Analiza wybranych niepewności i błędów pomiarowych występujących podczas pomiarów tachimetrami elektrooptycznymi stosowanymi w budownictwie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza wybranych niepewności i błędów pomiarowych występujących podczas pomiarów tachimetrami elektrooptycznymi stosowanymi w budownictwie"

Transkrypt

1 Analiza wybranych niepewności i błędów pomiarowych wysępujących podczas pomiarów achimerami elekroopycznymi sosowanymi w budownicwie Mgr inż. Karol Daliga Poliechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Na przełomie XX i XXI wieku pojawiły się na polskim rynku najnowocześniejsze geodezyjne insrumeny pomiarowe, m.in. ze źródłem świała laserowego, sosowane w różnych branżach budownicwa i przemysłu. Posęp echniczny spowodował, że geodezyjne insrumeny pomiarowe są coraz dokładniejsze, prossze w obsłudze i coraz ańsze. Dosępność do nowoczesnych insrumenów i prosoa ich obsługi spowodowała znaczne skrócenie czasu prac geodezyjnych wykonywanych na budowach oraz zwiększyła efekywność pracy inżynierów geodezji i budownicwa (rys. 1). Duża efekywność pracy z geodezyjnymi insrumenami pomiarowymi jes spowodowana zwiększonym sopniem auomayzacji procesu pomiaru, archiwizacji danych oraz ich późniejszej obróbki. Jednocześnie auomayzacja wielu procesów a) oraz zmniejszenie sopnia rudności obsługi insrumenów pomiarowych powoduje o, że obserwaor operaor insrumenu pomiarowego częso bezkryycznie ufa wynikom uzyskanym dzięki sosowaniu nowoczesnego insrumenu pomiarowego. Dodakowo, obserwaor może uracić, w pewnym sopniu, konrolę nad wykonywanymi pomiarami i wynikami pomiaru. Ponado, świało laserowe o coraz większej mocy sosowane w insrumenach geodezyjnych swarza ryzyko nieumyślnego uszkodzenia oczu osoby posronnej przebywającej na budowie w obszarze wiązki świała laserowego. W arykule opisano niekóre zjawiska wysępujące podczas wykonywania pomiarów insrumenami geodezyjnymi, szczególnie z zasosowaniem emisji i rejesracji świała z zakresu widzialnego lub podczerwieni. Arykuł jes konynuacją emayki poruszanej m.in. w publikacjach [12, 17] poświęconych echnikom pomiarowym i insrumenom geodezyjnym sosowanym w budownicwie. WYBRANE NOWOCZESNE INSTRUMENTY GEO- DEZYJNE ZE ŹRÓDŁEM ŚWIATŁA LASEROWEGO STOSOWANE W BUDOWNICTWIE b) Rys. 1. Zasosowanie zesawu GPS i achimeru na budowie (a) [7] oraz w budownicwie drogowym (b) [10] W budownicwie są sosowane różne rodzaje nowoczesnych urządzeń i przyrządów pomiarowych. Można do nich również zaliczyć wszelkie geodezyjne insrumeny pomiarowe. Są one używane w rakcie realizacji obieków budowlanych, ich inwenaryzacji oraz do szczegółowej analizy zachowania się konsrukcji podczas eksploaacji. W rakcie budowy i eksploaacji budowla inżynierska oraz jej elemeny ulegają przemieszczeniom i odkszałceniom, kórych warości nie mogą przekraczać warości dopuszczalnych, zapewniających bezpieczną eksploaację. Pomiary przemieszczeń lub deformacji budowli mogą być mierzone w sposób względny lub bezwzględny. Do pomiarów względnych są sosowane czujniki lub przyrządy bezpośrednio monowane do konsrukcji (np. ensomery, akceleromery, przyrządy śledzące pozorny ruch plamki świała laserowego). Pomiary bezwzględne charakeryzuje odniesienie wyników pomiarów do bazy znajdującej się poza mierzonym obiekem. Do ych pomiarów zalicza się pomiary wykonywane np. niwelaorami, eodoliami, achimerami, skanerami laserowymi oraz pomiary saeliarne [11, 12]. Dzięki miniauryzacji i znacznemu obniżeniu koszów produkcji podzespołów elekronicznych oraz elekroopycznych achimery mają wbudowane dalmierze elekroopyczne z półprzewodnikowym źródłem świała, elekroniczne sysemy odczyu odległości oraz kierunków (do obliczania kąów pionowych i poziomych). Mają również sysem archiwizacji i ransferu danych oraz podsawowe funkcje obróbki danych. Przykładem 102

2 Przykładami achimerów (przemysłowych) z akimi funkcjami jes achimer Leica TS30 (rys. 3a) [6] oraz achimery SOKKIA serii NET (rys. 3b) [8]. Tachimer Leica TS30 wykonuje pomiar odległości z dokładnością do (0,6 mm + 1 mm/km) pomiar do pryzmau lub z dokładnością do (2 mm + 2 mm/km) dla pomiaru bezreflekorowego. Dokładność pomiaru kierunku wynosi 0,5 [6]. Tachimer SOKKIA NET05AX wykonuje pomiar odległości z dokładnością do (0,8 mm + 1 mm/km) pomiar do pryzmau lub z dokładnością do (1 mm + 1 mm/km) dla pomiaru bezreflekorowego. Dokładność pomiaru kierunku wynosi 0,5 [8]. ZAGROŻENIA PODCZAS POMIARÓW GEODEZYJ- NYCH WYKONYWANYCH INSTRUMENTAMI Z LASEROWYM ŹRÓDŁEM ŚWIATŁA Rys. 2. Tachimer firmy Topcon GTS-102N [9] achimeru ego ypu, sosowanego do pomiarów na budowie, jes achimer firmy Topcon GTS-102N przedsawiony na rys. 2. Jego dokładność pomiaru odległości do pryzmau wynosi (2mm+2mm/km), a pomiaru kierunków 2 [9]. Do pomiarów o większej dokładności kąowej niż 2 sosuje się achimery zmooryzowane (rys. 3). Dzięki zasosowaniu silników (serwomoorów) i odpowiedniemu oprogramowaniu achimery zmooryzowane porafią samodzielnie usawić oś celową na zadany kierunek. Jeżeli mają dodakowo opcję śledzenia reflekora (pryzmau), mogą samodzielnie, dokładnie usawić oś celową na reflekor w punkcie pomiarowym. Tachimery zmooryzowane można również zaprogramować ak, aby w sposób auomayczny śledziły kolejno położenie wielu pryzmaów. a) b) Porzeba wykonywania geodezyjnych pomiarów w budownicwie w różnych warunkach amosferycznych (wilgoności, emperaury), przy różnym oświeleniu i zapyleniu oraz na różnych powierzchniach markujących punky pomiarowe spowodowała konieczność zwiększenia mocy źródeł świała laserowego sosowanego w achimerach (w zakresie od poniżej 1 mw do ponad 5 mw). Do pomiarów, w kórych znacznikiem punku pomiarowego jes reflekor (lusro, pryzma, folia odblaskowa) lub pomiar jes prowadzony na małych odległościach (do około 30 m), wysarczy zasosowanie źródła świała laserowego klasy pierwszej. Lasery ej klasy są bezpieczne w racjonalnych warunkach pracy, zn. gdy są sosowane zgodnie z ich przeznaczeniem, są bezpieczne dla oka [15]. W przypadku, gdy pomiar położenia punku ma być wykonany z dużej odległości z zasosowaniem reflekora (powyżej 100 m) lub punk pomiarowy nie jes oznaczony reflekorem (zw. pomiar bezlusrowy) wymaga się zasosowania lasera większej mocy, np. powyżej 1 mw. W achimerach umożliwiających pomiar bezreflekorowy są sosowane lasery klasy 3R. Lasery ej klasy o lasery, dla kórych bezpośrednie parzenie w wiązkę, zarówno w wiązkę wychodzącą, jak i w wiązkę odbią (bezpośrednio i przez przyrządy opyczne) jes poencjalnie niebezpieczne [15]. Sosowane w achimerach półprzewodnikowe źródła świała laserowego emiują świało, zależnie od modelu achimeru, z zakresu nm. Promieniowanie z ego zakresu może powodować foochemiczne i ermiczne uszkodzenie siakówki oka, dlaego eż przed rozpoczęciem pomiarów należy sprawdzić, jakiej klasy laser jes zainsalowany w achimerze. Informacja o klasie lasera musi znajdować się w insrukcji obsługi insrumenu. Na obudowie insrumenu również powinna znajdować się żóło-czarna naklejka informująca o klasie lasera sosowanego w insrumencie. ANALIZA WPŁYWU ZMIANY WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA NA POMIAR ODLEGŁOŚCI METODĄ IMPULSOWĄ I FAZOWĄ Rys. 3. Przykłady przemysłowych achimerów zmooryzowanych: a) Leica TS30, b) SOKKIA serii NET [6, 8] Dalmierze elekroopyczne zainsalowane w achimerze dokonują pomiaru odległości meodą impulsowa lub fazową. Meoda impulsowa polega na wysyłaniu z dalmierza impulsów 103

3 świała oraz pomiaru czasu, w jakim impuls pokonał drogę od insrumenu do punku pomiarowego i z powroem. Na podsawie orzymanego czasu oraz współczynnika załamania świała (usalonego w insrumencie za pomocą poprawki amosferycznej, zależnej m.in. od emperaury [16]) jes obliczana odległość między insrumenem a punkem pomiarowym, zgodnie z równaniem (1) [14]: c c D = n = (1) n v gdzie: D odległość między achimerem i punkem pomiarowym, zmierzony czas między wysłaniem i odebraniem sygnału, c prędkość świała w próżni, n współczynnik załamania świała w powierzu (sosowany do obliczeń przez achimer), v prędkość świała w powierzu. Z równania (1) wynika, że obliczona odległość między achimerem a punkem pomiarowym jes zależna od przyjęego współczynnika załamania świała amosfery oraz zmierzonego czasu. Niedokładność pomiaru czasu oraz niepoprawnie przyjęa warość współczynnika załamania świała powoduje błędny pomiar. W celu uwzględnienia wpływu emperaury współczesne achimery mają możliwość wprowadzenia warości emperaury amosfery, w kórej są wykonywane pomiary. Służy ona do auomaycznego obliczenia poprawek amosferycznych, kóre określają warość współczynnika załamania świała amosfery w czasie pomiarów. Przykładowe odległości do punku obliczone na podsawie równania (1) przez przykładowy dalmierz impulsowy sosujący długość fali λ = 589,3 nm (barwy żółej) w zależności od emperaury amosfery przedsawiono w abl. 1. Tabl. 1. Porównanie obliczonych odległości w zależności od emperaury amosfery Temperaura [ C] Współczynnik załamania świała n [16] 0 1, Odległość rzeczywisa c [m] Odległość obliczona przez dalmierz [m] 199, , , , , , , , ,949 Zdarza się czasami, że podczas pomiarów, w celu ochrony przed deszczem, achimer należy przykryć przezroczysą osłoną. Taka osłona powoduje powsanie błędów sysemaycznych pomiaru odległości oraz kierunków. Poniżej zaprezenowano analizę przypadku błędu sysemaycznego pomiaru odległości spowodowanego obecnością przezroczysej osłony achimeru. Schemayczny rysunek położenia osłony między achimerem a punkem pomiarowym przedsawiono na rys. 4. Dla warości współczynnika załamania świała amosfery n i przy osłonie P o grubości d i współczynniku załamania świała n p, czas porzebny wysłanemu impulsowi na przebycie drogi 2D można obliczyć za pomocą równania (2): n p ' 2 n n = D + 2d (2) c c Rys. 4. Schema pomiaru odległości do punku achimerem w przezroczysej osłonie Po przekszałceniu równań (1) i (2) orzymuje się równanie (3) opisujące różnicę między odległością do punku pomiarowego D a odległością zmierzoną przez achimer w osłonie: np n D = d (3) n Jeżeli przyjmiemy, że n = 1 (współczynnik załamania amosfery), a osłona wykonana jes ze szkła o współczynniku załamania świała n p = 1,45, o isnienie osłony spowoduje zawyżenie odczyu o ΔD = 0,45d (dla osłony grubości 2 mm ΔD = 0,9 mm). W achimerze z fazowym pomiarem odległości deekor rejesruje różnice faz między sygnałem emiowanym a sygnałem odebranym po odbiciu od punku pomiarowego. Fazowy pomiar odległości również zależy od właściwie przyjęego współczynnika załamania świała amosfery. Odległość a jes obliczana z równania (4) [14]: c λ D = ( N + R) = ( N + R) 2 f n 2 gdzie: D odległość między achimerem a punkem pomiarowym, c prędkość świała w próżni, f częsoliwość fali wzorcowej, n współczynnik załamania świała zasosowany do obliczenia odległości, N liczba pełnych długości fali wzorcowej mieszczących się w odległości 2D (wpros nierejesrowalna), R resza (rejesrowana przez fazomierz), λ długość fali wzorcowej emiowanej przez dalmierz. Producenci achimerów zamieszczają w insrukcjach obsługi równania i nomogramy, za pomocą kórych można obliczyć wpływ współczynnika załamania świała na pomiar odległości [13]. Wzory e są również zaimplemenowane w insrumencie pomiarowym. WPŁYW REFRAKCJI ŚWIATŁA NA WYNIKI POMIARÓW GEODEZYJNYCH Warość współczynnika załamania świała n wpływa nie ylko na pomiar odległości. Zmiana współczynnika załamania świała n, zgodnie z prawem Snelliusa, może prowadzić do wysąpienia zjawiska refrakcji. Zjawisko refrakcji wysępuje, gdy gradien współczynnika załamania świała ma składową prosopadłą i równoległą do kierunku biegu promienia świała. Zjawi- (4) 104

4 PODSUMOWANIE Rys. 5. Schema zjawiska refrakcji dla wiązki świała sko o objawia się ciągłą zmianą kierunku biegu wiązki świała. Zjawisko refrakcji przedsawiono schemaycznie na rys. 5, gdzie małe n oznacza obszar o mniejszej warości współczynnika załamania, naomias duże n oznacza obszar o większej warości współczynnika załamania świała. Zjawisko refrakcji nie wpływa znacząco na pomiar odległości (oszacowane wydłużenie o około 1 mm na długości 1 km) [4]. Naomias wpływa niekorzysnie na pomiar kierunków oraz yczenie linii prosej (odchylenie od linii prosej może wynosić około 1 mm/100 m) [1]. Zjawisko refrakcji powoduje wzros niepewności pomiaru, ponieważ nie jes możliwe dokładne określenie jego wpływu na warość pomiaru odległości i kierunków. Zjawisko refrakcji wysępuje m.in. w obszarze o przesrzennie zmiennej wilgoności, emperaurze [3] oraz w pobliżu obszarów silnych pól elekrycznych [2]. Przykładem obszarów o zmiennej wilgoności są ereny przybrzeżne. Podczas wykonywania pomiarów geodezyjnych na ych erenach, np. przy realizacji obieków hydroechnicznych ypu nabrzeży, falochronów (rys. 6) lub zapór wodnych, należy bezwzględnie uwzględniać wpływ refrakcji. Wpływ zjawiska refrakcji, w przypadku przedsawionym na rys. 6, będzie największy, jeżeli oś celowa achimeru (kierunek pomiaru) będzie przechodzić przez Obszar zjawiska refrakcji. Zjawisko refrakcji będzie miało mniejszy wpływ na niepewność pomiaru, jeżeli oś celowa będzie znajdować się w obszarze nabrzeża lub falochronu. Współczesne achimery elekroopyczne są coraz doskonalsze i bardzo przydane do pomiarów przemieszczeń wybranych punków oraz deformacji całych budowli inżynierskich. Jeżeli paramery amosfery między achimerem i punkem pomiarowym są jednorodne, niezmienne lub mierzone są małe odległości, o wpływ refrakcji i błąd pomiaru odległości związany z amosferą można ławo oszacować lub pominąć. Jeżeli paramery amosfery między insrumenem i punkem pomiarowym wykazują dużą zmienność, należy być świadomym, że rejesrowane dane będą obarczone błędami przypadkowymi, kóre zmniejszają dokładność pomiaru. Jes o isone, jeżeli rejesrowane przemieszczenia punków pomiarowych znajdujących się na budowli inżynierskiej są rzędu milimerów. Przedsawione zagadnienia doyczą nie ylko achimerów. Doyczą one również innych meod pomiarowych, sosujących emisję i/lub rejesrację promieniowania elekromagneycznego, wykorzysywanych w budownicwie i geodezji. W rakcie pomiarów należy zawsze pamięać o bezpieczeńswie swoim i innych osób. Należy być zawsze świadomym, jakie mogą być skuki niewłaściwego posługiwania się świałem laserowym emiowanym przez achimer i inne insrumeny sosujące en rodzaj świała do pomiarów. LITERATURA 1. Bryś H.: Geomeria refrakcji aliniomerycznej ze srefowym oddziaływaniem pól emperaury. IV Konferencja Naukowo-Techniczna Problemy auomayzacji w geodezji inżynieryjnej, Warszawa Bryś H.: Influence of Curren Power Line Elecric Field on Refracion. AVN 119 (2012) Bryś H., Ćmielewski K., Kowalski K.: Mahemaic-physic models of horizonal refracion in engineering and indusrial measuremens of he highes precision. Repors on Geodesy, No. 2 (87), Grabowski R., Kobryń A.: Określanie paramerów Krzywych refrakcyjnych przy pomiarze przemieszczeń pionowych meodą niwelacji rygonomerycznej. IV Konferencja Naukowo-Techniczna Problemy auomayzacji w geodezji inżynieryjnej, Warszawa hp:// 6. hp:// ( ). 7. hp:// hp:// ( ). hp:// ( ). 10. hp:// 11. Kurałowicz Z., Szczechowski B.: Możliwość zasosowania nowoczesnych echnologii geodezyjnych w budownicwie. Sesja Jubileuszowa 60-lecia Kaedry Geodezji Poliechniki Gdańskiej, Gdańsk Rys. 6. Przykładowy obszar wysępowania zjawiska refrakcji [5] ( przykładowe sanowisko pomiarowe) 12. Kurałowicz Z., Żurowski A.: Zasosowanie geodezyjnych meod badawczych w budownicwie. Inżynieria i Budownicwo 12/

5 13. Leica TPS1200 Insrukcja obsługi hp://gik.wbiis.u.koszalin.pl/docs/ lgik/tps1200_user_pl-popr.pdf 14. Płaek A.: Geodezyjne dalmierze elekromagneyczne i achymery elekroniczne. Część pierwsza: Geodezyjne dalmierze elekromagneyczne do pomiarów erenowych, PPWK, Warszawa PN-EN :2005, Bezpieczeńswo urządzeń laserowych Część 1: Klasyfikacja sprzęu, wymagania i przewodnik użykownika. 16. Tablice Fizyczno-Asronomiczne. Wydawnicwo Adamanan Żurowski A., Dunikowski R., Chmielecki M., Kmiecik J.: Geodezyjne pomiary konrolne orów spusowych pochylni i wyciągów. Inżynieria Morska i Geoechnika, nr 5/

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Rozkład i Wymagania KLASA III

Rozkład i Wymagania KLASA III Rozkład i Wymagania KLASA III 10. Prąd Lp. Tema lekcji Wymagania konieczne 87 Prąd w mealach. Napięcie elekryczne opisuje przepływ w przewodnikach, jako ruch elekronów swobodnych posługuje się inuicyjnie

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Dalmierze elektromagnetyczne

Dalmierze elektromagnetyczne Dalmierze elektromagnetyczne Dalmierze elektromagnetyczne klasyfikacja i zasada działania Klasyfikacja dalmierzy może być dokonywana przy założeniu rozmaitych kryteriów. Zazwyczaj przyjmuje się dwa. 1.

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

SPRAWOZDANIE Z PROJEKTU Dioda jako czujnik temperatury

SPRAWOZDANIE Z PROJEKTU Dioda jako czujnik temperatury emperaury 1. Cele Sprawdzenie zależności między emperaurą a naężeniem świała emiowanego przez diodę LED (napięciem baza-emier na ranzysorze) w układzie z Rys.1 (parz srona 1 Budowa układu ). 2. Wykaz przyrządów

Bardziej szczegółowo

VII.5. Eksperyment Michelsona-Morleya.

VII.5. Eksperyment Michelsona-Morleya. Janusz. Kępka Ruch absoluny i względny VII.5. Eksperymen Michelsona-Morleya. Zauważmy że pomiar ruchu absolunego jakiegokolwiek obieku maerialnego z założenia musi odnosić się do prędkości fali świelnej

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSTANCYJNYCH CZUJNIKÓW TEMPERATURY

BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSTANCYJNYCH CZUJNIKÓW TEMPERATURY BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSANCYJNYCH CZUJNIKÓW EMPERAURY. Cel ćwiczenia Celem ćwiczenia jes eksperymenalne wyznaczenie charakerysyk dynamicznych czujników ermomerycznych w różnych ośrodkach

Bardziej szczegółowo

KONTROLA JAKOŚCI ŻELIWA AUSTENITYCZNEGO METODĄ ATD

KONTROLA JAKOŚCI ŻELIWA AUSTENITYCZNEGO METODĄ ATD 50/ Archives of Foundry, Year 001, Volume 1, 1 (/) Archiwum Odlewnicwa, Rok 001, Rocznik 1, Nr 1 (/) PAN Kaowice PL ISSN 164-5308 KONTROLA JAKOŚCI ŻLIWA AUSTNITYCZNGO MTODĄ ATD R. WŁADYSIAK 1 Kaedra Sysemów

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Synteza i analiza stanu polaryzacji światła metodą ogólnego prawa Malusa

Synteza i analiza stanu polaryzacji światła metodą ogólnego prawa Malusa nsrukcja robocza do ćwiczenia 4 Syneza i analiza sanu polaryzacji świała meodą ogólnego prawa Malusa. Układ pomiarowy Układ pomiarowy składa się z polarymeru, zasilacza sabilizowanego ZS-52, wolomierza

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę Klasa III 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne 10.. Źródła prądu. Obwód elekryczny Wymagania na poszczególne oceny przy realizacji i podręcznika Zrozumieć

Bardziej szczegółowo

ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU

ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAśENIA ELEKTRYCZNEGO SAMOCHODU LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Radosław GAD 1 Moniorowanie diagnosyczne, model dynamiczny, diagnosyka pojazdowa ANALIZA BIPOLARNEGO

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY

TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY Oleksandra HOTRA Oksana BOYKO TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY STRESZCZENIE Przedsawiono układ kompensacji emperaury wolnych końców ermopary z wykorzysaniem

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Higrostaty pomieszczeniowe

Higrostaty pomieszczeniowe 58 Higrosay pomieszczeniowe do wilgoności względnej QFA Higrosay z mikroprzełącznikiem ze sykiem przełączającym Elemen pomiarowy wilgoności w posaci paska wykonanego ze sabilizowanego worzywa szucznego

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z izyki - klasa III (obowiązujące w roku szkolnym 013/014) 8. Drgania i ale sprężyse!wskazuje w ooczeniu przykłady ciał wykonujących ruch drgający!podaje znaczenie pojęć: położenie

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnału przetwornika obrotowo-impulsowego

Cyfrowe przetwarzanie sygnału przetwornika obrotowo-impulsowego Cyfrowe przewarzanie sygnału przewornika obroowo-impulsowego Eligiusz PAWŁOWSKI Poliechnika Lubelska, Kaedra Auomayki i Merologii ul. Nadbysrzycka 38 A, 20-68 Lublin, email: elekp@elekron.pol.lublin.pl

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych Ćwiczenie 6 BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERNKOWEGO MiCOM P127 1. Przeznaczenie i zasosowanie przekaźników kierunkowych Przekaźniki kierunkowe, zwane eż kąowymi, przeznaczone

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU 5. Cel ćwiczenia Celem ćwiczenia jes poznanie podsawowych meod pomiaru częsoliwości, okresu, czasu rwania impulsu, czasu przerwy, ip. 5.2 Wprowadzenie Częsoliwością

Bardziej szczegółowo

Kontroler ruchu i kierunku obrotów KFD2-SR2-2.W.SM. Charakterystyka. Konstrukcja. Funkcja. Przyłącze

Kontroler ruchu i kierunku obrotów KFD2-SR2-2.W.SM. Charakterystyka. Konstrukcja. Funkcja. Przyłącze Konroler ruchu i kierunku obroów Charakerysyka Konsrukcja -kanałowy separaor galwaniczny Zasilanie 4 V DC Wejścia ypu PNP/push-pull, syk lub Programowane częsoliwości graniczne wyjścia syku przekaźnika

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła POLITECHNIKA BIAŁOSTOCKA Wydział Budownicwa i Inżynierii Środowiska Kaedra Ciepłownicwa, Ogrzewnicwa i Wenylacji Insrukcja do zajęć laboraoryjnych Ćwiczenie nr 6 Laboraorium z przedmiou Alernaywne źródła

Bardziej szczegółowo

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja

Bardziej szczegółowo

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. 3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane

Bardziej szczegółowo

Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania

Wskazówki projektowe do obliczania nośności i maksymalnego zanurzenia statku rybackiego na wstępnym etapie projektowania CEPOWSKI omasz 1 Wskazówki projekowe do obliczania nośności i maksymalnego zanurzenia saku rybackiego na wsępnym eapie projekowania WSĘP Celem podjęych badań było opracowanie wskazówek projekowych do wyznaczania

Bardziej szczegółowo

Kontroler ruchu i kierunku obrotów KFD2-SR2-2.W.SM. Charakterystyka. Konstrukcja. Funkcja. Przyłącze

Kontroler ruchu i kierunku obrotów KFD2-SR2-2.W.SM. Charakterystyka. Konstrukcja. Funkcja. Przyłącze Konroler ruchu i kierunku obroów Charakerysyka Konsrukcja -kanałowy separaor galwaniczny Zasilanie 4 V DC Wejścia ypu PNP/push-pull, syk lub NAMUR Programowane częsoliwości graniczne wyjścia syku przekaźnika

Bardziej szczegółowo

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT 1 Zbigniew Figiel, Piotr Dzikowicz Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie 2 Plan prezentacji 1. Skanowanie laserowe 3D informacje ogólne; 2. Proces skanowania; 3. Proces

Bardziej szczegółowo

BUDYNEK OŚRODKA SZKOLENIA W WARSZAWIE KW PSP w WARSZAWIE i JEDNOSTKI RATOWNICZO-GAŚNICZEJ NR 8 KM PSP w WASZAWIE ul. Majdańskia 38/40, 04-110 Warszawa

BUDYNEK OŚRODKA SZKOLENIA W WARSZAWIE KW PSP w WARSZAWIE i JEDNOSTKI RATOWNICZO-GAŚNICZEJ NR 8 KM PSP w WASZAWIE ul. Majdańskia 38/40, 04-110 Warszawa DOKUMENTACJA OKREŚLAJĄCA SCENARIUSZ ODNIESIENIA (baseline) oraz OSZACOWANIE EMISJI I REDUKCJI, OGRANICZENIA LUB UNIKNIĘCIA EMISJI BUDYNEK OŚRODKA SZKOLENIA W WARSZAWIE KW PSP w WARSZAWIE i JEDNOSTKI RATOWNICZO-GAŚNICZEJ

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r. Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge - Definicja geodezji, jej podział i zadania. - Miary stopniowe. - Miary długości. - Miary powierzchni pola. - Miary gradowe.

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości

Bardziej szczegółowo

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD

IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy

Bardziej szczegółowo

Przemysław Kowalski Instytut Informatyki Teoretycznej i Stosowanej PAN

Przemysław Kowalski Instytut Informatyki Teoretycznej i Stosowanej PAN Opracowanie systemowych rozwiązań wspomagających zabezpieczenie miejsca zdarzenia i proces wykrywczy na podstawie materiału dowodowego utrwalonego za pomocą technik skaningu laserowego oraz satelitarnych

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

Tadeusz Szczutko Badania eksploatacyjne układów dalmierczych tachimetru Topcon GPT-3005LN w zakresie krótkich odległości

Tadeusz Szczutko Badania eksploatacyjne układów dalmierczych tachimetru Topcon GPT-3005LN w zakresie krótkich odległości Tadeusz Szczutko Badania eksploatacyjne układów dalmierczych tachimetru Topcon GPT-3005LN w zakresie krótkich odległości Acta Scientifica Academiae Ostroviensis nr 27, 85-92 2007 Tadeusz Szczutko Badanie

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET Wydział Elekroniki Mikrosysemów i Fooniki Poliechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 5 Przełącznikowy ranzysor mocy MOSFET Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH

4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH 4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Promieniowanie synchrotronowe i jego zastosowania

Promieniowanie synchrotronowe i jego zastosowania Universias Jagellonica Cracoviensis Promieniowanie synchroronowe i jego zasosowania Wykład II J.J. Kołodziej Pokój: G--11, IFUJ Łojasiewicza 11 Tel.+1 664 4838 jj.kolodziej@uj.edu.pl Wykłady na WFAiS,

Bardziej szczegółowo

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Arur KIERZKOWSKI 1 Saek powierzny, proces obsługi, modelownie procesów ransporowych MODELOWANIE

Bardziej szczegółowo

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

WYZNACZANIE WYBRANYCH PARAMETRÓW STANOWISKA LABORATORYJNEGO DO BADANIA OPTOELEKTRONICZNYCH GŁOWIC ŚLEDZĄCYCH

WYZNACZANIE WYBRANYCH PARAMETRÓW STANOWISKA LABORATORYJNEGO DO BADANIA OPTOELEKTRONICZNYCH GŁOWIC ŚLEDZĄCYCH MECHANIK 73 XVII Międzynarodowa zkoła Kompuerowego Wspomagania Projekowania Wywarzania i Eksploaacji r inż. Włodzimierz BOROWCZYK r inż. Wojciech KACZMAREK Wojskowa Akademia Techniczna WYZNACZANIE WYBRANYCH

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa II (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa II (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z fizyki - klasa II (obowiązujące w roku szkolnym 013/014) 6. Praca. Moc. Energia!oblicza moc na podsawie wzoru!podaje jednoski mocy i przelicza je W P =!podaje przykłady energii

Bardziej szczegółowo

Pomiar współczynników sprężystości i lepkości skórki ogórka.

Pomiar współczynników sprężystości i lepkości skórki ogórka. Pomiar współczynników sprężysości i lepkości skórki ogórka. Przyrządy. Uniwersalna maszyna wyrzymałościowa serownie esem i rejesracja wyników. Główną częścią maszyny wyrzymałościowej jes czujnik siły umieszczony

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Warstwa fizyczna. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa. Sieciowa. Sieciowa.

Warstwa fizyczna. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa. Sieciowa. Sieciowa. Warswa fizyczna Model OSI Model TCP/IP Aplikacji Prezenacji Aplikacji Sesji Transporowa Sieciowa Transporowa Sieciowa przesłanie informacji przez nośnik fizyczny Łącza danych Fizyczna Dosępu do sieci Przegląd

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

Wyznaczanie charakterystyk częstotliwościowych

Wyznaczanie charakterystyk częstotliwościowych Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod

Bardziej szczegółowo