Energia kulombowska jądra atomowego

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Energia kulombowska jądra atomowego"

Transkrypt

1 744 einhad Kulessa 6. Enegia kulombowska jąda atomowego V Enegię tą otzymamy w opaciu o wzó (6.6) wstawiając do niego wyażenie na potencjał (6.4) pochodzący od jednoodnie naładowanej kuli. Obliczenie wykonamy we współzędnych sfeycznych. Wtedy: Wykład 5 8 ) ( Ze πε τ ρ d τ V W ) ( ) ( coul Ze d Ze d d E sin πε π ρ πε θ θ ϕ ρ π π Po uposzczeniach i wstawieniu wyażenia na ρ otzymujemy: ( ) Ze E coul πε Ze dla ) ( dla 4 ) ( ρ π ρ ρ (6.5)

2 We wzoze (6.6) uwzględniane są oddziaływania pomiędzy wszystkimi ładunkami. Musimy więc odjąć odjąć enegie własne wszystkich potonów, któe mają ładunek e, czyli Z e πε Enegia kulombowska jąda jest więc ówna óżnicy watości podanej we wzoze (6.5) i powyższej watości. Na enegie kulombowską jąda atomowego otzymujemy więc watość: E coul 744 einhad Kulessa e Z( Z πε ) (6.6) W opaciu o ten wzó można oszacować pomień jąda w pzypadku jąde zwieciadlanych, czyli takich dla któych A A, Z N i Z N.

3 6C B Weźmy dla pzykładu dwa jąda zwieciadlane 5 i 5 6. óżnica enegii kulombowskich tych jąde jest ówna; E E ( Z + ) E ( Z) coul coul e πε Otzymujemy po podstawieniu watości E8.64/ [MeV]. Doświadczalnie zmiezona óżnica enegii (óżnica mas) dla podanych jąde wynosi E.786 MeV. Możemy stąd wyznaczyć watość pomienia jąda o liczbie masowej A. Na watość pomienia otzymujemy:. fm.94 A fm Jakie z tych ozważań możemy wyciągnąć wnioski? 744 einhad Kulessa

4 I. Możemy te ozważania uważać za potwiedzenie paw elektostatyki dla zjawisk na odległościach cm, mimo, że oceniona watość pomienia jest ok.. 5% większa niż otzymana innymi metodami. W naszych ocenach nie uwzględniliśmy pewnych efektów, któe należy ozważać na guncie mechaniki kwantowej. II. Dugi wniosek wychodzący poza elektostatykę to fakt, że zaniedbanie óżnicy oddziaływań silnych np, pp i pn daje mały wpływ na pomień jąda, co oznacza niezależność ładunkową oddziaływań silnych. Fakt ten w naszym pzypadku jest potwiedzony pzez badzo dobą zgodność poziomów enegetycznych enegetycznych ozważanych jąde zwieciadlanych. 744 einhad Kulessa 4

5 B C 744 einhad Kulessa 5

6 6. Klasyczny pomień elektonu Wzó (6.5) podający enegię kulombowską jednoodnie naładowanej kuli, możemy wykozystać do oszacowania tzw. klasycznego pomienia elektonu. Załóżmy, że elekton jest kulką o pomieniu jednoodnie wypełniony ładunkiem. Oszacowania tego dokonamy pzyównując Enegię kulombowską elektonu, do enegii jego masy spoczynkowej. Otzymamy wtedy: UZUPEŁ m c e πε e e e NIENIE πε m c e e Jeżeli elekton byłby kulą o pomieniu lecz pzewodzącą, to ładunek skupiłby się na powiezchni, wtedy; 744 einhad Kulessa 6

7 m c e 8 πε e e UZUPEŁNIENIE e 8πε m c e e Mamy więc niepewność dotyczącą ozłożenia ładunku w elektonie. Doświadczenie wskazuje jednak, że aż do ozmiaów 8 w pocesie anihilacji e + e cząstki te są punktowe. Jako klasyczny pomień elektonu definiuje się jako: e 4 πε e m c e m Powyższa wielkość jest właściwie oceną obszau w któym znajduje się ładunek elektonu, a nie pomienia elektonu. 744 einhad Kulessa 7

8 W 6.4 Enegia własna dipola Enegię własną dipola możemy posto policzyć w opaciu o wzó (6.5). N N q V ( ξ i k i ) Ładunek ujemny znajduje się w potencjale i k i + ładunku dodatniego V. 4πε L L Ładunek dodatni znajduje się w potencjale ładunku ujemnego V. 4πε L Na enegię elektostatyczną dipola otzymujemy: W 4πε L + 4πε L 4πε L 744 einhad Kulessa 8

9 Enegia ta zmienia się w sposób monotoniczny i nie ma ekstemów. Układ ten jest stabilny tylko wtedy, gdy ładunki pozostają w stałej odległości od siebie. 744 einhad Kulessa 9

10 6.5 Enegia elektostatyczna kyształu jonowego ozważmy jako pzykład kyształ soli kuchennej NaCl. Dodatnie jony sodu i ujemne jony chlou twozą egulaną kubiczną sieć kystaliczną w któym jony te są ułożone napzemiennie tak jak na poniższym ysunku. Cl Na 8 Å Doświadczalna enegia ozdzielenia kyształu NaCl na jony Na + i Cl wynosi 7.9 ev. ev.6 9 J Enegia ozdzielenia jednego mola (N6. cząstek) wynosi W J/mol 8 kcal/mol. 744 einhad Kulessa

11 Czy możemy tą enegie policzyć? Zgodnie z naszą teoią paca ta jest sumą enegii potencjalnych wszystkich pa jonów. A enegia jednej pay jonów wynosi q u q 4πε a a 4πε W gdzie u Enegia ta wynosi 5. ev. Musimy zsumować pzyczynki pochodzące od wszystkich jonów. Zaczynając od śodkowego jonu Na + otzymujemy: Na einhad Kulessa

12 u 8 W a + + ev Wynik ten jest ~% większy od doświadczalnego. Jednak pzypuszczenie że sieć kystaliczna jest utzymywana w całości pzez siły kulombowskie jest słuszna. óżnica pomiędzy wielkością obliczoną a doświadczalna bieze się z nieuwzględnienia sił odpychających, któe osną gdy maleje, oaz od innych pzyczynków. 744 einhad Kulessa

13 7. Pojemność elektyczna 7. Pole elektyczne nieskończonej naładowanej wastwy σ ładunek z powiezchniowy +σ S E E y ds x S ds 744 einhad Kulessa

14 Natężenie pola elektycznego pochodzące od nieskończonej naładowanej wastwy możemy wyznaczyć dwoma sposobami, metodą supepozycji, oaz w opaciu o pawo Gaussa. Zgodnie z pawem Gaussa całkowity stumień jest ówny Φ ε Linie natężenia pola elektycznego są postopadłe do naładowanej płaszczyzny, wobec tego całkowity stumień wynosi: Φ ( E ds + E ds ) S Widzimy z ysunku, że ds Całkowity stumień jest więc ówny: 744 einhad Kulessa 4 ds, E E

15 744 einhad Kulessa 5 ε σ ε Φ S S E Czyli: ε σ E Pole pochodzące od tej wastwy wygląda następująco: y z E y σ ε E y σ ε

16 7. Pole między dwoma naładowanymi wastwami +σ i σ Zastanówmy się jaka jest watość pola pomiędzy dwoma pzeciwnie naładowanymi wastwami. +σ σ σ ε σ ε y σ ε σ ε 744 einhad Kulessa 6

17 7. Kondensato płaski Zajmijmy się układem dwóch płaskoównoległych pzewodników (elektod) o powiezchni S położonych w odległości d od siebie. Elektody są naładowane odpowiednio ładunkami + i. Układ taki nazywamy kondensatoem płaskim. Gęstość S powiezchniowa + ładunku wynosi: E σ /S d Pole wewnątz elektod z pominięciem efektów bzegowych jest jednoodne. Niech óżnica potencjałów pomiędzy elektodami wynosi V. 744 einhad Kulessa 7

18 Oznaczmy tą óżnicę pzez V. V V ( + ) ( ) Z zależności pomiędzy potencjałem a natężeniem pola elektycznego. (5.9) otzymujemy, że: Widzimy więc, że: ( + ) ( ) V V E d V V d E d, a kozystając z obliczonej popzednio watości natężenia pola elektycznego pomiędzy dwoma naładowanymi płaszczyznami otzymujemy: V ε d S (7.) 744 einhad Kulessa 8

19 Wpowadźmy pojęcie pojemności kondensatoa jako współczynnika we wzoze: (7.) Pojemność kondensatoa płaskiego wynosi więc: C V C ε d S (7.) 744 einhad Kulessa 9

20 7.4 Kondensato kulisty ozpatzmy układ dwóch współśodkowych czasz kulistych naładowanych odpowiednio ładunkami + i. Pole elektyczne dla takiego E układu jest polem adialnym, + więc ds E ds E ds E < < E() Policzmy stumień pola elektycznego pzechodzącego pzez powiezchnię kuli o śodku w i pomieniu 4π 744 einhad Kulessa E.

21 744 einhad Kulessa Z pawa Gaussa otzymamy: 4 4 E E πε ε π dla dowolnego z podanego popzednio pzedziału. óżnica potencjałów VV V ma watość: d d E V πε πε πε Zgodnie z wzoem (7.) otzymujemy na pojemność kondensatoa złożonego z dwóch czasz kulistych wyażenie:

22 C 4πε (7.4) Z wyażenia tego widać, że gdy pojemność kondensatoa kulistego, inaczej mówiąc pojemność pzewodnika będącego kulą jest ówna: C 4πε 744 einhad Kulessa Jednostką pojemności w układzie SI jest FAAD. C F A V [ 4 m kg s ] Pojemność kuli ziemskiej, ~6.4 6 m, C 7 µf, a kula o pojemności F ma pomień 9 6 km.

23 7.5 Kondensato cylindyczny. Kondensato cylindyczny składa się z dwóch współśodkowych cylindów o pomieniach a i b. a b Stosując Pawa Gaussa dla dowolnej odległości od śodka walców otzymujemy, że Pow. l E πl ε + Na watość potencjału otzymamy więc wyażenie: 744 einhad Kulessa

24 V a b πε πε Ed l l a b a b d πε πε l πε d ( ln a lnb) b a ( ) lnb ln a ln l l Pojemność kondensatoa cylindycznego wynosi więc: C V πε l b ln a (7.5) 744 einhad Kulessa 4

25 7.6 Łączenie kondensatoów 7.6. Połączenie ównoległe V C C C C 4 V 4 Potencjał V V V jest taki sam na każdym kondensatoze. Ładunek, któy znajduje się na każdym z kondensatoów i C i V, a całkowity ładunek i i. Otzymujemy więc C i i V V C i i. Czyli C C i (7.5) 744 einhad Kulessa 5 i

26 7.5. Połączenie szeegowe C C C C V V V V V 4 Ładunki na okładkach kondensatoów połączonych szeegowo są jednakowe. Całkowita óżnica potencjałów jest ówna sumie óżnic potencjałów między okładkami poszczególnych kondensatoów. V V i i V i Wiemy, że czyli C i V C. / i 744 einhad Kulessa 6

27 Otzymujemy więc C i C i (7.6) 744 einhad Kulessa 7

28 7.6 Ziemia jako kondensato kulisty Mimo, że wydaje się nam, że Ziemia jest ładunkowo obojętna, to doświadczenie uczy, że tak nie jest. Na Ziemi zachodzi szeeg zjawisk chaakteystycznych dla ciał naładowanych. Znane nam są wszystkim wyładowania atmosfeyczne w czasie buz, ale jak jest w czasie gdy nie ma buz. Okazuje się, że w atmosfeze istnieje pionowe pole elektyczne o natężeniu E ~ V/m. Co m wysokości potencjał wzasta o V. Ładunek Ziemi jest ujemny. UZUPEŁNIENIE Waunkiem istnienia pola jest:. Obecność jonów w atmosfeze,. ozdzielenie istniejących ładunków pzez jakiś mechanizm. Ad.. Pzypuszczano, że obecność jonów w atmosfeze związana jest z natualna pomieniotwóczością. Wtedy liczba 744 einhad Kulessa 8

29 jonów powinna być największa pzy powiezchni Ziemi. Stwiedzono jednak, że liczba jonów ośnie z wysokością i osiąga maksimum na wysokości powyżej 5 km, na wysokości gdzie ozciąga się tzw. jonosfea. UZUPE ŁNIENIE Jonizacja jest wywoływana pzez pomieniowanie kosmiczne. Ad. Ziemia ma ładunek ujemny a potencjał powietza jest dodatni km 4 V Pąd jonu/(s m ) Stale więc płynie pąd ładunków dodatnich z atmosfey do Ziemi. Całkowity pąd ma moc ok. 7 MW 744 einhad Kulessa 9

30 Taki pąd powinien w ciągu.5 godz. wyównać óżnicę ładunków. Aby dać odpowiedź na pytanie jaki mechanizm dostacza ujemnych ładunków powiezchni Ziemi wykonano w óżnych miejscach pomiaów zmiany potencjałów i pądów. Wybieano zwykle pogodne dni nad oceanami. Pogodne dni wybieano aby uniknąć wpływu buz na pomiay, a oceany miały osłabić pocesy jonizacji zwykle silniejsze nad kontynentami. W wyniku tych pomiaów stwiedzono że: śedni gadient potencjału zmienia się o ±5% waz ze zmianą czasu uniwesalnego. V/cm UZUPEŁNIENIE Godz.(Geenwich) 744 einhad Kulessa

31 Świadczy to o tym, że: a) Na dużych wysokościach istnieje duże pzewodnictwo poziome, wobec tego óżnica potencjałów między jonosfeą a Ziemią nie zmienia się. b) Istnieje mechanizm ładowania Ziemi ładunkiem ujemnym ze śednim pądem 8 A. Odpowiedzialne za to są buze, głównie topikalne, a ozładowanie następuje w okesie ładnej pogody. UZUPEŁ NIENIE (Patz Feynmann t.ii cz.i 94 na temat mechanizmów powstawania buz na Ziemi) 744 einhad Kulessa

32 8. Mateia w polu elektycznym Na każdy ładunek umieszczonej w polu elektycznym mateii działa siła wynikająca z pawa Coulomba. Ze względu na óżną uchliwość ładunków w óżnych mateiałach można zaobsewować następujące zjawiska: a). W pzewodniku uchliwe elektony zostają pzesunięte w stosunku do dodatnich atomów, co daje ozdzielenie ładunków dodatnich od ujemnych, czyli tzw. zjawisko indukcji. b). W izolatoach nośniki ładunku zostają pzesunięte tylko nieznacznie, obsewujemy tzw. polayzację. ozważmy pzewodnik umieszczony w polu elektycznym. Znajdujące się w nim swobodne elektony będą pzesuwały się w okeślonym kieunku. 744 einhad Kulessa

33 744 einhad Kulessa E E Cond. Dopowadzi to do nagomadzenia się na ściankach pzewodnika tzw. ładunku indukcyjnego. Ładunek ten geneuje wewnątz pzewodnika pole elektyczne skieowane pzeciwnie do pola zewnętznego. Pzesuwanie się ładunku twa tak długo, aż wypadkowe pole wewnątz pzewodnika osiągnie watość zeo.

34 E Cond E ładunki indukcyjne Zastanówmy się teaz jak wygląda sytuacja, gdy w polu elektycznym umieścimy mateiał nie pzewodzący ładunku. Doświadczenie uczy nas, że jeśli pomiędzy dwa ładunki wpowadzimy izolato, to maleje siła kulombowska działająca pomiędzy ładunkami. 744 einhad Kulessa 4

35 Omówmy ten poblem na pzykładzie kondensatoa płaskiego. C C powietze dielektyk Po włożeniu dielektyka pomiędzy okładki kondensatoa płaskiego, na pewno nie zmienił się ładunek na okładkach a jednak zmalał potencjał jak wskazał elektoskop. Zgodnie ze wzoem (7.) musiała wzosnąć pojemność kondensatoa. ównocześnie spadek potencjału na okładkach oznacza spadek natężenie pola elektycznego wewnątz okładek. 744 einhad Kulessa 5

36 Zastanówmy się nad faktem wzostu pojemności kondensatoa, do wnętza któego włożyliśmy dielektyk. Jak wytłumaczyć fakt zmniejszenia się natężenia pola elektycznego wewnątz kondensatoa. E E A σ pol Według pawa Gaussa stumień natężenia pola elektycznego jest bezpośednio związany z ładunkiem wewnątz powiezchni A dla któej ten stumień liczymy. Zmniejszenie się natężenia pola oznacza że wypadkowy ładunek wewnątz powiezchni A jest mniejszy niż wtedy gdy nie ma tam dielektyka. Wynika stąd, że na powiezchni dielektyka wewnątz powiezchni A muszą być ładunki ujemne. 744 einhad Kulessa 6

37 Ładunków jest mniej niż dodatnich, gdyż pole nie znika zupełnie. Na dugiej powiezchni izolatoa wytwaza się ładunek dodatni. Ładunek pojawiający się na izolatoze umieszczonym w polu elektycznym nazywamy ładunkiem polayzacyjnym. Pojawianie się tego ładunku związane jest z indukowaniem się i uszeegowaniem dipoli elektycznych w dielektyku, lub tylko uszeegowaniem istniejących dipoli. Gdybyśmy pomiędzy okładki kondensatoa włożyli pzewodnik, to ładunek polayzacyjny byłby identyczny jak ten na okładkach. Pole wewnątz pzewodnika byłoby ówne. Pole istniałoby tylko w małych szczelinach między okładkami a pzewodnikiem. E E ównież w tym pzypadku zaobsewujemy wzost pojemności kondensatoa. 744 einhad Kulessa 7

38 8. Wekto polayzacji P W izolatoach w pzeciwieństwie do pzewodników ładunki nie mogą się swobodnie pouszać. Jednak w atomach i cząsteczkach może nastąpić pzemieszczenie się ładunku pod wpływem pola elektycznego. E Na wskutek działania pola nastąpiło + + δ pzesunięcie ładunków o δ. Pod wpływem pola elektycznego następuje ównież pzesunięcie jonów w kyształach. Istnieją ównież cząsteczki posiadające moment dipolowy wynikający z ich stuktuy. Dipole te polayzują się pod wpływem pola E. 744 einhad Kulessa 8

39 Pzykładem stuktu posiadających moment dipolowych są np. CO, SO, H O, HCl, NH, C H 5 OH. H + H + Cl p e.4 C m O 5 p e 6. C m Jeśli w pzypadku atomu czy cząsteczki ładunek pzesunie się o δ, to moment dipolowy będzie ówny p q δ. Jeżeli w jednostce objętości znajduje się N atomów któe mogą się polayzować, to moment dipolowy na jednostkę objętości P N q δ (8.) 744 einhad Kulessa 9 H +

40 Wekto P nazywamy wektoem polayzacji. E F Ze δ +Ze F pomień a Zastanówmy się od czego ten wekto zależy. Pzesunięty o δ ładunek Ze oddziałuje tylko z częścią chmuy elektonowej o pomieniu δ. Natężenie pola elektycznego pochodzące od ładunku polayzacyjnego ma watość: E pol δ pol δ Ze a δ Zeδ a Ze jest ładunkiem całej kuli o pomieniu a. 744 einhad Kulessa 4

41 ównowaga nastąpi wtedy gdy E E. Oznacza to, że pol Zeδ a E. Widać więc, że moment dipolowy jest popocjonalny do natężenia zewnętznego pola polayzującego. Jest tak pzynajmniej dla niedużych pól. 744 einhad Kulessa 4

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

XIX. PRAWO COULOMBA Prawo Coulomba

XIX. PRAWO COULOMBA Prawo Coulomba XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

( ) 2. 4πε. Prawo Coulomba

( ) 2. 4πε. Prawo Coulomba Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

Część I Pole elektryczne

Część I Pole elektryczne Mateiały pomocnicze dla studentów Studiów Zaocznych Wydz Mechatoniki semest II Część I Pole elektyczne Ładunek elektyczny Q wytwaza pole elektyczne, do opisu któego możemy wykozystać dwie wielkości: natężenie

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.

Bardziej szczegółowo

17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że

17.1.2 Zachowanie ładunku Jednym z podstawowych praw fizyki jest zasada zachowania ładunku. Zasada ta sformułowana przez Franklina mówi, że MODUŁ VI Moduł VI Pole elektyczne 17 Pole elektyczne Pzechodzimy teaz do omówienia oddziaływania elektomagnetycznego. Oddziaływanie to ma fundamentalne znaczenie bo pozwala wyjaśnić nie tylko zjawiska

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

ε = dw dq. (25.1) Rys Obwód o jednym oczku

ε = dw dq. (25.1) Rys Obwód o jednym oczku XXV. OBWODY ELEKTRYCZNE 25.1. Obwody elektyczne o jednym oczku Aby wytwozyć stały pzepływ ładunku, jest potzebne uządzenie, któe wykonując pacę nad nośnikami ładunku, utzymuje óżnicę potencjałów między

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

Karta wybranych wzorów i stałych fizycznych

Karta wybranych wzorów i stałych fizycznych Kata wybanych wzoów i stałych fizycznych Mateiały pomocnicze opacowane dla potzeb egzaminu matualnego i dopuszczone jako pomoce egzaminacyjne. publikacja współfinansowana pzez Euopejski Fundusz Społeczny

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

(U.17) Zastosowania stacjonarnego rachunku zaburzeń

(U.17) Zastosowania stacjonarnego rachunku zaburzeń 3.0.004 38. U.7 Zastosowania stacjonanego achunku zabuzeń 66 Rozdział 38 U.7 Zastosowania stacjonanego achunku zabuzeń 38. Stuktua subtelna w atomie wodoopodobnym 38.. Hamiltonian i jego dyskusja Popzednio

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Ć W I C Z E N I E N R C-2

Ć W I C Z E N I E N R C-2 INSTYTUT IZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA IZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C- POMIAR NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Energia w geometrii Schwarzshilda

Energia w geometrii Schwarzshilda Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą

Bardziej szczegółowo

polaryzacji na powierzchni jednorodnego ośrodka, w którym znajduje się rozpatrywany atom lub jon (tzw. natężenie pola depolaryzacji),

polaryzacji na powierzchni jednorodnego ośrodka, w którym znajduje się rozpatrywany atom lub jon (tzw. natężenie pola depolaryzacji), MIKROFALE I MATERIA Dielektyk w polu elektycznym Pole elektyczne pzyłożone z zewnątz stanowi zaledwie jedną ze składowych pola lokalnego, któe działa na atom lub jon dielektyka. Natężenie pola lokalnego

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

KURS CAŁKI WIELOKROTNE

KURS CAŁKI WIELOKROTNE KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna Elektoenegetyczne sieci ozdzielcze SIECI 2004 V Konfeencja Naukowo-Techniczna Politechnika Wocławska Instytut Enegoelektyki Andzej SOWA Jaosław WIATER Politechnika Białostocka, 15-353 Białystok, ul. Wiejska

Bardziej szczegółowo

11. Technika Wysokich Napięć

11. Technika Wysokich Napięć . Technika Wysokich Napięć.. Metodę pomiau WN pzy użyciu postownika z kondensatoem cechuje: a. Potzeba zastosowania wysokiej dokładności woltomieza i częstościomieza, b. Możliwość pomiau napięcia stałego,

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo