczone w walizce wyściełanej gąbką, co zapobiega uszkodzeniu elementów optycznych. Rysunek. 3
4 Zawartość zestawu optycznego z laserem: - 1 laser diodowy 635 nm o mocy wyjścia 1mW (laser klasy ), - 1 soczewka rozpraszająca, - zwierciadła - 1 płytka półprzepuszczalna, - 1 ekran referencyjny, - 1 ekran, - 1 zestaw filtrów kolorowych (czerwony F1, zielony F, niebieski F3), - 1 filtr polaryzacyjny, - 1 zestaw otworów okrągłych do dyfrakcji (D1, D), - 1 zestaw otworów kwadratowych do dyfrakcji (D3, D4), - 1 zestaw liniowych siatek dyfrakcyjnych (G1, G, G3), - 1 siatka dyfrakcyjna w kratkę (G4), - 1 hologram, - 1 płyta szklana do obrazowania interferencji, - 1 zestaw 9 statywów, - 4 nogi gumowe pod metalową tablicę, - 1 pojemnik na baterie (x1,5 V), Wszystkie elementy optomechaniczne mocuje się na metalowej tablicy za pomocą magnesów. 3. Wykonanie ćwiczenia 3.1. Wyznaczenie stałej siatki dyfrakcyjnej Cel: Zaobserwować obraz dyfrakcyjny światła na siatkach dyfrakcyjnych i wyznaczyć ich stałą d. Wymagane przyrządy: Laser (635 nm), siatki dyfrakcyjne liniowe (G1, G), statyw z magnesem, ekran z podziałką milimetrową, dalmierz do pomiaru odległości siatki dyfrakcyjnej od ekranu. 4
5 Rysunek 3. Schemat dyfrakcji. G ośrodek dyfrakcyjny (otwór kwadratowy, okrągły bądź siatka dyfrakcyjna), M ekran referencyjny. Wykonanie pomiarów: Ze wzoru (3) wynika, że do wyznaczenia stałej siatki dyfrakcyjnej musimy znać długość fali λ oraz kąt ugięcia α odpowiadający danemu prążkowi dyfrakcyjnemu. Obserwując ekran ustalamy położenie prążka i odczytujemy jego położenie na skali milimetrowej a 1. Tę samą czynność wykonujemy dla prążka położonego symetrycznie po drugiej stronie i odczytujemy jego położenie a. Średnią odległość prążka od szczeliny obliczamy ze wzoru: a 0 a1 + a = (4) Wartość sinusa kąta ugięcia α wyznaczymy z zależności trygonometrycznych. Jeżeli oznaczymy odległość pomiędzy siatką dyfrakcyjną a miejscem na ekranie, w którym powstał prążek przez l to: Korzystając z prawa Pitagorasa otrzymamy: a 0 sin α = (5) l l + = a 0 b (6) gdzie b jest odległością między ekranem a siatką. Podstawiając (6) do (5) otrzymamy: 5
6 sin Łącząc zależności (3) i (7) otrzymamy ostatecznie: a 0 α = (7) a0 + b a0 + b d = kλ * (8) a 0 Sposób wykonania: Ustawić siatkę dyfrakcyjną pomiędzy laserem a ekranem jak najbliżej lasera (Rysunek 3). Odległość pomiędzy siatką a ekranem powinna być większa niż 50 cm. Zaobserwować obraz dyfrakcyjny (podobny jak na Rysunku 4). Składa się on z maksimów kolejnych rzędów. Maksimum o rzędzie zero jest w miejscu, w którym tworzy się obraz, kiedy nie ma siatki. Wyznaczyć na ekranie położenie prążków 1, i 3 rzędu. Zmierzyć odległość pomiędzy siatką i ekranem b. Znając długość fali światła laserowego λ=635 nm obliczyć wartość stałej siatki dla prążka 1, i 3 rzędu ze wzoru (8) a następnie obliczyć średnią wartość stałej siatki d s. Zmienić siatkę na inną i powtórzyć pomiary Wyniki pomiarów i obliczeń zanotować w tabeli, której wzór podano poniżej. TABELA POMIARÓW Średnia Rodzaj siatki G1 G Odległość ekran siatka b [m] Rząd widma Odległość prążka od szczeliny na lewo a 1 [m] na prawo a [m] średnia a 0 [m] Stała siatki d arytmetyczna dla stałej d na podstawie prążków 1, i 3 rzędu Oszacować niepewności pomiaru (wzorcowania i eksperymentatora) wielkości a n i b. Obliczyć niepewności całkowite pomiaru na podstawie przenoszenia niepewności na przykład ze wzoru: 6
7 k y uc ( y) = [ * u( xi )] (9) x i = 1 i Rysunek 4. Obraz dyfrakcyjny na siatce równoległej. Pytanie: Co możesz powiedzieć o odległości pomiędzy sąsiednimi maksimami dla siatek o różnych stałych? 3.. Dyfrakcja światła na otworach kwadratowych i okrągłych Wstęp: Obraz dyfrakcyjny zależy od kształtu otworu lub bariery optycznej (Rysunek 5). Przy dyfrakcji na okrągłej szczelinie obraz ma kształt koncentrycznych obręczy. Przy dyfrakcji na szczelinie kwadratowej obserwowane są paski po bokach środka obrazu. Cel: Zaobserwowanie dyfrakcji na otworach o różnym kształcie. Wymagane przyrządy: Laser (635 nm), szczeliny: kwadratowa oraz okrągła, statyw, ekran referencyjny. Sposób wykonania: Rysunek 5. Obraz dyfrakcyjny na szczelinie okrągłej oraz kwadratowej. 7
8 Umieść kliszę fotograficzną z okrągłym (D1, D) i kwadratowym (D3, D4) otworem na statywie z magnesem. Umieść statyw pomiędzy laserem a ekranem. Odległość pomiędzy szczeliną a ekranem powinna wynosić co najmniej 50 cm. Zaobserwuj obraz dyfrakcyjny wytwarzany przez różne otwory. Wzór opisujący położenie obręczy przy dyfrakcji na otworze okrągłym jest następujący: sin ϕ = gdzie: φ kąt dyfrakcji, k rząd dyfrakcji (0, 1,,...), λ długość fali światła, D średnica otworu. Pytania: Jakie są różnice pomiędzy obrazami dyfrakcyjnymi uzyskanymi z wykorzystaniem różnych otworów? W jaki sposób zmienia się obraz przy oddalaniu ekranu od otworu kwadratowego? k λ D LITERATURA: 1. Górecki Cz., Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej, W: Ćwiczenia laboratoryjne z fizyki, Oficyna wydawnicza Politechniki Opolskie, Opole
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których
Badanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Interferencja i dyfrakcja
Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Interferencja i dyfrakcja
Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Ć W I C Z E N I E N R O-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO
18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
Falowa natura promieniowania elektromagnetycznego.
Zadanie 1. Falowa natura promieniowania elektromagnetycznego. W telefonii komórkowej poziom bezpieczeństwa (w odniesieniu do szkodliwości oddziaływania promieniowania na materię żywą) określany jest za
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 4 Dyfrakcja na szczelinie przy użyciu lasera relacja Heisenberga Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.
MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny
Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Rozważania dotyczące natury światła, doprowadziły do odkrycia i opisania wielu zjawisk związanych z jego rozchodzeniem
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Badanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 44 WYZNACZANIE DŁUGOŚCI FAL ŚWIETLNYCH ŹRÓDEŁ BARWNYCH ( DIODY LED ) 1 Autor dr inż. Waldemar Larkowski
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR KRZYWIZNY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania krzywizny soczewek. 2. Zakres wymaganych zagadnieo: Zjawisko dyfrakcji i interferencji
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Wyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćwiczenie Nr 7 Temat: WYZNACZANIE STA ŁEJ SIATKI DYFRAKCYJNEJ I DŁUGOŚCI FALI ŚWIETLNEJ Warszawa 9 POMIARDŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej
Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja
GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA
GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 4. Budowa spektrometru
Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 4. Budowa spektrometru Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. WSTĘP Celem ćwiczenia jest zapoznanie się z zasadą działania
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 6 Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego i metodą Bessela Kalisz, luty 2005 r. Opracował: Ryszard
TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH
TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH Arkadiusz Olech, Wojciech Pych wykład dla doktorantów Centrum Astronomicznego PAN luty maj 2006 r. Wstęp do spektroskopii Wykład 7 2006.04.26 Spektroskopia
( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA.
0.X.203 ĆWICZENIE NR 8 ( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. I. Zestaw przyrządów:. Mikroskop. 2. Płytki szklane płaskorównoległe.
O3. BADANIE WIDM ATOMOWYCH
O3. BADANIE WIDM ATOMOWYCH tekst opracowała: Bożena Janowska-Dmoch Większość źródeł światła emituje promieniowanie elektromagnetyczne złożone z wymieszanych ze sobą fal o wielu częstotliwościach (długościach).
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Ćwiczenie 369. Wyznaczanie długości fali świetlnej za pomocą spektrometru z siatką dyfrakcyjną. Długość fali,, [nm]
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 369 Wyznaczanie długości fali świetlnej za pomocą spektrometru z siatką dyfrakcyjną. Długość fali światła monochromatycznego
Cel ćwiczenia. Zagadnienia do opracowania. Zalecana literatura
1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej odległości pomiędzy ścieżkami zapisu na płycie CD i DVD oraz zapoznanie się z optycznymi metodami zapisu informacji. Zagadnienia do opracowania 1)
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Plan wynikowy (propozycja)
Plan wynikowy (propozycja) 2. Optyka (co najmniej 12 godzin lekcyjnych, w tym 1 2 godzin na powtórzenie materiału i sprawdzian bez treści rozszerzonych) Zagadnienie (tematy lekcji) Światło i jego właściwości
Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne
Ćwiczenie Nr 455 Temat: Efekt Faradaya I. Literatura. Ćwiczenia laboratoryjne z fizyki Część II Irena Kruk, Janusz Typek, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin. Ćwiczenia laboratoryjne
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja
interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona
Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia
Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum
Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Podstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
Interferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
Fizyka fal cyrklem i linijką
FOTON 124, Wiosna 2014 23 Fizyka fal cyrklem i linijką Jerzy Ginter Wydział Fizyki UW Istotnym elementem nauki geometrii na poziomie elementarnym były zadania konstrukcyjne, w których problem rozwiązywało
40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI
ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś