Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
|
|
- Dariusz Urbaniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź jest warta 1 punkt. 1. Rozważamy zadanie rozwiązywania układu równań liniowych z macierzą nieosobliwą. Algorytm eliminacji Gaussa z wyborem elementu głównego może dać niedokładne rozwiązanie, gdy macierz jest źle uwarunkowana Wybór elementu głównego w algorytmie eliminacji Gaussa jest niepotrzebny, gdy macierz jest dobrze uwarunkowana Algorytm eliminacji Gaussa z wyborem elementu głównego należy stosować do rozwiązania zadania interpolacji wielomianowej 2. Mamy stablicowane N + 1 wartości funkcji f w węzłach x, przy czym x 0 < x 1 <... < x N. Wyjaśnij, co robi poniższy kod g = 0. 0 ; f o r ( i = 0 ; i <= N; i ++) g = g + f [ i ] ( x [ i +1] x [ i ] ) ; wyznacza wielomian interpolacyjny dla stablicowanej funkcji f w węzłach x 0,..., x N wyznacza przybliżenie miejsca zerowego pochodnej funkcji f na odcinku (x 0, x N ) oblicza przybliżenie całki x N x 0 f(x) 3. Rozwiązujemy równanie nieliniowe x 3 x = a metodą Newtona. Wzór na kolejną iterację metody to x k+1 = 2x3 k 3x 2 k + 1 Niezależnie od a, mała wartość residuum gwarantuje, że uzyskane rozwiązanie przybliżone będzie obarczone małym błędem względnym Dla a = 0 i x 0 = 10 2, metoda Newtona będzie zbieżna kwadratowo do x = Dobre uwarunkowanie zadania powoduje, że numerycznie poprawny algorytm jego wykonania w arytmetyce zmiennoprzecinkowej podwójnej precyzji da wynik o bardzo dużej dokładności rozwiązanie można wyznaczyć kosztem co najwyżej wielomianowym względem liczby danych rozwiązanie można wyznaczyć kosztem co najwyżej liniowym względem liczby danych 1
2 5. Algorytm Hornera: Przydaje się do znajdowania miejsca zerowego wielomianu stopnia n metodą bisekcji. Przydaje się do obliczania wartości wielomianu stopnia n i wymaga n 2 /2 mnożeń Przydaje się do mnożenia dwóch wielomianów stopnia n i wymaga n log 2 n mnożeń 6. Liczba x = 0.1 nie jest reprezentowana dokładnie w arytmetyce podwójnej precyzji. Błąd względny reprezentacji tej liczby: f l(x) x / x jest równy około około około Jest nieskończenie wiele funkcji interpolujących zadane n wartości w n zadanych (parami różnych) węzłach Im więcej jest węzłów interpolacji wielomianowej Lagrange a, tym mniejszy musi być błąd aproksymacji funkcji, której wartości są interpolowane. Współczynniki wielomianu interpolacyjnego Lagrange a daje się wyznaczyć kosztem co najwyżej O(n 2 ), a jego wartość w zadanym punkcie kosztem co najwyżej O(n), gdzie n to liczba węzłów. 8. Niech macierz A ma n wierszy i m kolumn, przy czym n > m oraz wszystkie kolumny A są liniowo niezależne. Liniowe zadanie najmniejszych kwadratów Polega na znalezieniu wektora x takiego, że Ax b 2 jest możliwie najmniejsza Zaleca się rozwiązywać korzystając z rozkładu QR macierzy A Można rozwiązywać korzystając z rozkładu Cholesky ego macierzy A T A, choć zwykle są lepsze sposoby. 9. Złożona kwadratura trapezów polega na wyznaczeniu dokładnej wartości całki z liniowego splajnu interpolującego funkcję podcałkową Jeden krok metody siecznych polega na znalezieniu miejsca zerowego wielomianu interpolującego funkcję, której miejsca zerowego poszukujemy Algorytm FFT wyznacza wynik mnożenia zadanego wektora przez pewną macierz symetryczną 10. Dla zapamiętania macierzy rzadkiej wystarczy 2 N Z miejsc w pamięci, gdzie N Z to liczba niezerowych elementów macierzy. Format AIJ (inaczej: współrzędnych) wymaga dwóch tablic liczb całkowitych, każda długości N Z Macierz trójdiagonalną można traktować jako macierz rozrzedzoną 2
3 11. Jaki będzie wynik x, y wykonania poniższego fragmentu kodu: double j, k, x, y ; j = 1 e12 ; y = pow((1+ 1/ j ), j ) ; k = 1 e26 ; x = pow((1+ 1/ k ), k ) ; Funkcja double pow(double x, double y) zwraca liczbę x y. Wskazówka: lim n (1 + 1 n )n = e x = 1, y = 1 x = 1, y 2.71 x 2.71, y 2.71 Section 2. Zadania (pół)otwarte, max. 30 pkt Uzupełnij wolne miejsca lub zapisz wymagane rozwiązania. W razie potrzeby skorzystaj z dodatkowej kartki, zaznaczając numer zadania, które tam rozwiązujesz. Każde prawidłowo rozwiązane zadanie jest warte 5 punktów. 1. W wyszukiwarce Google wykorzystuje się metodę potęgową dla znajdowania dominującej wartości własnej macierzy A + uu T, gdzie A jest zadaną macierzą rzadką, a u zadanym wektorem. Zapisz szczegółowy algorytm wykonujący tę metodę, wskazując, w których jego miejscach można byłoby skorzystać z procedur BLAS. Oceń jego koszt w zależności od rozmiaru macierzy. 2. Wymień przynajmniej dwa zadania numeryczne w których wykorzystuje się interpolację wielomianową:,,, 3. Podaj po jednym przykładzie zadania obliczeniowego: dobrze uwarunkowanego: źle uwarunkowanego 3
4 podane przykłady mają pożądane własności. Krótko uzasadnij, że 4. Wskaż trzy sytuacje, gdy do rozwiązywania równania nieliniowego lepiej stosować metodę bisekcji aniżeli metodę stycznych. 5. Podaj wzór na przybliżoną wartość całki 1 0 x3 dx, korzystając z kwadratury prostokątów P (f), z kwadratury trapezów T (f): Wykorzystaj różnicę między P (f) i T (f) do wyprowadzenia wzoru na estymator błędu popełnionego przez kwadraturę prostokątów. 6. Napisz w C procedurę, której parametrami będą m.in. macierz dwudiagonalna górna U oraz wektor f, rozwiązującą układ równań Ux = f. W komentarzach zaznacz, jak interpretujesz przekazywane parametry i jak zwracasz rozwiązanie. 4
5 Answer Key for Exam A Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź jest warta 1 punkt. 1. Rozważamy zadanie rozwiązywania układu równań liniowych z macierzą nieosobliwą. Algorytm eliminacji Gaussa z wyborem elementu głównego może dać niedokładne rozwiązanie, gdy macierz jest źle uwarunkowana Wybór elementu głównego w algorytmie eliminacji Gaussa jest niepotrzebny, gdy macierz jest dobrze uwarunkowana Algorytm eliminacji Gaussa z wyborem elementu głównego należy stosować do rozwiązania zadania interpolacji wielomianowej 2. Mamy stablicowane N + 1 wartości funkcji f w węzłach x, przy czym x 0 < x 1 <... < x N. Wyjaśnij, co robi poniższy kod g = 0. 0 ; f o r ( i = 0 ; i <= N; i ++) g = g + f [ i ] ( x [ i +1] x [ i ] ) ; wyznacza wielomian interpolacyjny dla stablicowanej funkcji f w węzłach x 0,..., x N wyznacza przybliżenie miejsca zerowego pochodnej funkcji f na odcinku (x 0, x N ) oblicza przybliżenie całki x N x 0 f(x) 3. Rozwiązujemy równanie nieliniowe x 3 x = a metodą Newtona. Wzór na kolejną iterację metody to x k+1 = 2x3 k 3x 2 k + 1 Niezależnie od a, mała wartość residuum gwarantuje, że uzyskane rozwiązanie przybliżone będzie obarczone małym błędem względnym Dla a = 0 i x 0 = 10 2, metoda Newtona będzie zbieżna kwadratowo do x = Dobre uwarunkowanie zadania powoduje, że numerycznie poprawny algorytm jego wykonania w arytmetyce zmiennoprzecinkowej podwójnej precyzji da wynik o bardzo dużej dokładności rozwiązanie można wyznaczyć kosztem co najwyżej wielomianowym względem liczby danych rozwiązanie można wyznaczyć kosztem co najwyżej liniowym względem liczby danych 1
6 5. Algorytm Hornera: Przydaje się do znajdowania miejsca zerowego wielomianu stopnia n metodą bisekcji. Przydaje się do obliczania wartości wielomianu stopnia n i wymaga n 2 /2 mnożeń Przydaje się do mnożenia dwóch wielomianów stopnia n i wymaga n log 2 n mnożeń 6. Liczba x = 0.1 nie jest reprezentowana dokładnie w arytmetyce podwójnej precyzji. Błąd względny reprezentacji tej liczby: f l(x) x / x jest równy 7. około około około Jest nieskończenie wiele funkcji interpolujących zadane n wartości w n zadanych (parami różnych) węzłach Im więcej jest węzłów interpolacji wielomianowej Lagrange a, tym mniejszy musi być błąd aproksymacji funkcji, której wartości są interpolowane. Współczynniki wielomianu interpolacyjnego Lagrange a daje się wyznaczyć kosztem co najwyżej O(n 2 ), a jego wartość w zadanym punkcie kosztem co najwyżej O(n), gdzie n to liczba węzłów. 8. Niech macierz A ma n wierszy i m kolumn, przy czym n > m oraz wszystkie kolumny A są liniowo niezależne. Liniowe zadanie najmniejszych kwadratów 9. Polega na znalezieniu wektora x takiego, że Ax b 2 jest możliwie najmniejsza Zaleca się rozwiązywać korzystając z rozkładu QR macierzy A Można rozwiązywać korzystając z rozkładu Cholesky ego macierzy A T A, choć zwykle są lepsze sposoby. Złożona kwadratura trapezów polega na wyznaczeniu dokładnej wartości całki z liniowego splajnu interpolującego funkcję podcałkową Jeden krok metody siecznych polega na znalezieniu miejsca zerowego wielomianu interpolującego funkcję, której miejsca zerowego poszukujemy Algorytm FFT wyznacza wynik mnożenia zadanego wektora przez pewną macierz symetryczną 10. Dla zapamiętania macierzy rzadkiej wystarczy 2 N Z miejsc w pamięci, gdzie N Z to liczba niezerowych elementów macierzy. Format AIJ (inaczej: współrzędnych) wymaga dwóch tablic liczb całkowitych, każda długości N Z Macierz trójdiagonalną można traktować jako macierz rozrzedzoną 2
7 11. Jaki będzie wynik x, y wykonania poniższego fragmentu kodu: double j, k, x, y ; j = 1 e12 ; y = pow((1+ 1/ j ), j ) ; k = 1 e26 ; x = pow((1+ 1/ k ), k ) ; Funkcja double pow(double x, double y) zwraca liczbę x y. Wskazówka: lim n (1 + 1 n )n = e x = 1, y = 1 x = 1, y 2.71 x 2.71, y 2.71 Section 2. Zadania (pół)otwarte, max. 30 pkt Uzupełnij wolne miejsca lub zapisz wymagane rozwiązania. W razie potrzeby skorzystaj z dodatkowej kartki, zaznaczając numer zadania, które tam rozwiązujesz. Każde prawidłowo rozwiązane zadanie jest warte 5 punktów. 1. W wyszukiwarce Google wykorzystuje się metodę potęgową dla znajdowania dominującej wartości własnej macierzy A + uu T, gdzie A jest zadaną macierzą rzadką, a u zadanym wektorem. Zapisz szczegółowy algorytm wykonujący tę metodę, wskazując, w których jego miejscach można byłoby skorzystać z procedur BLAS. Oceń jego koszt w zależności od rozmiaru macierzy. while not stop alpha = ddot(v,x); x = dgmv(a,x); x = daxpy(x,u,alpha); end while gdzie ddot iloczyn skalarny dwóch wektorów, dgmv mnożenie macierz-wektor, daxpy operacja Koszt oczywiście liniowy 2. Wymień przynajmniej dwa zadania numeryczne w których wykorzystuje się interpolację wielomianową: metoda siecznych (interpolacja Lagrange a wielom. stopnia 1), stycznych (wielomianem Hermite a stopnia 1), kwadratury interpolacyjne, aproksymacja funkcji 3. Podaj po jednym przykładzie zadania obliczeniowego: dobrze uwarunkowanego: Obliczenie sumy dwóch liczb tego samego znaku. Omawiane na wykładzie. źle uwarunkowanego 3
8 Rozwiązywanie układu równań liniowych z macierzą Hilberta dużego wymiaru. Omawiane na wykładzie. Krótko uzasadnij, że podane przykłady mają pożądane własności. 4. Wskaż trzy sytuacje, gdy do rozwiązywania równania nieliniowego lepiej stosować metodę bisekcji aniżeli metodę stycznych. Gdy funkcja nie jest różniczkowalna lub jej pochodna jest kosztowna w wyliczeniu Gdy nie znamy dobrego przybliżenia rozwiązania Gdy zero jest wielokrotne o nieparzystej krotności 5. Podaj wzór na przybliżoną wartość całki 1 0 x3 dx, korzystając z kwadratury prostokątów P (f), z kwadratury trapezów T (f): P (x 3 ) = (1/2) 3 T (x 3 ) = ( )/2 = 1/2 Wykorzystaj różnicę między P (f) i T (f) do wyprowadzenia wzoru na estymator błędu popełnionego przez kwadraturę prostokątów. Skoro I P Ch 2 /24 oraz I T Ch 2 /12, to 2I 2P Ch 2 2P +T /12 T I, skąd I 3. Przy okazji: jest to akurat kwadratura Simpsona! Zatem estymator błędu dla P to I P T P Napisz w C procedurę, której parametrami będą m.in. macierz dwudiagonalna górna U oraz wektor f, rozwiązującą układ równań Ux = f. W komentarzach zaznacz, jak interpretujesz przekazywane parametry i jak zwracasz rozwiązanie. 4
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223
Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Zajęcia nr 1: Zagadnienia do opanowania:
Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Analiza numeryczna kolokwium2a-15grudnia2005
kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.
Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Przykładowy program ćwiczeń
Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
5. Twierdzenie Weierstrassa
Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 12: Zagadnienia zaawansowane Cel: Poznanie metod rozwiązywania konkretnych problemów Czas: Wprowadzenia 10 minut, ćwiczeń
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Zaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Metody numeryczne Wykład 6
Metody numeryczne Wykład 6 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Interpolacja o Interpolacja
Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
Interpolacja funkcji
Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Wartości i wektory własne
Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
y ( x) x i. y x i y( x) = ( x) x i,
Teoria reprezentacji zmiennoprzecinkowej i błędu obliczeń () Zapisać liczby, /3, 275, 225 w arytmetyce M(2, 6, 2) (zapis dwójkowy, 6 miejsc na mantysę, 2 na wykładnik), M(6, 4, 4), M(2, 2, 2) (2) (W) Wykaż,
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.
Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Metody numeryczne II. Układy równań liniowych
Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009
Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009 1. Co to jest epsilon maszynowy? Napisać schemat algorytmu obliczania w komputerze
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Liczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE
Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE GDAŃSK 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Studia na sekcji przygotowują do praktycznego posługiwania się narzędziami informatycznymi począwszy od systemów operacyjnych
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x