ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI."

Transkrypt

1 Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi. Do ozwiązania poblemu pzyjmiemy apoksymację pocesu filtacyjnego Boussinesqa [patz ozdział IV monogafii] pzy założeniu, że upłynął odpowiednio długi czas i możemy poces filtacji ozpatywać jako ustalony, więc w ównaniu Boussinesqa nie występuje pochodna cząstkowa wysokości hydaulicznej po czasie. Rozpatzymy tzy pzypadki: ównania nieliniowego Boussinesqu a, ównania zlineayzowanego Boussinesqa pzez Boussinesqa, ównania zlineayzowanego Boussinesqa pzez Bagowa i Wieygina. Pzyjmijmy do ozważań goblę (ys. ) zasilaną wodami infiltacyjnymi pochodzącymi z opadów. Jeśli więc gobla będzie zbudowana z ośodka guntowego o współczynniku filtacji k const i pokyta jednoodną oślinnością, to intensywność infiltacji ε będzie miała ównież watość stałą. Zagadnienie taktujemy jako płaskie, więc zgodnie z założeniami teoii Boussinesqa spowadza się ono do zagadnienia jednowymiaowego. Równanie Boussinesqa dla ozważanego pzypadku ma postać: Rys. Schemat pzepływu pzez goblę z infiltacją. d d k dx dx + ε. (7.) Zlineayzowane ównanie Boussinesqa pzez Boussinesqa ma postać: d k s dx ε +, (7.) natomiast zlineayzowane ównanie Boussinesqa pzez Bagowa Wieygina można zapisać w postaci:

2 d k dx τ ε +, (7.3) pzy czym τ s oaz okeśla śednią miąższość stumienia filtującej wody. u Rozważmy na początku nieliniowe ównanie i wpowadźmy nową zmienną : d u dx. (7.4) Wówczas po podstawieniu (7.4) do ównania dostajemy: du k dx + ε. (7.5) Rozwiązaniem powyższego ównanie jest funkcja: u ε x C k +. (7.6) Wstawiając do (7.6) podstawienie (7.4) mamy: d x C (7.7) dx ε k +. Rozwiązując powyższe ównanie óżniczkowe metodą ozdzielenia zmiennych dostajemy funkcję wysokości hydaulicznej w postaci: ε x Cx C k + +. (7.8) Rozważmy obecnie pzypadek zlineayzowanego ównania Boussinesqa w postaci (7.). Całkując dwukotnie po dx ównanie (7.), dostajemy ozwiązanie w postaci: x ε Cx C k + +, (7.9) s Któe, jak widać, óżni się od ozwiązania (7.8). Weźmy obecnie pod uwagę zlineayzowane ównanie Boussinesqa pzez Bagowa Wieygina w postaci (7.3): d dx τ ε. k (7.) Całkując dwukotnie powyższe ównanie (7.) po dx dostajemy: x ε Cx C τ + k +. (7.)

3 Wiemy jednak, że τ, więc uzyskujemy ozwiązanie w postaci: ε x Cx C k + +, (7.) któe jest tożsame z ozwiązaniem nieliniowego ównania Boussinesqa (7.8). Rozważając chaakte kzywych uzyskanych w ozwiązaniach widać, że w pzypadku nieliniowego ównania Boussinesqa i zlineayzowanego ównania Boussinesqa metodą Bagowa - Wieygina otzymana kzywa jest wycinkiem elipsy, natomiast w pzypadku ozwiązania zlineayzowanego ównania Boussinesqa pzez Boussinesqa kzywa epezentująca zwieciadło swobodne jest paabolą. W dalszych ozważaniach oganiczymy się tylko do ozwiązań nieliniowego ównania Boussinesqua (7.8), nie wnikając w poblem, któe z uzyskanych ozwiązań jest bliższe doświadczeniom. C C Stałe i wyznaczymy dla ozważanego zadania z waunków bzegowych: x x L, oaz dla. Po podstawieniu tych watości do ozwiązania dla (7.) dostaniemy ostateczną postać funkcji wysokości hydaulicznej w postaci: L ε x x k ε k L + +. (7.3) Znając funkcję wysokości q hydaulicznej możemy wyznaczyć pzebieg funkcji pędkości filtacji oaz wydatek pzypadający na mb gobli pzepływający pzez dowolny pzekój postopadły do kieunku filtacji: k x L d εk ε k L v k + dx, x L ε x k ε k L + L q v x ε k ε + L. (7.4) Z paktycznego x punktu x widzenia najbadziej inteesuje nas wydatek po obu stonach gobli czyli dla i dla : Stąd óżnica: q q x x L k L ( L ) ε, k L ( ) L ε +. (7.5) q q ε, (7.6) x L x

4 co było do pzewidzenia, a wynik jest zgodny z pzyjętymi waunkami bzegowymi zadania. Pzykład liczbowy. 7 Rozważmy pzepływ pzez goblę k wywołany m działaniem infiltacji o intensywności * /, 5 gdy współczynnik filtacji /. Początkowy poziom wody wynosi m. Odległość L wynosi m. Poównamy ozwiązania uzyskane pzy lineayzacji Bousssinesqa m i Bagowa Wieygina. Zakładając dla obydwu pzypadków, że ozwiązanie w piewszym pzypadku ma postać: a w dugim pzypadku: * + +, u u, u u + +. * *, Wyniki względnej zmiany wysokości hydaulicznej pod wpływem infiltacji pzedstawiono na ys. 3 ε m Rys. 3 Wyniki obliczeń zmiany wysokości hydaulicznej ( (z wykozystaniem opogamowania Mapple 8). f i u x L ) 7. Dopływ do owu pzy zasilaniu wodami infiltacyjnymi. W wastwie wodonośnej zbudowanej z guntu jednoodnego i izotopowego o współczynniku filtacji k wykonano ów sięgający jej spągu. Jej pzekój postopadły do osi owu pzedstawiono na ys. 4.

5 Rys. 4. Schemat zadania dopływu wody do owu pzy zasilaniu wodami infiltacyjnymi. Pzed wykonaniem owu zwieciadło wody było poziome i znajdowało się na wysokości w pzyjętym układzie odniesienia. Natomiast po wykonaniu owu poziom wody ustalił się na wysokości. Wastwa wodonośna zasilana jest w sposób ciągły w czasie wodami opadowymi z intensywnością infiltacji ε const. Równanie Boussinesqa ma postać Błąd! Nie można odnaleźć źódła odwołania.. Rozwiązaniem tego ównania, jak pokazano w popzednim C C podozdziale, jest funkcja wysokości hydaulicznej wyażona wzoem (7.8). Stałe i wyznaczymy z następujących waunków bzegowych: d x x R oaz dla dx gdzie R oznacza zasięg obszau infiltacji. Dla Podstawiając powyższe waunki bzegowe do wzou (7.8), dostaniemy funkcję wysokości hydaulicznej wyażoną wzoem: ε k x ε Rx + k +. (7.7) Możemy zadać pytanie; w jakiej odległości R od początku układu współzędnych wysokość hydauliczna osiągnie watość? Podstawiając odpowiednie watości do ównania (7.7) dostaniemy: R k ( ). (7.8) ε Pzyjmując układ współzędnych (jak na ys. 7.3) obliczymy funkcję pędkości filtującej wody oaz wydatek na jednostkę długości owu w postaci: x k d ε v k ε + ( k ) dx, ε x x k ε ( k ) q v x k ε ε +. ( k ) (7.9) Dopływ do owu na jednostkę jego długości wynosi:

6 co zgodne jest z pzyjętymi założeniami zadania Studnia zasilana wodami infiltacyjnymi. q k R x ε ε, (7.) ( ) W jednoodnej i izotopowej wastwie wodonośnej o współczynniku filtacji k wykonano pionową studnię o pomieniu sięgająca jej spągu (studnia zupełna). Pzekój wastwy wodonośnej pzechodzący pzez os studni pzedstawiono na ys Rys. 5. Schemat zadania dopływu wód do studni zasilanej wodami infiltacyjnymi. Założymy, że są spełnione następujące założenia wstępne: spąg wastwy wodonośnej ułożony jest poziomo, pzed pompowaniem zwieciadło wody jest poziome i znajduje się na wysokości wastwą niepzepuszczalną, wastwa wodonośna zasilana jest wodami opadowymi z intensywnością infiltacji pzepływ jest ustalony, a poziom w studni znajduje się na wysokości niepzepuszczalną. Dla powyższego pzypadku nieliniowe ównanie Boussinesqa ma postać: Wpowadźmy nową zmienną d d k d k d d + d + ε u u : d d ponad cons ε, ponad wastwą. (7.). (7.) Podstawiając (7.) do ównania (7.) dostajemy: du u d+ ε + k. (7.3) Rozwiązaniem powyższego ównania (7.3) jest funkcja:

7 C u ε k +. (7.4) Uwzględniając (7.) w (7.4), otzymujemy ównanie óżniczkowe: d C d ε k +. (7.5) Stąd po ozwiązaniu metodą ozdzielenia zmiennych dostajemy funkcje wysokości hydaulicznej w postaci: ε k C C + ln +. (7.6) Uzyskane ozwiązanie jest ogólnym ozwiązaniem ównania (7.). Dla ozpatywanego pzez nas zagadnienia bzegowego obliczymy stałe waunków bzegowych: d R dla oaz dla d. C i C, kozystając z Z układu ównań otzymuje watości stałych: C ε R k C ε R k ε + k ln (7.7) Można wiec okeślić funkcję wysokości hydaulicznej wzoem: ε R ( k ε ) + k ln +. (7.8) Pzykład liczbowy. Obliczmy k m pzebieg funkcji wysokości hydaulicznej w wastwie guntu o współczynniku filtacji 5, zasilanego wodami infiltacyjnymi o intensywności zasięg obszau Rm, a poziom wody w studni na wysokości. ε m 8 *. Pzyjmuje się m

8 Rys. 6. Pzebieg funkcji wysokości hydaulicznej w zależności od u/r. Znając funkcję wysokości hydaulicznej możemy obliczyć funkcje pędkości filtacji i wydatek pzepływający pzez pobocznicę walca o pomieniu i wysokości hydaulicznej : R d v k ε + ε d R, ε ( k ε ) + k ln + Q v R π πε. ( ) (7.9) Pzyjmując te same dane jak w popzednich obliczeniach wysokości hydaulicznej otzymamy zmienność funkcji pędkości filtacji v w zależności od bezwymiaowej zmiennej u. RPoniżej pzedstawiono wykes zmiany pędkości z odległości od studni.

9 Rys. 7. Funkcja pędkości filtacji pzy zasilaniu wodami infiltacyjnymi u R. Dla wydatek studni wynosi: Najczęściej pzyjmuje się, że Q R πε. (7.3) Q ( ) πε R, (7.3) gdyż studnia zasilana jest ównież wodami opadowymi z powiezchni π. W ównaniach od (7.7) do (7.3) występuje nieznana wielkość pomienia dla zasięgu R leja depesji R. Wyznaczyć ją można, kładąc dodatkowy waunek bzegowy:. Stąd mamy: R ε R R k ε + k ln +. (7.3) ( ) Powyższe ównanie jest ównaniem uwikłanym. Najłatwiej znaleźć watość R pzekształcając ównanie (7.3) do postaci: k R R ( ) ln ε. (7.33) Obliczając lewą stonę ównania z wykesu 6 otzymamy bezpośednio watość R. Należy wziąć pod uwagę, że wielkości zędnej F na wykesach wykonanych dla óżnych watości wynoszą:

10 k F ( ) 6 ε. (7.34) R Rys. 8. Zależność funkcji F od dla watości m m m m a),, b),5, c),, d), 5, e),3 m ; (obliczenia i wykes Mathematica 5). Jeżeli znamy dopływ wody do studni i intensywność infiltacji ε obliczenia pomienia zasięgu zasilania obliczamy bezpośednio ze wzou (7.3) Obliczanie pól denowych. W typowej kanalizacji polegającej na odpowadzaniu wód ściekowych do guntu wody ściekowe pzechodzą najpiew pzez komoy wstępnego oczyszczania, w któych oddzielone zostają tłuszcze, gubsze zawiesiny, a ścieki ulegają fementacji i później pzepływają na pola denowe, gdzie następuje ich infiltacja w gunt. Infiltacja w gunt następuje popzez instalację, któa jest identyczna jak typowa instalacja denażu poziomego. Pzykładowe pole denowe pzedstawiono na ys. 9

11 Rys. 9. Pzykładowe pole denowe. W niniejszy podozdziale zajmiemy się wyznaczeniem maksymalnego zwieciadła wody w obszaze wpływu pola denowego, znając wydatek tego pola Q [zakładana objętość wód ściekowych odpowadzana do guntu w czasie] i jego powiezchnię F. Maksymalny poziom zwieciadła wody wyznaczymy pzy następujących założeniach wstępnych: pole denowe jest założone w jednoodnej i izotopowej wastwie wodonośnej o współczynniku filtacji k, spąg wastwy wodonośnej położony jest poziomo, pzed założeniem pola denowego, zwieciadło wody było poziome znajdowało się na wysokości ponad wastwą niepzepuszczalną, wastwa wodonośna zasilana jest wodami opadowymi, pzy czym śednia watość infiltacji pzy maksymalnych opadach ocznych wynosi ε, wody ściekowe są ównomienie ozpowadzane na całej powiezchni F. Aby pzy takich waunkach obliczyć pole denowe, skonstuujmy schemat obliczeniowy - ys. 3. Rys. 3. Schemat obliczeniowy pola denowego.

12 Wpowadźmy zastępczy pomień pola denowego i załóżmy adialny ozpływ wody. Watość infiltacji pod polem denowym ε wyznaczymy ze wzou: F π d +, (7.35) ε ε ε gdzie ε oznacza śednią watość infiltacji pzy maksymalnych opadach ocznych, a d ε okeśla infiltację wywołaną odpowadzeniem wód ściekowych. Pomień oddziaływania pola denowego R wyznaczamy ze wzou: R Q π ε, (7.36) ε okeśla zmianę intensywności infiltacji wywołaną pzy czym Q oznacza wydatek pola denowego, a odpowadzeniem wód ściekowych do guntu [na skutek odpowadzania wód ściekowych do guntu zmieni się tanspiacja, paowanie z gleby, odpływ podziemny, a tym samym zmieni się ównież intensywność infiltacji ε ]. Dla pzyjętego schematu obliczeniowego stosujemy ównanie Boussinesqa dla pzypadku zagadnienia osiowo symetycznego, ównanie (7.), któego ozwiązaniem jest uzyskana w popzednim podozdziale funkcja: ε C C k + ln +. Dla zwieciadło wody opisuje zatem funkcja: a dla R funkcja: ε C C k + ln +, (7.37) ' Stałe ε C C ' + k ln +. (7.38) C C C C ' ',,, d wyznaczymy z waunków bzegowych: d R, d d d d. (7.39) Wstawiając powyższe waunki bzegowe (7.39) do ozwiązań C (7.37) C C i C(7.38), otzymujemy ' ' układ 4 ównań algebaicznych, z któych wyliczamy stałe,,, :

13 C, C ε k ε k, C ε C R C R k ε k ε + ln + + k ln, C R C R ' ε k + ln. ' (7.4) Wstawiając powyższe stałe do (7.37) i (7.38), uzyskamy maksymalny poziom zwieciadła wody pzy czynnym polu denowym. Pole denowe musi być oczywiście założone powyżej uzyskanego zwieciadła wody i odbieać założony wydatek wód ściekowych. 7.5 Szacowanie dopływu wody do odkywek góniczych metodą wielkiej studni. W gónictwie odkywkowym do obniżenia zwieciadła wody zapewniającego ciągłość eksploatacji, stosuje się baiey studni. Rozważmy dla pzykładu odkywkę z dwoma baieami studni: zewnętzną i wewnętzną ys. 3 Rys. 3. Schemat do obliczeń odkywki z baieami studni (zewnętzna i wewnętzna). Uzyskanie ścisłego ozwiązania w postaci zamkniętej jest dla baie studni nawet w stosunkowo postych waunkach hydogeologicznych tudne, jeżeli nawet niemożliwe. Zadanie takie ozwiązuje się metodami numeycznymi w opaciu o ogólne ównanie Boussinesqa. Jedną ze stosowanych metod obliczeń jest metoda wielkiej studni. Polega ona na tym, że odwadniany obsza obejmowany baieą wewnętzną spowadza się do powiezchni kołowej o pomieniu odbywa się pobocznicą walca o pomieniu. Zakłada się ponadto, że dopływ i ze jest to dopływ adialny. Pzy tak poczynionych

14 założeniach, schemat obliczeniowy dopływu do wyobiska, odpowiada schematowi dopływu do studni ys. 3 Rys. 3 Schemat obliczeniowy dopływu do wyobiska Kozystając z założeń poczynionych dla ozwiązania zagadnienia wielkiej studni należy okeślić: pomień depesji R na podstawie wykesu 7.5, dopływ do wyobiska: Q πε R ; (7.4) położenie zwieciadła wody w obębie leja depesji: pzy czym. ε R ( k ε ) + k ln +, (7.4) π F Jeśli powiezchnia obejmowana baieą wewnętzną jest zbliżona do kwadatu lub postokąta: a + η 4 b, (7.43) gdzie: a długość wyobiska, b szeokość wyobiska, η - współczynnik zależny od stosunku b a zgodnie z tabelą 7.. Tabela 7. b a,,,4,6,8, η,,,6,8,8,8

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna Elektoenegetyczne sieci ozdzielcze SIECI 2004 V Konfeencja Naukowo-Techniczna Politechnika Wocławska Instytut Enegoelektyki Andzej SOWA Jaosław WIATER Politechnika Białostocka, 15-353 Białystok, ul. Wiejska

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1) Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Elementarne przepływy potencjalne (ciąg dalszy)

Elementarne przepływy potencjalne (ciąg dalszy) J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Akrecja sferyczna. charakterystyczna odległość, na jakiej zmieniają się warunki. W typowej sytuacji:

Akrecja sferyczna. charakterystyczna odległość, na jakiej zmieniają się warunki. W typowej sytuacji: Akecja sfeyczna Rozważymy tym azem już samą dynamikę akecji mateii na obiekt centalny. W ogólnym pzypadku nie mamy do czynienia z żadną symetią poblemu; np. gdy stuga udeza bezpośednio w powiezchnię gwiazdy.

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

DYNAMIKA WÓD PODZIEMNYCH

DYNAMIKA WÓD PODZIEMNYCH DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej

Bardziej szczegółowo

Wpływ politropy produktów natychmiastowej detonacji na drgania kulistej osłony balistycznej

Wpływ politropy produktów natychmiastowej detonacji na drgania kulistej osłony balistycznej BIULETYN WAT VOL. LVII, NR 3, 8 Wpływ politopy poduktów natychmiastowej detonacji na dgania kulistej osłony balistycznej MARIUSZ ZIELENKIEWICZ Wojskowy Instytut Techniczny Uzbojenia, Zakład Uzbojenia Atyleyjskiego,

Bardziej szczegółowo

Plan wykładu. Rodzaje pól

Plan wykładu. Rodzaje pól Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

Energia kulombowska jądra atomowego

Energia kulombowska jądra atomowego 744 einhad Kulessa 6. Enegia kulombowska jąda atomowego V Enegię tą otzymamy w opaciu o wzó (6.6) wstawiając do niego wyażenie na potencjał (6.4) pochodzący od jednoodnie naładowanej kuli. Obliczenie wykonamy

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

KURS CAŁKI WIELOKROTNE

KURS CAŁKI WIELOKROTNE KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów)

Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów) Akademia Góniczo-Hutnicza, Kopalnia Węgla Bunatnego, Wydział Geologii, Geofizyki i Ochony śodowiska Bełchatów Wasztaty Gónicze 24 Jacek Mucha, Tadeusz Słomka, Wojciech Mastej, Tomasz Batuś Akademia Góniczo-Hutnicza,

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO

POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO POMIARY MAKRONAPRĘŻEŃ METODĄ DYFRAKCJI PROMIENIOWANIA RENTGENOWSKIEGO Dominik SENCZYK Politechnika Poznańska E-mail: dominik.senczyk@put.poznan.pl Sebastian MORYKSIEWICZ. Cegielski Poznań S. A. E-mail:

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

Rozdział VIII KINETYKA NASYCANIA POWIERZCHNI. 1. Wstęp

Rozdział VIII KINETYKA NASYCANIA POWIERZCHNI. 1. Wstęp 83 Rozdział VIII KINETYKA NASYCANIA POWIERZCHNI 1. Wsęp W akcie wykonywania zewnęznyc oconnyc wasw ynku, jak i konsewacji isniejącyc deali budowli zabykowyc zacodzi częso konieczność oceny sopnia peneacji

Bardziej szczegółowo

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia. Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada

Bardziej szczegółowo

Klasyczna akrecja dyskowa

Klasyczna akrecja dyskowa Klasyczna akecja dyskowa 1. Stacjonany dysk kepleowski dyskusja jakościowa Zakładamy akecję mateii z dużym momentem pędu, l ini, jak np. w układach podwójnych z pzepływewm pzez L1. Mateia osiada na swojej

Bardziej szczegółowo

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym. 1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

WERYFIKACJA DOŚWIADCZALNA MODELU HYDRODYNAMIKI REAKTORA AIRLIFT EXPERIMENTAL VERIFICATION OF HYDRODYNAMICS MODEL OF AIRLIFT REACTOR

WERYFIKACJA DOŚWIADCZALNA MODELU HYDRODYNAMIKI REAKTORA AIRLIFT EXPERIMENTAL VERIFICATION OF HYDRODYNAMICS MODEL OF AIRLIFT REACTOR ROBERT GRZYWACZ WERYFKACJA DOŚWADCZALNA MODELU HYDRODYNAMK REAKTORA ARLFT EXPERMENTAL VERFCATON OF HYDRODYNAMCS MODEL OF ARLFT REACTOR Steszczenie W atykule pzedstawiono weyfikację doświadczalną modelu

Bardziej szczegółowo

Moment pędu w geometrii Schwarzshilda

Moment pędu w geometrii Schwarzshilda Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.

Bardziej szczegółowo

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI 9.1. Cel ćwiczenia Ćwiczenie 9 ZASTSWANIE ŻYRSKPÓW W NAWIGACJI Celem ćwiczenia jest pezentacja paktycznego wykozystania efektu żyoskopowego w lotniczych pzyządach nawigacyjnych. 9.2. Wpowadzenie Żyoskopy

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

XIX. PRAWO COULOMBA Prawo Coulomba

XIX. PRAWO COULOMBA Prawo Coulomba XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU WIELOKĄTNYCH OBSZARÓW

OPTYMALIZACJA KSZTAŁTU WIELOKĄTNYCH OBSZARÓW MODELOWANIE INśYNIERSKIE ISSN 896-77X 35, s. 63-68, Gliwice 008 OPTYMALIZACJA KSZTAŁTU WIELOKĄTNYCH OBSZARÓW MODELOWANYCH RÓWNANIAMI NAVIERA-LAMEGO NA PODSTAWIE PURC I ALGORYTMÓW GENETYCZNYCH EUGENIUSZ

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie nr 10 Pomiary czasu życia nośników w półprzewodnikach Laboaoium Półpzewodniki, Dielekyki i Magneyki Ćwiczenie n 10 Pomiay czasu życia nośników w półpzewodnikach I. Zagadnienia do pzygoowania: 1. Pojęcia: nośniki mniejszościowe i większościowe, ównowagowe

Bardziej szczegółowo

Opis ćwiczeń na laboratorium obiektów ruchomych

Opis ćwiczeń na laboratorium obiektów ruchomych Gdańsk 3.0.007 Opis ćwiczeń na laboatoium obiektów uchomych Implementacja algoytmu steowania obotem w śodowisku symulacyjnym gy obotów w piłkę nożną stwozonym w Katedze Systemów Automatyki Politechniki

Bardziej szczegółowo

WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA

WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 44, s. 49-56, Gliwice 0 WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W SAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA KRZYSZO DRAPAŁA, KRZYSZO DZIEWIECKI, ZENON MAZUR,

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo