Wyznaczanie długości fali światła metodą pierścieni Newtona

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie długości fali światła metodą pierścieni Newtona"

Transkrypt

1 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego x 1 x K x x1 1000m K Pomar promen perścen nterferencyjnych n p l a [m] a [m ] Kolor śwatła:. Wyznaczene długośc fal b [m ] R [mm] [m] [m] 1

2 013 Katedra Fzyk SGGW Ćwczene 368 Ćwczene 368: Wyznaczane długośc fal śwatła metodą perścen Newtona Wprowadzene Śwatło wdzalne jest to promenowane elektromagnetyczne, czyl zaburzene pola elektromagnetycznego rozchodzące sę w przestrzen, na które reaguje oko ludzke. Zakres długośc fal tego promenowana wynos od 400 nm (początek foletu) do 700 nm (konec czerwen). Do śwatła zalcza sę równeż promenowane podczerwone nadfoletowe. Długość fal pomędzy punktam przestrzen, w których fala jest w tej samej faze. W przypadku fal elektromagnetycznych oznacza to, że wektory natężena pola elektrycznego w punktach oddalonych o długość fal mają ten sam kerunek, wartość zwrot, czyl są dentyczne. To samo dotyczy wektorów ndukcj magnetycznej. Czas T, jak potrzebuje fala na przebyce drog równej długośc fal, nazywany jest okresem fal, natomast częstotlwoścą fal f określa sę lczbę długośc fal meszczących sę na drodze przebytej przez falę w jednostce czasu (dla częstotlwośc wyrażonej w Hz jednostką czasu jest sekunda): c T c f c prędkość śwatła (w próżn km/s) Śwatło ma naturę dualną, falowo korpuskularną. Przyjmuje sę, że śwatło to swego rodzaju strumene osoblwych cząstek (korpuskuł), zwanych fotonam, które wykazują własnośc falowe. Na falową naturę śwatła wskazują take zjawska, jak dyfrakcja nterferencja promen śwetlnych. Dyfrakcją nazywamy ugnane sę prostolnowego begu promen na krawędzach przesłon. Interferencją fal nazywamy nakładane sę fal o tej samej częstotlwośc, powodujące wzmocnene lub osłabene natężena fal wypadkowej tych fal jest stała w czase. Załóżmy, że z dwóch źródeł Z 1 Z (rys. 1) wychodzą dwe jednakowe spójne fale o długośc : Aby w punkce P nastąpło wzmocnene natężena fal wypadkowej, obe fale muszą być w tym punkce w tej samej faze, co będze mało mejsce, jeśl różnca dróg r przebytych przez fale od źródeł Z 1 Z do punktu P będze całkowtą welokrotnoścą długośc fal : r r r1 n n=1,, 3, Promene spotykające sę w fazach przecwnych, ulegną wzajemnemu wygaszenu. Zank śwatła w punkce P zaobserwujemy, gdy różnca r dróg dwóch promen będze równa neparzystej welokrotnośc długośc fal: r r r (1) 1 n 1 Oddzelne źródła śwatła ne są ze sobą spójne. Fale spójne wytwarza sę w sposób sztuczny, przez nałożene na sebe promen wychodzących z tego samego źródła, ale przebywających różne drog optyczne. Jednym ze sposobów uzyskana różncy dróg jest układ optyczny pozwalający zaobserwować perścene Newtona.

3 013 Katedra Fzyk SGGW Ćwczene 368 Perścene Newtona (rys. ) otrzymujemy, gdy śwatło monochromatyczne (jednobarwne) pada na układ składający sę z soczewk płasko-wypukłej S płytk płasko-równoległej P. Śwatło padające prostopadle na układ soczewka płytka ulega częścowo odbcu na każdej powerzchn grancznej. Perścene Newtona powstają w wynku nterferencj promena odbtego od górnej powerzchn płytk P z promenem odbtym od sferycznej powerzchn soczewk S. Wynkem nterferencj są jasne (wzmocnene) cemne (wygaszene) okręg. Ich położene zależy od grubośc warstwy powetrza pomędzy płytką a soczewką, gdyż zmana grubośc warstwy powetrza powoduje równeż zmanę różncy dróg nterferujących promen. Kolejne perścene mają przypsane numery rzędu, przy czym środkowe cemne koło ma rząd 0, najmnejszy cemny perśceń ma rząd 1, następny cemny perśceń ma rząd, td. Grubość warstwy powetrza można oszacować korzystając z praw geometr zastosowanych do schematycznego układu przedstawonego na rys. 3. Z podobeństwa trójkątów ACE CDE wynka proporcja: e a () a R e gdze e grubość warstwy powetrza, a promeń podstawy czaszy kulstej (równeż promeń perścena), R promeń krzywzny soczewk. Poneważ R >> po uproszczenu przekształcenu wzoru () otrzymamy: a e (3) R Warunek wygaszana fal śwetlnych wymaga, aby różnca dróg nterferujących promen była neparzystą welokrotnoścą długośc fal (wzór 1). Różnca dróg r promena odbtego od płytk P promena odbtego od sferycznej powerzchn soczewk S równa jest: r e (4) / jest wynkem zmany fazy fal odbtej od powerzchn płytk P. Przy odbcu fal od środowska o wększym współczynnku załamana nż współczynnk załamana środowska, w którym fala sę przemeszcza zachodz zmana fazy o 180, co odpowada różncy dróg równej /. Po podstawenu wzoru (4) do wzoru (1) uzyskujemy równość: e n 1 (5) 3

4 013 Katedra Fzyk SGGW Ćwczene 368 a po podstawenu wzoru (3) do wzoru (5) przekształcenu otrzymamy wzór na promeń cemnego perścena rzędu n: a nr (6) Znając promeń krzywzny soczewk R oraz promeń perścena rzędu n można z tego wzoru polczyć długość fal śwatła. WYKONANIE ĆWICZENIA Schemat układu pomarowego znajduje sę na rys. 4: Rys. 5 Równoległa wązka śwatła monochromatycznego ze źródła Z po częścowym odbcu od płytk szklanej P ustawonej pod kątem 45 względem os optycznej mkroskopu, pada na układ soczewka-płytka. Promene odbte ku górze przechodzą przez płytkę P trafają do obektywu mkroskopu a następne do oka obserwatora. Jako źródło śwatła wykorzystana jest doda śwecąca, która emtuje śwatło o wąskm zakrese długośc fal. Doda, soczewka, płytka płasko-równoległa, oraz płytka ustawona pod kątem 45 są na stałe ze sobą połączone w pojedynczy zestaw dośwadczalny (rys. 5). Do pomaru promen perścen nterferencyjnych posługujemy sę mkroskopem o newelkm powększenu, z okularem pomarowym. Bęben śruby okularu pomarowego podzelony jest na 100 podzałek. Wewnątrz okularu nanesona jest skala główna okularu (cyfry od 0 do 8) krzyż z ntek pajęczych, który przesuwa sę podczas obrotu śruby. Pomary rozpoczynamy od wycechowana podzałk okularu. Cechowane podzałk okularu pomarowego 1. Umeszczamy na stolku mkroskopu metalową płytkę z nedużym otworem po środku. W płytce umeszczone jest szkełko kalbracyjne. Na szkełku zaznaczony jest mały okrąg, wewnątrz którego narysowana jest podzałka mkrometryczna (1 mm podzelony na 100 odcnków). Szkełko należy umeścć dokładne pod okularem mkroskopu ośwetlć je śwatłem odbtym od lusterka mkroskopu. Patrząc w okular należy odszukać skalę mkrometryczną regulując głębę ostrośc pokrętłem z boku mkroskopu.. Krzyż z ntek pajęczych ustawamy na perwszej kresce podzałk mkrometrycznej (kreska ta odpowada wartośc 0) (rys. 6): 4

5 013 Katedra Fzyk SGGW Ćwczene Rys. 6 Nad krzyżem z ntek pajęczych wdać podwójną ponową kreskę, która przesuwa sę razem z krzyżem wzdłuż szeregu cyfr od 0 do 8. Odczytujemy cyfrę leżącą po lewej stron podwójnej kresk. Cyfra ta oznacza lczbę setek (a węc 0, 100, 00, 300 td. aż do 800). Na bębne okularu pomarowego odczytujemy lczbę dzesątek jednośc. Wpsujemy całą wartość do tabel jako x Obracając śrubę okularu, ustawamy krzyż na ostatnej kresce podzałk mkrometrycznej (kreska ta odpowada wartośc 1 mm). Odczytujemy wartość z okularu pomarowego jako x. 4. Lczba podzałek bębna okularu pomarowego przypadająca na 1 mm (K) jest różncą pomędzy odczytam dla kresk 0 1 mm. Oblczamy: K x x 1 (7) 5. Jeżel 1 mm równy jest K podzałek okularu pomarowego, to wartość najmnejszej podzałk bębna okularu pomarowego wyrażona w m będze równa: 1000m (8) K Pomar promen perścen nterferencyjnych Numery rzędu perścen, dla których wykonywane są pomary wyznacza prowadzący ćwczena. 1. Pod obektywem umeszczamy zestaw dośwadczalny z rys. 5. Dodę podłączamy do gnazda elektrycznego. Pod mkroskopem pownno być wdać jednolte tło w kolorze, w jakm śwec doda.. Regulując głębę ostrośc mkroskopu należy odszukać perścene Newtona. Po odszukanu należy ustawć perścene na środku pola wdzena (środek perścen mnej węcej pod cyfrą 4 skal okularu, rys. 7a). Rys. 7a Rys. 7b 3. Promeń perścena rzędu n jest to połowa średncy perścena rzędu n. Aby zmerzyć średnce perścen robmy odczyty położena wybranych perścen na prawo na lewo od środka. Zaczynamy od strony prawej. Śrubę mkrometryczną ustawamy krzyż na cemnym perścenu danego rzędu (pomar perścena rzędu 1 pokazany na rys. 7b) odczytujemy wskazana okularu pomarowego. Wpsujemy jako p. 5

6 a [m ] 013 Katedra Fzyk SGGW Ćwczene Krzyż z ntek pajęczych przesuwamy na cemny perśceń kolejnego rzędu. (Do pomarów wyberamy 8-9 perścen. Ne muszą to być perścene kolejne np. można wybrać perścene:1,,3,5,7,9,10,1). Robmy odczyt, wpsujemy w tabel, a następne merzymy położena kolejnych cemnych perścen na prawo od środka. Po zakończenu pomarów z prawej strony, robmy analogczne pomary z lewej strony perścen. Podczas robena pomarów należy bardzo uważać, aby ne poruszyć zestawu dośwadczalnego względem stolka mkroskopowego (jeśl sę przesune, należy pomary zacząć od początku). 5. Oblczamy promene perścen, przelczając od razu skalę bębna okularu pomarowego na mkrometry: 6. Oblczamy a. Wykres oblczene długośc fal 1 a p l Na podstawe danych pomarowych należy sporządzć wykres a f ( n).zależność ta jest funkcją lnową o równanu y a bx. Z porównana tego równana ze wzorem (6) wynka, że b R. Stąd: b (10) R R jest to promeń krzywzny soczewk. Wartość promena krzywzny soczewk należy spsać z wtyczk zestawu dośwadczalnego. Odczytane odpowednch danych z wykresu można wykonać dwoma sposobam: ręczne lub za pomocą arkusza kalkulacyjnego (np. Mcrosoft Offce Excel, OpenOffce Calc). Sposób ręczny 7. Rysujemy wykres a f ( n) zależnośc kwadratu promena perścena od rzędu perścena na paperze mlmetrowym. 8. Do zaznaczonych punktów pomarowych dopasowujemy lnę prostą y a bx. Na prostej zaznaczamy dwa punkty (rys. 8 ne mogą być to punkty pomarowe, punkty wyberamy możlwe blsko początku końca prostej). Z os x y odczytujemy współrzędne wybranych punktów n a ; n, a :, j j (9) rząd perścena n Rys. 8 6

7 013 Katedra Fzyk SGGW Ćwczene 368 ( Dla doceklwych: zgodne ze wzorem (6) prosta pownna przechodzć przez punkt (0,0) czyl a=0. Jednak w rzeczywstośc, na skutek newelkego spłaszczena soczewk w obszarze styku z płaską płytką, prosta ne mus przechodzć przez punkt (0,0), a 0 ). a 9. Oblczamy nachylene prostej ze wzoru: b n 10. Oblczamy długość fal ze wzoru (10). (UWAGA NA JEDNOSTKI! μm mm m ) a n j j (11) Za pomocą arkusza kalkulacyjnego Excel (w OpenOffce jest bardzo podobne) 7. W arkuszu w perwszej kolumne wpsujemy rząd perścena n, w drugej kwadrat promena perścena a. Zaznaczamy komórk z lczbam. W Menu wyberamy Wstaw wykres. Wyberamy wykres punktowy bez ln zamykamy okno wyboru wykresu przycskem Zakończ. Prawym przycskem myszy klkamy dowolny punkt pomarowy na wykrese wyberamy Dodaj lnę trendu. Wyberamy Typ lnowy, w Opcjach zaznaczamy Wyśwetl równane na wykrese. Zamykamy okno przycskem OK. (w OpenOffce lna trendu nazywa sę krzywą regresj) 8. Na wykrese pojaw sę funkcja w postac y bx a. Zapsujemy wartość b, która jest nachylenem prostej. 9. Oblczamy długość fal ze wzoru (10). RACHUNEK BŁĘDÓW Na błąd wyznaczena długośc fal składa sę: dokładność wycechowana podzałk bębna okularu pomarowego α, dokładność odczytana położena perścen p l oraz wyznaczena promen a, dokładność dopasowana prostej do punktów pomarowych wyznaczena nachylena b, oraz dokładność oszacowana promena krzywzny R. Można przyjąć, że: l p R 0,5% l p R a l p a l p b a 5% b a (5% jest zwązane z dokładnoścą odczytu danych z wykresu) Sumaryczne, dokładność wyznaczena oblczamy ze wzoru: b R b R Oblczamy wartość. PYTANIA DO DYSKUSJI Jak jest tablcowy zakres długośc śwatła dla koloru użytego w dośwadczenu? Czy tablcowy zakres długośc śwatła pokrywa sę z wyznaczonym przedzałem? 7

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii

Pomiary dawek promieniowania wytwarzanego w liniowych przyspieszaczach na użytek radioterapii Pomary dawek promenowana wytwarzanego w lnowych przyspeszaczach na użytek radoterap Włodzmerz Łobodzec Zakład Radoterap Szptala m. S. Leszczyńskego w Katowcach Cel radoterap napromenene obszaru PTV zaplanowaną,

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Projekt okładki, rysunki i fotografie: Piotr Storoniak Rysunki: Damian Trzybiński

Projekt okładki, rysunki i fotografie: Piotr Storoniak Rysunki: Damian Trzybiński 1 Zespół autorsk: Lda Chomcz (ćw. 6, 15, 16) Karol Krzymńsk (ćw. 1, 2, 4, 6, 7, 9, 17, rozdzał III) Artur Skorsk (ćw. 3, 1, rozdzał II) Potr Storonak (ćw. 8) Beata Zadykowcz (ćw. 13, 14, 18) Agneszka Żylcz-Stachula

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Jak korzystać z Excela?

Jak korzystać z Excela? 1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją

Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćwiczenie Nr 7 Temat: WYZNACZANIE STA ŁEJ SIATKI DYFRAKCYJNEJ I DŁUGOŚCI FALI ŚWIETLNEJ Warszawa 9 POMIARDŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

1. Podstawy i podział spektroskopii... 5 1.1 Podział spektroskopii według zakresu promieniowania... 5 1.2 Podział spektroskopii według rodzajów

1. Podstawy i podział spektroskopii... 5 1.1 Podział spektroskopii według zakresu promieniowania... 5 1.2 Podział spektroskopii według rodzajów . Podstawy podzał spektroskop... 5. Podzał spektroskop według zakresu promenowana... 5. Podzał spektroskop według rodzajów układów materalnych... 9.3 Podzał spektroskop według metod otrzymywana wdma.....

Bardziej szczegółowo

BADANIA WYCINKA RURY ZE STALI G355 Z GAZOCIĄGU PO 15 LETNIEJ EKSPLOATACJI Część II.: Badania metodami niszczącymi

BADANIA WYCINKA RURY ZE STALI G355 Z GAZOCIĄGU PO 15 LETNIEJ EKSPLOATACJI Część II.: Badania metodami niszczącymi PL467 BADANIA WYCINKA RURY ZE STALI G355 Z GAZOCIĄGU PO 15 LETNIEJ EKSPLOATACJI Część II.: Badana metodam nszczącym Wtold Szteke, Waldemar Błous, Jan Wasak, Ewa Hajewska, Martyna Przyborska, Tadeusz Wagner

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik

Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego obcążena ceplnego Poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka

Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka Zestaw przezbrojenowy na nne rodzaje gazu 8 719 002 262 0 1 Dysza 2 Podkładka 3 Uszczelka PL (06.04) SM Sps treśc Sps treśc Wskazówk dotyczące bezpeczeństwa 3 Objaśnene symbol 3 1 Ustawena nstalacj gazowej

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Ćwczene 18 Anna Jakubowska, Edward Dutkewcz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Zagadnena: Zjawsko adsorpcj, pojęce zotermy adsorpcj. Równane zotermy adsorpcj Gbbsa. Defncja nadmaru

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Autor - dr inż. Józef Zawada. Instrukcja do ćwiczenia nr 2 CZUJNIKI MECHANICZNE I OPTYCZNE

Autor - dr inż. Józef Zawada. Instrukcja do ćwiczenia nr 2 CZUJNIKI MECHANICZNE I OPTYCZNE Ator - dr nż. Józef Zawada Instrkcja do ćwczena nr Temat ćwczena: CZUJNIKI MECHANICZNE I OPTYCZNE Cel ćwczena: Celem ćwczena jest zapoznane stdentów z zasadą dzałana, konstrkcją eksploatacją wybranych

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Andrzej Borowiecki. Open Office. Calc arkusz kalkulacyjny. Przykłady zadań dla geodetów

Andrzej Borowiecki. Open Office. Calc arkusz kalkulacyjny. Przykłady zadań dla geodetów Andrzej Boroweck Open Offce Calc arkusz kalkulacyjny Przykłady zadań dla geodetów Kraków 2004 . Podstawowe nformacje. Wstęp OpenOffce.0 jest funkcjonalne równowaŝny paketow StarOffce 6.0, obejmując najwaŝnejsze

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłoścą szkolene współfnansowane przez Unę Europejską w ramach Europejskego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Śwerk ĆWICZENIE 6b

Bardziej szczegółowo

TEMAT : Przykłady innych funkcji i ich wykresy.

TEMAT : Przykłady innych funkcji i ich wykresy. Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego ROZPRAWA DOKTORSKA RAFAŁ SZYMANOWSKI

WOJSKOWA AKADEMIA TECHNICZNA. im. Jarosława Dąbrowskiego ROZPRAWA DOKTORSKA RAFAŁ SZYMANOWSKI WOJSKOWA AKADEMIA TECHICZA m. Jarosława Dąbrowskego ROZPRAWA DOKTORSKA RAFAŁ SZYMAOWSKI PRECYZYJE LICZIKI CZASU CMOS FPGA Z DWUSTOPIOWĄ ITERPOLACJĄ Promotor prof. dr hab. nż. Józef KALISZ WARSZAWA 003

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

Ćwiczenie 8. BADANIE MODELOWE SIECI WODOCIĄGOWEJ 1. Cel i zakres ćwiczenia

Ćwiczenie 8. BADANIE MODELOWE SIECI WODOCIĄGOWEJ 1. Cel i zakres ćwiczenia Ćwczene 8 BADANIE MODELOWE SIECI WODOCIĄGOWEJ 1. Cel zakres ćwczena Celem ćwczena jest zapoznane studentów z dzałanem modelu pompown zaslanej przez ną sec wodocągowej. Podczas ćwczena przeprowadzane jest

Bardziej szczegółowo

Ć W I C Z E N I E N R M-6

Ć W I C Z E N I E N R M-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-6 WYZNACZANIE MODUŁU SZTYWNOŚCI DRUTU ZA POMOCĄ WAHADŁA TORSYJNEGO

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

BIBLIOGRAFIA W WORD 2007

BIBLIOGRAFIA W WORD 2007 BIBLIOGRAFIA W WORD 2007 Ćwiczenie 1 Tworzenie spisu literatury (bibliografii) Word pozwala utworzyć jedną listę główną ze źródłami (cytowanymi książkami czy artykułami), która będzie nam służyć w różnych

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Ćwiczenie 3: Rysowanie obiektów w programie AutoCAD 2010

Ćwiczenie 3: Rysowanie obiektów w programie AutoCAD 2010 Ćwiczenie 3: Rysowanie obiektów w programie AutoCAD 2010 1 Przeznaczone dla: nowych użytkowników programu AutoCAD Wymagania wstępne: brak Czas wymagany do wykonania: 15 minut W tym ćwiczeniu Lekcje zawarte

Bardziej szczegółowo

W tym ćwiczeniu zostanie wykonany prosty profil cienkościenny, jak na powyŝszym rysunku.

W tym ćwiczeniu zostanie wykonany prosty profil cienkościenny, jak na powyŝszym rysunku. ĆWICZENIE 1 - Podstawy modelowania 3D Rozdział zawiera podstawowe informacje i przykłady dotyczące tworzenia trójwymiarowych modeli w programie SolidWorks. Ćwiczenia zawarte w tym rozdziale są podstawą

Bardziej szczegółowo

Co to jest arkusz kalkulacyjny?

Co to jest arkusz kalkulacyjny? Co to jest arkusz kalkulacyjny? Arkusz kalkulacyjny jest programem służącym do wykonywania obliczeń matematycznych. Za jego pomocą możemy również w czytelny sposób, wykonane obliczenia przedstawić w postaci

Bardziej szczegółowo

Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10)

Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10) Page 1 of 6 Dyfrakcja na Spiralnej Strukturze (Całkowita liczba pkt.: 10) Wstęp Obraz dyfrakcyjny (w promieniowaniu rentgenowskim) DNA (Rys. 1) wykonany w laboratorium Rosalind Franklin, znany jako sławne

Bardziej szczegółowo

Modelowanie komputerowe fraktalnych basenów przyciągania.

Modelowanie komputerowe fraktalnych basenów przyciągania. Modelowane komputerowe fraktalnych basenów przycągana. Rafał Henryk Kartaszyńsk Unwersytet Mar Cure-Skłodowskej Pl. M. Cure-Skłodowskej 1, 0-031 Lubln, Polska Streszczene. W artykule tym zajmujemy sę prostym

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Nauka o œwietle. (optyka)

Nauka o œwietle. (optyka) Nauka o œwietle (optyka) 11 Nauka o œwietle (optyka) 198 Prostopad³oœcienne pude³ka, wykonane z tektury, posiadaj¹ z boku po cztery okienka (,, C, D). Do okienek kierujemy równoleg³e wi¹zki promieni. Zauwa

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

narzędzie Linia. 2. W polu koloru kliknij kolor, którego chcesz użyć. 3. Aby coś narysować, przeciągnij wskaźnikiem w obszarze rysowania.

narzędzie Linia. 2. W polu koloru kliknij kolor, którego chcesz użyć. 3. Aby coś narysować, przeciągnij wskaźnikiem w obszarze rysowania. Elementy programu Paint Aby otworzyć program Paint, należy kliknąć przycisk Start i Paint., Wszystkie programy, Akcesoria Po uruchomieniu programu Paint jest wyświetlane okno, które jest w większej części

Bardziej szczegółowo

1. Opis okna podstawowego programu TPrezenter.

1. Opis okna podstawowego programu TPrezenter. OPIS PROGRAMU TPREZENTER. Program TPrezenter przeznaczony jest do pełnej graficznej prezentacji danych bieżących lub archiwalnych dla systemów serii AL154. Umożliwia wygodną i dokładną analizę na monitorze

Bardziej szczegółowo

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych

Bardziej szczegółowo

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE 3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo