Podstawy geodezji. dr inż. Stefan Jankowski
|
|
- Dorota Nowakowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Podstawy geodezji dr inż. Stefan Jankowski
2 Systemy i układy odniesienia System odniesienia (reference system) to zbiór zaleceń, ustaleń, stałych i modeli niezbędnych do określenia pochodzenia, skali, orientacji osi układu współrzędnych i ich zmienności w czasie Układ odniesienia (reference frame) stanowi praktyczną realizację systemu odniesienia. Jest on zdefiniowany poprzez zbiór fizycznych punktów o dokładnie wyznaczonych współrzędnych w układzie określonym w definicji systemu odniesienia Układ współrzędnych (coordinate system) określa jednoznacznie sposób przyporządkowania zbioru wartości liczbowych (współrzędnych punktu) położeniu punktu w przestrzeni względem osi tego układu
3 Modele Ziemi Płaska Ziemia Kula
4 Powierzchnia odniesienia Fizyczna powierzchnia Ziemi jest bardzo skomplikowana i ma złożone kształty Z tych powodów ustalono pewien poziom, do którego odnoszą się pomiary powierzchni Ziemi. Jako poziom odniesienia przyjęto do poziomu mórz i oceanów z pełną równowagą zawartych w nich mas wody Poziom morza Fizyczna powierzchnia
5 Geoida Powierzchnia ekwipotencjalna ziemskiego pola grawitacyjnego, która wykazuje najlepsze dopasowanie, w sensie najmniejszych kwadratów, do powierzchni globalnego średniego poziomu morza
6 Elipsoida Elipsoida odniesienia (elipsoida obrotowa) - bryła matematyczna, najbardziej zbliżona do kształtu geoidy, którą można opisać analitycznie. Jest to powierzchnia zamknięta, powstała z obrotu elipsy wokół małej osi symetrii.
7 Porównanie elipsoidy i geoidy Ze względu na asymetrycznie rozłożenie mas w Ziemi, grawitacja ma nieregularny przebieg. Z tego powodu nie można wykorzystać geoidy jako dokładnej powierzchni odniesienia przy ustalaniu punktów Prostopadła do elipsoidy Prostopadła do geoidy Odchylenie linii pionu wzniesienie Wysokość elipsoidalna Odległość między powierzchniami elipsoidy i geoidy Wysokość geoidalna
8 Powierzchnie odniesienia kula geoida elipsoida R b a R = m a = m b = ,3142 m f = 1/298, e = 0, gdzie: R = średni promień ziemski a półoś wielka b półoś mała f spłaszczenie f = a b a e ekscentryczność e = a2 b 2 a 2
9 Elipsoidy: lokalne i globalne Najlepsze dopasowanie dla całej geoidy => globalna elipsoida odniesienia np. WGS84 Obszary, w których elipsoida jest bardzo dobrze dopasowana do geoidy (lokalne systemy odniesienia)
10 Elipsoidy odniesienia Nazwa Duża półoś (m) Mała półoś (m) Odwrotność spłaszczenia Modified Everest (Malaya) Revised Kertau , , , Timbalai , ,55 300, Sferoida Everesta , , , Maupertuis (1738) , Delambre (1810} , Everest (1830) , , , Airy (1830) , , , Bessel (1841) , , , Clarke (1866) , ,8 294, Clarke (1880) , , ,465 Helmert (1906) ,17 298,3 Hayford (1910) , Międzynarodowa (Hayford 1924) , NAD , , , Krassowski (1940) , ,3 WGS-66 (1966) , ,25 Australian National (1966) , ,25 Nowa Międzynarodowa (1967) , ,2 298, GRS-67 (1967) , , Południowo-Amerykańska (1969) , ,25 WGS-72 (1972) ,52 298,26 GRS 80 (1979) , , NAD ,3 298, WGS-84 (1984) , , IERS (1989) , ,257 Sfera (6371 km)
11 Układ odniesienia Układ odniesienia. W geodezji układem odniesienia nazywamy zbiór punktów odniesienia na powierzchni Ziemi i (często) powiązanym modelem kształtu Ziemi (elipsoidą odniesienia) używanym do definiowania układu współrzędnych geograficznych. Poziome odniesienia są używane do opisania położenia punktu na powierzchni Ziemi, w szerokości i długości geograficznej lub innych odpowiednich współrzędnych Południk Greenwich - 0 Królewskie Obserwatorium 0 Równik 0
12 Układ współrzędnych Ziemski układ współrzędnych Stały względem skorupy ziemskiej i obracający się wraz z nią Początek leży w lub w pobliżu środka ziemskiej grawitacji (w układzie geocentrycznym, lub leży na powierzchni Ziemi (system topocentryczny) Opisuje pozycję na / w pobliżu powierzchni Ziemi Układ współrzędnych astronomicznych Związany z układem słonecznym, stosowany dookreślania współrzędnych ciał niebieskich Współrzędne orbitalne używane do opisania położenia satelitów na orbicie wokół Ziemi
13 Ziemski układ współrzędnych Współrzędne geograficzne Podstawą są pomiary kątowe Kierunek północ południe to szerokość +/- 90 Kierunek wschód zachód to długość +/- 180 Współrzędne prostokątne Oparty na trójosiowym systemie prawoskrętnym (x,y,z) Używany do ustalania pozycji na powierzchni elipsoidy Jednostką zazwyczaj jest metr
14 Współrzędne geograficzne N W up to E up to 180 S 90 Szerokość od 0 na równiku do +90 na północ i do -90 na południe Długość od południka 0, przechodzącego przez Obserwatorium w Greenwich do+180 na wschód i do -180 na zachód
15 Szerokość N S 90 Długość łuku południka wyrażona w mierze kątowej, mierzona od równika do równoleżnika na którym znajduje się dany punkt (N lub S do max. 90 )
16 Szerokość N 90 = 22 N 0 S 90 Kat pomiędzy płaszczyzną równika a linia poprowadzoną ze środka Ziemi i przechodzącą przez dany punkt (N lub S do max 90 )
17 Długość W 90 N 90 E Długość łuku równika wyrażona w mierze kątowej, liczona od południka 0 do południka przechodzącego przez dany punkt (E lub W do max 180 ) 0 22
18 Długość N 90 0 = 44 E Kąt dwuścienny pomiędzy półpłaszczyzną południka 0 a półpłaszczyzną południka przechodzącą przez dany punkt na E i na W do max 180
19 Odwzorowanie Mercatora N W E S 90 66
20 Odwzorowanie Mercatora W 90 E
21 Odwzorowanie Mercatora W 90 E
22 Odwzorowanie Mercatora W E
23 Universal Tranversal Mercator UTM Południk styczny (osiowy, centralny) co 6 stopni długości geograficznej, co daje 60 stref po 6 stopni Pierwsza strefa W180 W174 Strefy podzielone na 20 pasów od C do X (poza I i O ) Każdy pas po 8 stopni szerokości geograficznej, poza X (12 stopni)
24 UTM: northing, easting Northing na półkuli północnej: odległość w metrach od równika na północ (do N84) Northing na półkuli południowej: 10 mln minus odległość [m] od równika na południe (do S80); false northing Easting odległość [m] od południka centralnego m; false easting Dodatnie wartości współrzędnych
25 Mapa nawigacyjna
26 Kierunki na mapie nawigacyjnej
27 Mila morska Mila morska (Mm, ang.: nautical mile NM, International Nautical Mile INM) jest jednostką odległości stosowaną w nawigacji morskiej oraz lotnictwie. Jest to długość łuku południka ziemskiego odpowiadająca jednej minucie kątowej koła wielkiego. W rzeczywistości ze względu na kształt kuli ziemskiej (Geoida) długość łuku 1 minuty kątowej jest różna w zależności od szerokości geograficznej, dlatego umownie przyjęto długość uśrednioną
28 Mila morska / nautical mile 1 NM 1 1 NM = km / ( ) = 1851,852 m m 1 NM = 10 kabli R Koło wielkie największe koło, jakie można wpisać w kulę. Jego średnica jest równa średnicy kuli, a samo koło dzieli ją na dwie symetryczne połowy, zwane półkulami. Jest to ślad płaszczyzny na kuli / sferze, która przechodzi przez jej środek. R R R R
29 Ortodroma / great circle / gc ortodroma [gr] prostobiożna, najkrótsza linia łącząca 2 punkty na powierzchni kuli o. jest łuk koła wielkiego, przechodzącego przez dane 2 punkty; na powierzchni kuli ziemskiej, w przeciwieństwie do loksodromy, o. przecina południki pod różnymi kątami. Oznaczenie GC (lub podobne należy zweryfikować w instrukcji obsługi) na wyświetlaczu odbiornika wskazuje, że żegluga odbywa się po ortodromie: odległość jest obliczana po kole wielkim a namiar jest początkowym kątem ortodromy
30 Loksodroma / rhumb line / rl loksodroma [gr.] skośnobieżna, linia na powierzchni kuli przecinająca wszystkie południki tej powierzchni pod stałym kątem α; gdy α jest kątem ostrym lub rozwartym (α 0, 90, 180 ), to l. ma kształt spirali z punktem asymptotycznym na biegunie; na mapie sporządzonej w odwzorowaniu Mercatora l. jest linią prostą, co znajduje zastosowanie w nawigacji (droga po l. oznacza drogę po stałym kursie); termin l. wprowadził Snellius (1624). RL (lub podobne należy zweryfikować w instrukcji obsługi) na wyświetlaczu odbiornika wskazuje, że żegluga odbywa się po loksodromie: odległość jest obliczana po loksodromie a namiar jest namiarem na cel lub kolejny punkt drogi
31 Heading Kurs Heading (hdg) zorientowanie statku (dziobu) względem północy kąt pomiędzy północną częścią lokalnego południka a dziobową częścią osi symetrii statku W zależności od przyjętej linii odniesienia, otrzymuje się: Compass N N Magnetic N Cc Cm Ct v d Compass course kurs kompasowy KK Magnetic course kurs magnetyczny KM True course kurs rzeczywisty KR magnetic variation deklinacja deviation deviacja
32 Namiar NR namiar rzeczywisty (ang. True bearing), kąt pomiędzy północną częścią lokalnego południka a linią łączącą obserwatora z namierzanym obiektem. Compass N N Magnetic N Bt Bm Bc Bc Compass bearing namiar kompasowy - NK Bm Magnetic bearing namiar magnetyczny - NM Bt True bearing namiar rzeczywisty - NR v magnetic variation deklinacja d deviation dewiacja
33 Kąt kursowy <K kąt kursowy (ang. relative bearing), kąt pomiędzy dziobową częścią osi symetrii statku a linią łączącą obserwatora z namierzanym obiektem. N NR <K
34 KDD, COG KDD kąt drogi nad dnem (ang. Course over ground), kąt pomiędzy północną częścią południka a linią drogi statku względem dna. N N dryf znos
35 KDW, CTW KDW kąt drogi względem wody (ang. Course through water), kąt pomiędzy północną częścią południka a linią drogi statku względem wody. N N znos
36 Koniec
Podstawy Nawigacji. Kierunki. Jednostki
Podstawy Nawigacji Kierunki Jednostki Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje,
Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych
Załącznik nr 1 Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów Tabela 1. Parametry techniczne geodezyjnego układu odniesienia PL-ETRF2000 Parametry techniczne geodezyjnego
Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.
Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym
nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.
14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej
Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"
Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane
Dwa podstawowe układy współrzędnych: prostokątny i sferyczny
Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym
Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski
Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)
Geografia jako nauka. Współrzędne geograficzne.
Geografia (semestr 3 / gimnazjum) Lekcja numer 1 Temat: Geografia jako nauka. Współrzędne geograficzne. Geografia jest nauką opisującą świat, w którym żyjemy. Wyraz geographia (z języka greckiego) oznacza
Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.
Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1
UKŁADY GEODEZYJNE I KARTOGRAFICZNE
UKŁADY GEODEZYJNE I KARTOGRAFICZNE Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu Model ZIEMI UKŁAD GEODEZYJNY I KARTOGRAFICZNY x y (f o,l o ) (x o,y o ) ZIEMIA
Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...
Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt
Gdzie się znajdujemy na Ziemi i w Kosmosie
Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych
Współrzędne geograficzne
Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna
PODSTAWY NAWIGACJI Pozycja statku i jej rodzaje.
PODSTWY NWIGCJI Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje, zamiana kierunków. Systemy
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu
GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W celu ujednolicenia wyników pomiarów geodezyjnych, a co za tym idzie umożliwienia tworzenia
Wykład 2 Układ współrzędnych, system i układ odniesienia
Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych
ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU.
SPIS TREŚCI Przedmowa ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU. 1.1. Szerokość i długość geograficzna. Różnica długości. Różnica szerokości. 1.1.1.
Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS
GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS Wiesław Graszka naczelnik
Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018
Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada 2018 1 / 24 Literatura 1 Geodezja współczesna
odwzorowanie równokątne elipsoidy Krasowskiego
odwzorowanie równokątne elipsoidy Krasowskiego wprowadzony w 1952 roku jako matematyczną powierzchnię odniesienia zastosowano elipsoidę lokalną Krasowskiego z punktem przyłożenia do geoidy w Pułkowie odwzorowanie
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Astronomia. Wykład II. Waldemar Ogłoza. Wykład dla studentów fizyki. > dla studentów > zajęcia W.Ogłozy
Astronomia Wykład II Wykład dla studentów fizyki Waldemar Ogłoza www.as.up.krakow.pl > dla studentów > zajęcia W.Ogłozy Układy współrzędnych sferycznych Koła Wielkie i Koła Małe RównoleŜniki to koła małe
Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA
Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA 2014-2015 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu materiały przygotowane m.in. w oparciu o rozdział Odwzorowania
b. Ziemia w Układzie Słonecznym sprawdzian wiadomości
a. b. Ziemia w Układzie Słonecznym sprawdzian wiadomości 1. Cele lekcji Cel ogólny: podsumowanie wiadomości o Układzie Słonecznym i miejscu w nim Ziemi. Uczeń: i. a) Wiadomości zna planety Układu Słonecznego,
24 godziny 23 godziny 56 minut 4 sekundy
Ruch obrotowy Ziemi Podstawowe pojęcia Ruch obrotowy, inaczej wirowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun Północny i Biegun Południowy.
Mapy papierowe a odbiornik GPS
Mapy papierowe a odbiornik GPS Na polskim rynku spotykamy mapy wykonane w kilku różnych układach odniesienia, z różnymi siatkami współrzędnych prostokątnych płaskich (siatkami kilometrowymi). Istnieje
Podręcznik Żeglarstwa. Szkoła Żeglarstwa SZEKLA
Podręcznik Żeglarstwa Szkoła Żeglarstwa SZEKLA Autor rozdziału: Wojciech Damsz Podstawy nawigacji dla Żeglarzy Jachtowych Nawigacja morska jest dziedziną wiedzy żeglarskiej, która umożliwia bezpieczne
ODWZOROWANIA KARTOGRAFICZNE
ODWZOROWANIA KARTOGRAFICZNE Określenie położenia Podstawą systemów geoinformacyjnych są mapy cyfrowe, będące pochodną tradycyjnych map analogowych. Układem opisującym położenie danych na powierzchni Ziemi
Zadania do testu Wszechświat i Ziemia
INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania
Spis treści. Przedmowa Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym
Spis treści Przedmowa................................................................... 11 1. Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym......................................................................
ODWZOROWANIA KARTOGRAFICZNE
ODWZOROWANIA KARTOGRAFICZNE Określenie położenia Podstawą systemów geoinformacyjnych są mapy cyfrowe, będące pochodną tradycyjnych map analogowych. Układem opisującym położenie danych na powierzchni Ziemi
I OKREŚLANIE KIERUNKÓW NA ŚWIECIE
GEOGRAFIA I OKREŚLANIE KIERUNKÓW NA ŚWIECIE a) róża kierunków b) według przedmiotów terenowych Na samotnie rosnących drzewach gałęzie od strony południowej są dłuższe i grubsze. Słoje w pieńkach od strony
RUCH OBROTOWY I OBIEGOWY ZIEMI
1. Wpisz w odpowiednich miejscach następujące nazwy: Równik, Zwrotnika Raka, Zwrotnik Koziorożca iegun Południowy, iegun Północny Koło Podbiegunowe Południowe Koło Podbiegunowe Południowe RUCH OROTOWY
Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego
Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy
1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18
: Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.
Układy współrzędnych. Gospodarka Przestrzenna. Józef Woźniak. Na podstawie wykładu Prof. R. Kadaja i Prof. E. Osady Na studium GIS
Układy współrzędnych Gospodarka Przestrzenna Józef Woźniak gis@pwr.wroc.pl Zakład Geodezji i Geoinformatyki Na podstawie wykładu Prof. R. Kadaja i Prof. E. Osady Na studium GIS Wrocław, 2012 Podział map
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Kartografia - wykład
prof. dr hab. inż. Jacek Matyszkiewicz KATEDRA ANALIZ ŚRODOWISKOWYCH, KARTOGRAFII I GEOLOGII GOSPODARCZEJ Kartografia - wykład Mapy topograficzne i geologiczne Część 1 MAPA Graficzny, określony matematycznie
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...
Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,
Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Zajęcia 1. Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych
KATEDRA GEODEZJI im. Kaspra WEIGLA Wydział Budownictwa i Inżynierii Środowiska Zajęcia 1 Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych Autor: Dawid Zientek Skrypty
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1
Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.
Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r.
Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia 10.01.2008r. ROZPORZĄDZENIE RADY MINISTRÓW z dnia 2008 r. w sprawie państwowego systemu odniesień przestrzennych Na podstawie art.
NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego.
RUCH OBIEGOWY ZIEMI NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. OBIEG ZIEMI WOKÓŁ SŁOŃCA W czasie równonocy
Tellurium szkolne [ BAP_1134000.doc ]
Tellurium szkolne [ ] Prezentacja produktu Przeznaczenie dydaktyczne. Kosmograf CONATEX ma stanowić pomoc dydaktyczną w wyjaśnianiu i demonstracji układu «ZIEMIA - KSIĘŻYC - SŁOŃCE», zjawiska nocy i dni,
Kartkówka powtórzeniowa nr 1
Terminarz: 3g 3 stycznia 3b 4stycznia 3e 11 stycznia 3a, 3c, 3f 12 stycznia Kartkówka powtórzeniowa nr 1 Zagadnienia: 1. Współrzędne geograficzne 2. Skala 3. Prezentacja zjawisk na mapach Ad. 1. WSPÓŁRZĘDNE
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
GEOMATYKA. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu
GEOMATYKA 2019 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu materiały przygotowane w oparciu o rozdział Odwzorowania kartograficzne współczesnych map topograficznych autorstwa
GEODEZJA OGÓLNA Wiadomości podstawowe
GEODEZJA OGÓLNA Wiadomości podstawowe mgr inż. Grzegorz Wydra Policealne Studium Budownictwa, Projektowania Architektonicznego i Geodezji w Toruniu Treść wykładu 1 Zarys historii geodezji Polska i świat
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Spis treści Wyznaczenie pozycji przy pomocy jednego obserwowanego obiektu... 47
Spis treści Podstawowe oznaczenia...5 1.Tabela dewiacji.....7 2. Pozycja zliczona.......8 2.1. Pozycja zliczona bez uwzględnienia działania wiatru i prądu...8 2.2. Pozycja zliczona przy uwzględnieniu działania
ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2010
Zawód: technik nawigator morski Symbol cyfrowy zawodu: 314[01] Numer zadania: 1 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu 314[01]-01-102 Czas trwania egzaminu: 240 minut
Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski
Satelity Ziemi Ruch w polu grawitacyjnym dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Satellites Satelity można podzielić na: naturalne (planety dla słońca/ gwiazd, księżyce dla planet) oraz sztuczne
Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.
ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia
4. Odwzorowania kartograficzne
4. Odwzorowania kartograficzne PRZYPOMNIJMY! SIATKA GEOGRAFICZNA układ południków i równoleżników wyznaczony na kuli ziemskiej lub na globusie. Nie występują tu zniekształcenia. SIATKA KARTOGRAFICZNA układ
Ziemia jako planeta w Układzie Słonecznym
Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta w Układzie Słonecznym Data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna
Fizyka 1(mechanika) AF14. Wykład 5
Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku. Autor: Arkadiusz Piechota
Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku Autor: Arkadiusz Piechota Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia
Radiolokacja. Wykład 3 Zorientowania, zobrazowania ruchu, interpretacja ruchu ech na ekranie
Radiolokacja Wykład 3 Zorientowania, zobrazowania ruchu, interpretacja ruchu ech na ekranie Zakres obserwacji Zakres obserwacji (ang.: range) wyrażony jest przez wartość promienia obszaru zobrazowanego
ĆWICZENIE 4. Temat. Transformacja współrzędnych pomiędzy różnymi układami
ĆWICZENIE 4 Temat Transformacja współrzędnych pomiędzy różnymi układami Skład operatu: 1. Sprawozdanie techniczne. 2. Tabelaryczny wykaz współrzędnych wyjściowych B, L na elipsoidzie WGS-84. 3. Tabelaryczny
Wędrówki między układami współrzędnych
Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość
Mobilne Aplikacje Multimedialne
Mobilne Aplikacje Multimedialne Rozszerzona rzeczywistość (AR, Augmented Reality) w Systemie Android Cz.1 Krzysztof Bruniecki Podstawy Algebra liniowa, operacje na wektorach, macierzach, iloczyn skalarny
Ekliptyka wielkie koło na sferze niebieskiej, po którym w ciągu roku pozornie porusza się Słońce obserwowane z Ziemi.
Ekliptyka wielkie koło na sferze niebieskiej, po którym w ciągu roku pozornie porusza się Słońce obserwowane z Ziemi. (struktura) Pierwsze pomiary przeprowadzone przez Newtona i Hughens`a wykazały,
Komentarz technik nawigator morski 314[01]-01 Czerwiec 2009
Strona 1 z 13 Strona 2 z 13 Strona 3 z 13 Strona 4 z 13 Strona 5 z 13 Strona 6 z 13 Zdający egzamin w zawodzie technik nawigator morski wykonywali zadanie praktyczne wynikające ze standardu wymagań o treści
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta
Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta Data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert Simmon, NASA GSFC. Piotr
Systemy informacji geograficznej GIS
Systemy informacji geograficznej GIS Wykład nr 1 Wprowadzenie Spis treści: Informacje ogólne Definicje Zastosowania systemów informacji przestrzennej Rozwój historyczny Związki z mapą Sposoby zapisu danych:
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
BADANIE WYNIKÓW KLASA 1
BADANIE WYNIKÓW KLASA 1 Zad. 1 (0-1p) Wielki Mur Chiński ma obecnie długość około 2500km. Jego długość na mapie w skali 1:200 000 000 wynosi A. 125 cm B. 12,5 cm C. 1,25 cm D. 0,125 cm Zad. 2 (0-1p) Rzeka
Wykład 2. Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa. Wykład 2 1
Wykład 2 Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa Wykład 2 1 Mapa - graficzna forma przekazu informacji o Ziemi. Wykład 2 2 Mapa Głównym zadaniem geodezji jest stworzenie obrazu
4. Ruch obrotowy Ziemi
4. Ruch obrotowy Ziemi Jednym z pierwszych dowodów na ruch obrotowy Ziemi było doświadczenie, wykazujące ODCHYLENIE CIAŁ SWOBODNIE SPADAJĄCYCH Z WIEŻY: gdy ciało zostanie zrzucone z wysokiej wieży, to
Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski
Globalny Nawigacyjny System Satelitarny GLONASS dr inż. Paweł Zalewski Wprowadzenie System GLONASS (Global Navigation Satellite System lub Globalnaja Nawigacjonnaja Sputnikowaja Sistiema) został zaprojektowany
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
ASG EUPOS w państwowym systemie odniesień przestrzennych
ASG EUPOS w państwowym systemie odniesień przestrzennych Marcin Ryczywolski Departament Geodezji, Kartografii i Systemów Informacji Geograficznej II Konferencja Użytkowników ASG EUPOS Katowice, 20 21 listopada
(a) (b) (c) o1" o2" o3" o1'=o2'=o3'
Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Test sprawdzający wiadomości z rozdziału I i II
Test sprawdzający wiadomości z rozdziału I i II Zadanie 1 Do poniższych poleceń dobierz najlepsze źródło informacji. Uwaga: do każdego polecenia dobierz tylko jedno źródło informacji. Polecenie Źródło
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
2. Kształt i rozmiary Ziemi
2. Kształt i rozmiary Ziemi Poglądy na temat kształtu ziemi zmieniały się wraz z poznawaniem przez człowieka świata oraz wraz z rozwojem wiedzy różnych nauk a także odkrywaniem czy konstruowaniem poszczególnych
Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych. Strefa danych matematycznych. Strefa opisu fizycznego.
Format MARC 21 rekordu bibliograficznego dla dokumentów kartograficznych Strefa danych matematycznych. Strefa opisu fizycznego. SKRÓT Irena Grzybowska i.grz@twarda.pan.pl STREFA DANYCH MATEMATYCZNYCH Dane
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)
TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone
Kartkówka powtórzeniowa nr 2
Terminarz: 3g 7 lutego 3b, 3e 8 lutego 3a, 3c, 3f 9 lutego Kartkówka powtórzeniowa nr 2 Zagadnienia: 1. czas słoneczny 2. ruch obrotowy i obiegowy Słońca 3. dni charakterystyczne, oświetlenie Ziemi Ad.
Kartografia - wykład
prof. dr hab. inż. Jacek Matyszkiewicz KATEDRA ANALIZ ŚRODOWISKOWYCH, KARTOGRAFII I GEOLOGII GOSPODARCZEJ Kartografia - wykład Systemy nawigacji satelitarnej i ich wykorzystanie w kartografii Systemy nawigacji
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Orientacja w terenie, kartografia
Orientacja w terenie, kartografia Arkadiusz Majewski 12.11.2013 KURS SKPB Terenoznawstwo Terenoznawstwo (Wikipedia) jest to sztuka orientacji w terenie, odczytywania yy i sporządzania map, posługiwania
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego