Algorytmy ewolucyjne NAZEWNICTWO
|
|
- Marta Zakrzewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne Ich cechą wspólną jest wykorzystanie schematu wzorowanego na teorii doboru naturalnego i ewolucji. 1
2 PODSTAWOWE POJĘCIA Osobnik - podstawowa jednostka podlegająca ewolucji. Zakładamy zwykle, że ów osobnik przebywa w pewnym środowisku, do którego może być lepiej lub gorzej przystosowany. Celem ewolucji jest stworzenie osobnika możliwie dobrze przystosowanego do danego środowiska. Fenotyp - ujawniające się na zewnątrz cechy danego osobnika. Genotyp - plan konstrukcyjny, kompletny i jednoznaczny opis osobnika zawarty w jego genach. Populacja - zespół osobników zamieszkujących wspólne środowisko i konkurujących o jego zasoby. -ATC-GCA-GGG- AGC-ACT-GTT- -ATC-GAA-GGG- AGC-ACA-GTT- Genotyp Fenotyp PODSTAWOWE ZASADY Genotyp danego osobnika w czasie jego życia nie ulega zmianie, natomiast ulega on modyfikacjom podczas rozmnażania się. Zmiany te mogą wynikać albo z niewielkich, losowych mutacji, albo ze zmieszania (skrzyżowania) cech osobników rodzicielskich. Zmiany w genotypie powodują zmiany fenotypu osobników potomnych, co wpływa na stopień ich przystosowania do środowiska. Zmiany fenotypu (nabyte) nie podlegają dziedziczeniu w sensie genetycznym. Zmiany w genotypie mają charakter przypadkowy. Zmiany korzystne dla osobnika zdarzają się równie często, jak niekorzystne lub obojętne. Osobniki są oceniane poprzez porównanie ich przystosowania do danego środowiska. Te, które są lepiej przystosowane, mają większą szansę rozmnożyć się. Osobniki gorzej przystosowane przegrywają konkurencję o ograniczone zasoby środowiska i giną. 2
3 ZASTOSOWANIE: PROBLEMY OPTYMALIZACYJNE Osobnik (fenotyp) Chromosom (genotyp) Przykładowe rozwiązanie Rozwiązanie zakodowane Przystosowanie do środowiska Optymalizowana funkcja Zmianom (mutacja, krzyżowanie) podlega genotyp osobnika, podczas gdy selekcji poddawane są fenotypy. Istotą ewolucji jest połączenie zjawiska losowych, nieukierunkowanych zmian genotypu ze ściśle ukierunkowaną presją środowiska na fenotyp. HISTORIA 1958, 1964 (Friedberg, Fogel) - programowanie ewolucyjne automatów skończonych (Bienert, Rechenberg, Schwefel) - strategie ewolucyjne, zastosowania praktyczne (Holland) - algorytmy genetyczne i ich teoria. Lata 80-te - liczne zastosowania algorytmów genetycznych. Koniec lat 80-tych (Fogel) - współczesna wersja programowania ewolucyjnego. Z. Michalewicz. Algorytmy genetyczne + struktury danych = programy ewolucyjne. D.E. Goldberg. Algorytmy genetyczne i ich zastosowania. WNT, Warszawa J.R. Koza. Genetic Programming: On the Programming of Computers by Means of the Natural Selection. The MIT Press,
4 ALGORYTM GENETYCZNY Cel: znaleźć maksimum funkcji. Założenie: funkcja ta jest dodatnia. 1. Tworzymy N osobników losowych. 2. Stosujemy operacje mutacji i krzyżowania N 3. Liczymy wartości funkcji celu. mutacje Osobnik: ciąg zerojedynkowy krzyżowanie 4. Dokonujemy selekcji. N 5. Powtarzamy od punktu 2. SCHEMAT DZIAŁANIA (1) Etap wstępny: kodowanie problemu Osobnik ciąg binarny stałej długości. Aby rozwiązać konkretne zadanie, musimy zakodować przestrzeń stanów (czyli wszystkie potencjalne rozwiązania) w języku binarnym. Jeżeli zadanie polega na znalezieniu maksimum jakiejś funkcji, możemy owej funkcji użyć jako stopnia przystosowania osobnika do środowiska. Często musimy sami taką funkcję skonstruować. Drugi krok algorytmu: mutacje i krzyżowania Mutacja: losujemy osobnika, następnie jeden z jego bitów. Zamieniamy wartość tego bitu na przeciwną. Mutacja dotyka średnio 0.1% bitów w populacji
5 SCHEMAT DZIAŁANIA (2) Krzyżowanie (crossing-over) Łączymy osobniki w pary. Dla każdej pary ustalamy (w drodze losowania, prawdopodobieństwo rzędu 20-50%), czy dojdzie do ich skrzyżowania. Jeśli tak, losujemy miejsce (bit) w chromosomie jednego z rodziców, po czym zamieniamy miejscami fragmenty chromosomów poczynając od wylosowanego miejsca. Rodzic Potomek 1 Rodzic Potomek 2 losowy punkt przecięcia (ten sam w obu osobnikach) SCHEMAT DZIAŁANIA (3) Czwarty krok algorytmu: selekcja Liczymy wartości funkcji celu osobników. Następnie, spośród N osobników populacji pośredniej losujemy N osobników populacji końcowej (z powtórzeniami), za pomocą algorytmu koła ruletki : 1. Liczymy sumę wartości funkcji celu: f sum = f(x 1 )++f(x N ). 2. Liczymy wkład każdego osobnika w sumę: p(x i ) = f(x i )/f sum 3. Dokonujemy N-krotnego losowania osobników zgodnie z rozkładem p(x i ). 20% 18% 12% 35% N 5
6 MOCNE STRONY Metoda jest uniwersalna. Aby tego samego programu użyć w innym problemie, przeważnie wystarczy zmienić funkcję celu. Algorytmy ewolucyjne potrafią poradzić sobie również tam, gdzie optymalizowana funkcja jest zaszumiona, zmienia się w czasie, ma wiele ekstremów lokalnych. Aby znaleźć rozwiązanie, nie musimy prawie nic wiedzieć o optymalizowanej funkcji ( czarna skrzynka ). Metoda jest szybka: znalezienie rozwiązania często jest możliwe po przejrzeniu zaskakująco niewielkiej części przestrzeni stanów. Ponieważ algorytm genetyczny jest algorytmem randomizowanym, możemy powtarzać obliczenia wielokrotnie w nadziei otrzymania lepszych wyników. SŁABE STRONY Metoda jest uniwersalna, więc nie tak skuteczna, jak bywają algorytmy specjalizowane (rada: stosować algorytmy hybrydowe). Sukces jest możliwy wyłącznie przy prawidłowym zakodowaniu problemu i odpowiednim dobraniu funkcji celu. Niestety, nie ma jednoznacznej teorii mówiącej, jak to robić. Jest to często - podobnie jak dobór parametrów mutacji i krzyżowania - sprawa wyczucia i doświadczenia programisty (rada: nabierać doświadczenia!). Ponieważ algorytm genetyczny jest algorytmem randomizowanym, nigdy nie mamy pewności, że znaleźliśmy rozwiązanie optymalne (rada: zadowolić się rozwiązaniem przybliżonym). 6
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Algorytmy ewolucyjne (2)
Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
ALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.
Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji
Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Zaawansowane programowanie
Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Wprowadzenie Problemy
Optymalizacja parametryczna (punkt kartezjańskim jest niewypukła).
METODY INTELIGENCJI OBLICZENIOWEJ wykład RODZAJE ZADAŃ OPTYMALIZACJI (w zależno ności od przestrzeni szukiwań) Optymalizacja parametryczna (punkt U jest wektorem zm. niezależnych nych):. Zadania ciągłe
ALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
Algorytmy ewolucyjne
Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach
Ewolucjonizm NEODARWINIZM Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Główne paradygmaty biologii Wspólne początki życia Komórka jako podstawowo jednostka funkcjonalna
Techniki ewolucyjne - algorytm genetyczny i nie tylko
Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
6. Algorytm genetyczny przykłady zastosowań.
6. Algorytm genetyczny przykłady zastosowań. 1. Zagadnienie magicznych kwadratów. Opis działania algorytmu Zagadnienie magicznych kwadratów polega na wygenerowaniu kwadratu n n, w którym elementami są
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie
6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie Do projektowania składu chemicznego stali szybkotn cych, które jest zadaniem optymalizacyjnym, wykorzystano
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Programowanie genetyczne
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych
Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Obliczenia Naturalne - Strategie ewolucyjne
Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Programowanie genetyczne - gra SNAKE
PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12
DOI: 10.21005/oe.2017.88.3.01 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 Anna LANDOWSKA ZASTOSOWANIE KLASYCZNEGO ALGORYTMU
ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie
Program "FLiNN-GA" wersja 2.10.β
POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika
ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA
ZESZYTY NAUKOWE 81-92 Ewa FIGIELSKA 1 ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA Streszczenie: Pojęcie algorytmy ewolucyjne obejmuje metodologie inspirowane darwinowską zasadą doboru naturalnego stosowane
Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne. Łukasz Pepłowski
Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne Łukasz Pepłowski Plan Metody Stochastyczne Łańcuchy Markowa Dynamika Brownowska Metoda Monte Carlo Symulowane
INTELIGENCJA OBLICZENIOWA. dr Katarzyna Grzesiak-Kopeć
INTELIGENCJA OBLICZENIOWA dr Katarzyna Grzesiak-Kopeć obliczenia ewolucyjne 2 Plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)
1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
1 Podstawowe pojęcia z zakresu genetyki. 2 Podstawowy model dziedziczenia
Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - zastosowania rachunku prawdopodobieństwa w genetyce Opracowanie: Antonina Urbaniak Podstawowe pojęcia z zakresu genetyki
Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.
Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/
Algorytmy ewolucyjne
Tomasz "Zyx" Jędrzejewski Algorytmy ewolucyjne Wersja 1.0 (6.07.2006) Szczegółowe informacje o licencji znajdują się pod artykułem. www.zyxist.com 1 Algorytmy ewolucyjne- www.zyxist.com Algorytmy ewolucyjne
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO AUTOMATYCZNEGO GENEROWANIA PLANU ZAJĘĆ 10
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 21 XV Seminarium ZASTOSOWANIE KOMPUTERÓW w NAUCE i TECHNICE 2005 Oddział Gdański PTETiS ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp