PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ"

Transkrypt

1 D I D A C T I C S O F M A T H E M A T I C S No. 4 (8) 007 (Wrocław) PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ Abstract. In this aer is shown a concet of exlanation of the oveent and collision of two objects by eans of analytical geoetry. Key words: equation of line, equation of ellise, oveent of two objects, energy, kinetic energy, seed, collision of two objects.. Prosta i elisa RozwaŜy dwa ciała, o asach odowiednio oraz oruszające się o linii rostej z rędkościai v oraz v. ZałóŜy, Ŝe <. Oznaczy rzez ęd układu, a rzez E jego energię kinetyczną. May zate: oraz v + v () v + v E. () W układzie wsółrzędnych: 0v odcięta oraz 0v rzędna, równanie () rzedstawia rostą, a równanie () elisę. Paraetrai rostej i elisy są asy cząstek, wartość ędu i wartość energii kinetycznej. Dowolny unkt łaszczyzny (v, v ) interretujey jako stan układu złoŝonego z dwu oruszających się unktów. Pojęcie stanu układu oisuje rędkości cząstek, a nie ich ołoŝenia na. Wzór () wyraŝa ęd układu, a wzór () jego energię kinetyczną. Prosta () jest zbiore stanów o identyczny ędzie, natoiast elisa () jest zbiore stanów o takiej saej energii kinetycznej.

2 4 W rzyadku, gdy asy obu cząstek są równe, równanie () rzedstawia okrąg. Prosta oŝe ieć względe elisy trzy ołoŝenia. Albo jest sieczną elisy, albo styczną do elisy, albo nie a z elisą unktów wsólnych. Sybolai 0,,, 3 oraz 4 oznaczyy roste równoległe do rostej danej równanie (); ają one równania v + v k, (3) gdzie k 0,,, 3, 4. Dla uroszczenia syboliki roste oznaczay w taki sa sosób, jak wartości ędu: zob. równanie (3). Prosta nie a z elisą Ŝadnych unktów wsólnych. NieoŜliwy jest zate stan układu, w który ęd jest równy i jednocześnie energia kinetyczna jest równa E. WyraŜa to fizykalny fakt, Ŝe rzy danej energii kinety-cznej ęd układu jest ograniczony. Posługując się rys., odczytay aksyalny ęd, który oŝe ieć układ dwu ciał rzy zadanej energii kinety-cznej równej E. v v v 0 4 H G B C B v 3 D H G Rys.

3 Prosta i elisa w oisie ruchu dwu ciał 5 Proste oraz 3 są styczne do elisy, a roste, 0 oraz 4 są siecznyi elisy. Z ołoŝenia rostych względe elisy wyciągniey wnioski waŝne z unktu widzenia fizyki.. Maksyalny i inialny ęd, inialna energia kinetyczna Na rysunku zaznaczono rostą jako styczną do elisy danej równanie () w unkcie C(c, c), który a obie wsółrzędne równe, a rostą 3 jako styczną do elisy w unkcie D(d, d), który odobnie jak unkt C a obie wsółrzędne równe. Elisa jest syetryczna względe oczątku układu wsółrzędnych, skąd wynika, Ŝe 3 oraz d c. WykaŜey, Ŝe roste równoległe do rostej danej równanie () i styczne do elisy danej równanie () rzeczywiście ają unkty styczności leŝące na rostej o równaniu v v, (4) czyli Ŝe ołoŝenie rostych oraz 3 stycznych do elisy () i równoległych do rostej () jest takie, jak na rys.. Z ogólnych wzorów dotyczących elisy i dostęnych w kaŝdych tablicach wiadoo, Ŝe styczna do elisy () w unkcie C(c, c), a równanie: c v + c v E, (5) gdzie c jest rozwiązanie układu równań () i (4), skąd: E c, rzy czy rzez oznaczono całkowitą asę układu, a więc: +. Wektor rostoadły do rostej danej równanie (5) jest równy: c, a więc jest on równieŝ rostoadły do rostej (), co, ( ) dowodzi, Ŝe roste równoległe do rostej danej równanie () i styczne do elisy danej równanie () ają unkty styczności leŝące na rostej o równaniu v v, czyli Ŝe sytuacja wygląda tak, jak rzedstawiono na rys.. Równanie (5) rzedstawiy w ostaci: v + v E. (6)

4 6 Stąd wnosiy, Ŝe jeŝeli araetr w równaniu () sełnia nierówność < E, to układ równań () i () a dwa rozwiązania, co oznacza, Ŝe dla danych wartościa ędu i energii kinetycznej są oŝliwe dwa stany, w których układ oŝe ieć zadane wartości ędu i energii kinetycznej. Na rysunku sytuacja taka zachodzi dla rostych:, 0, 4. Jeśli sełniona jest nierówność > E, to układ równań () i () nie a rozwiązań. Na rysunku sytuację taką rzedstawia rosta. W taki wyadku nieoŝliwy jest taki stan, w który to układ iałby zadane wartości ędu i energii kinetycznej. JeŜeli zachodzi równość E, to układ równań () i () a jedno rozwiązanie. Na rysunku zob. roste i 3. Wartość E jest aksyalną, a wartość 3 E jest aksyalną i inialną wartością ędu układu rzy zadanej wartości energii kinetycznej równej E. Odwrotnie, rozwaŝyy zbiór elis o równaniach v + v E j, gdzie i 0,,, 3. (7) B v v v 0 B B 0 B v E 3 E E E 0 B

5 Prosta i elisa w oisie ruchu dwu ciał 7 Rys. Jeśli wartość energii kinetycznej sełnia nierówność E >, to istnieją dwa rozwiązania układu równań () i (), a więc oŝliwe są dwa stany, w których oŝe znaleźć się układ rzy z góry zadanych wartościach ędu i energii kinetycznej. Na rysunku są to elisy oznaczone sybolai E oraz E. Jeśli wartość energii kinetycznej sełnia nierówność E >, to istnieją układ równań () i () nie a rozwiązania. Na rysunku warunek ten sełnia elisa E 3. W tej sytuacji nieoŝliwy jest stan, w który układ rzybierałby takie wartości ędu i energii kinetycznej. W wyadku równości E 3 wartość E 3 jest inialną energią kinetyczną, jaką usi ieć układ rzy zadany ędzie równy (wartość ędu oŝe być dodatnia lub ujena). Z tego, Ŝe unkty styczności rostej i elisy leŝą na rostej o równaniu (4) wynikają wnioski: dla zadanej wartości ędu układ a inialną energię, jeśli rędkości obu cząstek są równe. Dla zadanej energii kinetycznej ęd układu jest aksyalny, jeśli rędkości obu cząstek są równe i dodatnie, a inialny, jeśli rędkości obu cząstek są równe i ujene. Prosta 0 jest zbiore stanów, dla których łączny ęd układu wynosi zero. Wsółczynnik kierunkowy tej rostej wynosi. Iloczyn wsółczynników kierunkowych rostej danej równanie (4) i rostej 0 wynosi równieŝ.

6 8 Półoś wielka elisy () jest równa a ółoś ała wynosi skąd ay równość E a, E b, b. a Wynika stąd, Ŝe zawarte w elisie odcinki rostych o równaniach (4) i (3), dla 0 0, a więc odcinki C, D oraz G, G są arą średnic srzęŝonych elisy, co oznacza, Ŝe rosta o równaniu (4) ołowi odcinki B, B, H, H oraz G, G. Przy zerowy ędzie jest oŝliwa dowolna wartość energii kinetycznej. Minialna energia kinetyczna takiego układu wynosi zero i jest osiągnięta wówczas, gdy obie cząstki są w stanie soczynku. 3. Zderzenie cząstek Przy odbiciu sręŝysty zachowane są zarówno ęd, jak i energia kinetyczna. Jeśli układ a ęd równy i energię kinetyczną równą E, to z analizy rysunku i równań () oraz () wynika, Ŝe o odbiciu sręŝysty układ ze stanu B(b, b ) rzejdzie w stan B (b, b ). Jeśli układ znajduje się w stanie B, to o odbiciu sręŝysty znajdzie się w stanie B. Podobnie zachowa się układ, jeśli będzie iał ęd 4 i energię kinetyczną równą E; wówczas ze stanu H rzejdzie o odbiciu sręŝysty w stan H i odwrotnie ze stanu H rzejdzie w stan H. Jeśli układ a ęd równy zeru to ze stanu G rzejdzie o odbiciu sręŝysty w stan G i odwrotnie ze stanu G w stan G; wsółrzędne obu unktów wynoszą odowiednio G( g, g ) oraz G (g, g ), rzy czy, rozwiązując układ równań () i (3) dla k 0 dostajey równości: g E oraz g E.

7 Prosta i elisa w oisie ruchu dwu ciał 9 Stąd wynika, Ŝe ęd układu dwu cząstek jest równy zeru wtedy i tylko wtedy, gdy iloczyn ich rędkości wynosi E. Jeśli rzy zadany ędzie energia kinetyczna jest inialna, to rędkości obu cząstek są identyczne, a więc zderzenie cząstek nie nastąi. Tak więc, warunkie konieczny zderzenia cząstek jest energia kinetyczna układu rzekraczająca wartość inialną dla danego ędu. ZaleŜność iędzy wsółrzędnyi stanów rzy zderzeniu sręŝysty rzed i o zderzeniu, a więc zaleŝność iędzy wsółrzędnyi unktów B oraz B zacytujey z klasycznego odręcznika (R. Resnick, D. Halliday (980), str. 7, 7). Z równań energii kinetycznej i ędu dostajey: oraz skąd wynika, Ŝe i b b b b ( ) ( ) + + b b b b + +, ( ( ) ) (( ) ) b b b b ( b b ) ( b b ). Dzieląc stronai dwie ostatnie równości, otrzyujey: a o uorządkowaniu b +, b b + b b, b b b skąd wynika, Ŝe rędkość zbliŝania się cząstek rzed zderzenie jest równa rędkości oddalania się cząstek o zderzeniu. Rozwiązując układy równań, dostajey o krótkich rachunkach zaleŝności iędzy wsółrzędnyi stanów B i B : oraz b b + b (8)

8 0 b b + b. (9) Wzory te ozwalają rawidłowo interretować ołoŝenie unktów B i B. Rozwiązując układ równań () i (), o krótkich rachunkach dostajey zaleŝności: oraz b b ( E ), (0) ( E ) + () ( E ) + b, () ( E ) b. (3) Wstawiając wyniki dane wzorai (0)-(3) do wzorów (8) i (9) łatwo srawdzić zgodność wyników. W czasie zderzenia cząstek ogą nastąić rozroszenie energii kinetycznej lub jej ziana w ewną forę energii otencjalnej, oŝe nastąić równieŝ wyzwolenie ewnej energii otencjalnej, która była ukryta w układzie dwu cząstek, a zderzenie było sygnałe do jej uwolnienia. RozwaŜyy te rzyadki. Zderzenie całkowicie niesręŝyste olega na ty, Ŝe w czasie zderzenia oba ciała łączą się i dalszy ruch odbywają wsólnie. Zachowuje się rzy ty ęd całego układu. Z tego, co owiedziano urzednio wynika, Ŝe równa rędkość obu ciał ociąga za sobą inializację energii kinetycznej układu. W taki wyadku zarówno ze stanu B, jak i ze stanu B układ o zderzeniu całkowicie niesręŝysty znajdzie się w stanie B 0 o wsółrzędnych B 0 (b 0, b 0 ), zob. rys.. Punkt B 0 leŝy na elisie o równaniu

9 Prosta i elisa w oisie ruchu dwu ciał v + v (4) oraz na rostej o równaniu (4), skąd wynika, Ŝe b 0. Dla wartości energii kinetycznej E większej od E elisa o równaniu v + v E jest większa od elisy danej wzore (), w związku z czy rosta o równaniu () rzecina taką elisę w dwu unktach B oraz B, które rerezentują stany układu o ędzie równy i energii kinetycznej E większej od E. Wsółrzędne unktu B dane są wzorai (0) i (), rzy czy wartość E w tych wzorach naleŝy zastąić wartością E. Wsółrzędne unktu B dane są wzorai () i (3), rzy czy wartość E w tych wzorach równieŝ naleŝy zastąić wartością E. Jeśli w zderzających się ciałach jest zagazynowana jakaś energia otencjalna, która wyzwoli się odczas zderzenia (R. Resnick, D. Halliday (980), str. 73), i energia układu o zderzeniu będzie większa niŝ rzed zderzenie, to rzy zachowany ędzie równy stan układu zieni się odczas zderzenia od unktu B do unktu B. Jeśli wyjściowo układ znajduje się w stanie B, wówczas o zderzeniu będzie w stanie B, zob. rys.. B v v v B B 0 B B v E E E 0 Rys. 3

10 elisa Dla wartości energii kinetycznej E niejszej od E, lecz większej od E 0 v + v E jest niejsza od elisy danej wzore (), lecz większa od elisy danej wzore (4) i a dwa unkty rzecięcia z rostą daną wzore (). Są to unkty B i B, zob. rys. 3. Wsółrzędne unktu B dane są wzorai (0) i (), rzy czy wartość E w tych wzorach naleŝy zastąić wartością E. Wsółrzędne unktu B dane są wzorai () i (3), rzy czy wartość E w tych wzorach równieŝ naleŝy zastąić wartością E. Jeśli w zderzających się ciałach część energii zostanie rozroszona lub zagazynowana w forie energii otencjalnej w oruszających się cząstkach, to energia kinetyczna układu o zderzeniu będzie niejsza niŝ rzed zderzenie, lecz większa od inialnej energii kinetycznej układu rzy zachowaniu ędu srzed zderzenia. Stan układu zieni się odczas zderzenia od unktu B do unktu B. Jeśli wyjściowo układ znajduje się w stanie B, to o zderzeniu będzie w stanie B, zob. rys. 3. Literatura R. Resnick, D. Halliday (980). Fizyka. PWN. Warszawa. J. Królikowski C. Steckiewicz (963). Mateatyka wzory, definicje i tablice. Wydawnictwo Kounikacji i Łączności. Warszawa.

Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH

Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Ois kształtu w rzestrzeni 2D Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Krzywe Beziera W rzyadku tych krzywych wektory styczne w unkach końcowych są określane bezośrednio

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo

Zjawisko Comptona opis pół relatywistyczny

Zjawisko Comptona opis pół relatywistyczny FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych

Bardziej szczegółowo

FIZYKA I ASTRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ 60 punktów

FIZYKA I ASTRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ 60 punktów FIZYKA I ASRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny SZKIC ODPOWIEDZI I SCHEMA OCENIANIA ROZWIĄZAŃ ZADAŃ unktów UWAGA: Jeżeli zdający rozwiąże zadanie inną, erytorycznie orawną etodą, to za rozwiązanie

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

XIII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO ZESZYTY NAUKOWE WSOWL Nr (148) 8 ISSN 1731-8157 Sławomir KRZYśANOWSKI ANALIZA ZALEśNOŚI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA ELU I STANOWISKA OGNIOWEGO Jednym z ierwszych etaów nauczania rzedmiotu

Bardziej szczegółowo

Lista 2 + Rozwiązania BLiW - niestacjonarne

Lista 2 + Rozwiązania BLiW - niestacjonarne Dynaika 1. Oblicz wartość siły, z jaką siłacz usiałby działać na cięŝar o asie 100 kg, jeŝeli chciałby podnieść go na wysokość 0,5 w czasie 1 sekundy ruche jednostajnie przyspieszony. ( g Q + b g + a a

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 21. krąg o środku S = (3, 2) leży wewnątrz okręgu o równaniu (x 6) 2 + (y 8) 2 = 100 i jest do niego styczny. Wyznacz równanie

Bardziej szczegółowo

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji

Bardziej szczegółowo

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8. DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE

Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE Fizyka - Mechanika Wykład 5 5 stycznia.08 PODSUMOWANIE Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.l htt://www.fuw.edu.l/~szef/ Prędkość chwilowa Wykres oniżej okazuje jak ożey

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Zajęcia nr. 5: Funkcja liniowa

Zajęcia nr. 5: Funkcja liniowa Zajęcia nr. 5: Funkcja liniowa 6 maja 2005 1 Pojęcia podstawowe. Definicja 1.1 (funkcja liniowa). Niech a i b będą dowolnymi liczbami rzeczywistymi. Funkcję f : R R daną wzorem: f(x) = ax + b nazywamy

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy.

W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy. .. Moc Wykład 5 Informatyka 0/ W technice często interesuje nas szybkość wykonywania racy rzez dane urządzenie. W tym celu wrowadzamy ojęcie mocy. Moc (chwilową) definiujemy jako racę wykonaną w jednostce

Bardziej szczegółowo

1.UKŁADY RÓWNAŃ LINIOWYCH

1.UKŁADY RÓWNAŃ LINIOWYCH UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ]

Pęd ciała. ! F wyp. v) dt. = m a! = m d! v dt = d(m! = d! p dt. ! dt. Definicja:! p = m v! [kg m s ] Pęd ciała Definicja: p = v [kg s ] II zasada dynaiki Newtona w oryginalny sforułowaniu: F wyp = a = d v = d( v) = d p F wyp = d p Jeżeli ciało zienia swój pęd to na ciało działa niezerowa siła wypadkowa.

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU PRZEPŁYWU W ZŁOŻU KOKSU

WYZNACZENIE WSPÓŁCZYNNIKA OPORU PRZEPŁYWU W ZŁOŻU KOKSU 7/5 Archives of Foundry, Year 00, Volue, 5 Archiwu Odlewnictwa, Rok 00, Rocznik, Nr 5 PAN Katowice PL ISSN 64-508 WYZNACZENIE WSPÓŁCZYNNIKA OPORU PRZEPŁYWU W ZŁOŻU KOKSU K. WARPECHOWSKI, A. JOPKIEWICZ

Bardziej szczegółowo

Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej

Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości rzeływu za omocą rurek siętrzających oraz wykonanie charakterystyki

Bardziej szczegółowo

Ćw. 1 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej

Ćw. 1 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości gazu za omocą rurek siętrzających oraz wykonanie charakterystyki

Bardziej szczegółowo

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. 4. Proste równoległe i prostopadłe Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. Jeśli przecinają się w dowolnym miejscu, i to pod kątem prostym,

Bardziej szczegółowo

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f

Bardziej szczegółowo

Jak określić stopień wykorzystania mocy elektrowni wiatrowej?

Jak określić stopień wykorzystania mocy elektrowni wiatrowej? Jak określić stoień wykorzystania mocy elektrowni wiatrowej? Autorzy: rof. dr hab. inŝ. Stanisław Gumuła, Akademia Górniczo-Hutnicza w Krakowie, mgr Agnieszka Woźniak, Państwowa WyŜsza Szkoła Zawodowa

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA(1971/1972). Stopień III, zadanie teoretyczne T3

XXI OLIMPIADA FIZYCZNA(1971/1972). Stopień III, zadanie teoretyczne T3 XXI OLIMPIADA FIZYCZNA(1971/197) Stoień III, zadanie teoretyczne T3 Źródło: Olimiady fizyczne XXI i XXII, WSiP Warszawa 1975 Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Szymacha Obrót łytki Mechanika

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład Maxwella prędkości cząsteczek gazu doskonałego Średnia energia kinetyczna

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania Metody otyalizacji Metody rograowania nieliniowego II Materiały oocnicze do ćwiczeń laboratoryjnych T7 Oracowanie:

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe

Bardziej szczegółowo

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA Górnictwo i Geoinżynieria Rok 3 Zeszyt 008 Janusz aczmarek* INTERPRETACJA WYNIÓW BADANIA WSPÓŁCZYNNIA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA 1. Wstę oncecję laboratoryjnego

Bardziej szczegółowo

7 Praca i energia. 7.1 Praca wykonana przez siłę stałą. Moduł II Praca i energia

7 Praca i energia. 7.1 Praca wykonana przez siłę stałą. Moduł II Praca i energia MODUŁ II Moduł II Praca i energia 7 Praca i energia Znajomość zagadnień związanych z szeroko rozumianym ojęciem energii jest konieczna dla wszelkich rozważań zarówno technologicznych, ekonomicznych, ekologicznych

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WILGOTNOŚCI WZGLĘDNEJ I STOPNIA ZAWILŻENIA POWIETRZA HIGROMETREM

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

2.14. Zasada zachowania energii mechanicznej

2.14. Zasada zachowania energii mechanicznej Wykład 6 14 Zasada zachowania energii mechanicznej Informatyka 011/1 Stajesz na szczycie góry Mocujesz deskę, zakładasz gogle i zaczynasz szaleńczy zjazd W miarę jak twoja energia otencjalna zamienia się

Bardziej szczegółowo

Wykresy i własności funkcji

Wykresy i własności funkcji Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie

Bardziej szczegółowo

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa . Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

Wykład II Sieć krystaliczna

Wykład II Sieć krystaliczna Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Rozwiązania listopad 2016 Zadania zamknięte = = = 2. = =1 (D) Zad 3. Październik x; listopad 1,1x; grudzień 0,6x. (D) Zad 5. #./ 0'!

Rozwiązania listopad 2016 Zadania zamknięte = = = 2. = =1 (D) Zad 3. Październik x; listopad 1,1x; grudzień 0,6x. (D) Zad 5. #./ 0'! Zad 1., Rozwiązania listopad 2016 Zadania zamknięte 2 2 4 2 Zad 2. log 50 log 2log log 252 czyli 1 Zad 3. Październik x; listopad 1,1x; grudzień 0,6x.!,!," średnia: 0,9& czyli średnia to 90% października

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Mini-quiz 0 Mini-quiz 1

Mini-quiz 0 Mini-quiz 1 rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

Analiza wymiarowa. amper - A Θ - jednostka temperatury termodynamicznej: kelwin - K J - jednostka światłości:

Analiza wymiarowa. amper - A Θ - jednostka temperatury termodynamicznej: kelwin - K J - jednostka światłości: Analiza wyiarowa. Międzynarodowy Układ Jednostek Miar SI Układ jednostek to zbiór jednostek iar uznanych za podstawowe oraz innych jednostek, które nazywa się pochodnyi, które przez te podstawowe się wyraŝają.

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)

Bardziej szczegółowo

Soczewki. Ćwiczenie 53. Cel ćwiczenia

Soczewki. Ćwiczenie 53. Cel ćwiczenia Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Wyznaczanie ciepła właściwego powietrza metodą rozładowa- nia kondensatora I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV.

Wyznaczanie ciepła właściwego powietrza metodą rozładowa- nia kondensatora I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Ćwiczenie -5 Wyznaczanie cieła właściwego owietrza etodą rozładowania kondensatora I. el ćwiczenia: oznanie jednej z etod oiaru cieła właściwego gazów, zjawiska rozładowania kondensatora i sosobu oiaru

Bardziej szczegółowo

Ćwiczenie 33. Kondensatory

Ćwiczenie 33. Kondensatory Ćwiczenie 33 Kondensatory Cel ćwiczenia Pomiar ojemności kondensatorów owietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε i rzenikalności względnych ε r różnych materiałów. Wrowadzenie

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

Nierówności między średnimi liczbowymi i ich zastosowanie. Renata Jurasińska. Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie

Nierówności między średnimi liczbowymi i ich zastosowanie. Renata Jurasińska. Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie Nierówności między średnimi liczbowymi i ich zastosowanie Renata Jurasińska Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie I. Średnie liczbowe i zaleŝności między nimi Średnie liczbowe

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje

Bardziej szczegółowo

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA I. Wykresy funkcji 1. Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y=ax+b. Jakie znaki mają współczynniki a i b? A. a

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ. Kryteria oceniania w zakresie obowiązkowym treści nauczania. Liczby rzeczywiste

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ. Kryteria oceniania w zakresie obowiązkowym treści nauczania. Liczby rzeczywiste mgr Małgorzata Kowalczyk PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ Kryteria oceniania w zakresie obowiązkowym treści nauczania. Liczby rzeczywiste Dopuszczający Wykonywanie

Bardziej szczegółowo

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80 VI Piotrkowski Maraton Matematyczny 9-.06.0 Test jednokrotnego wyboru Czas na rozwiązanie: godz. 5 min. Do zdobycia: 80 punktów. Przed Tobą 0 zadań testowych. W kaŝdym zadaniu jest dokładnie jedna poprawna

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto. MATURA 2012 Powtórka do matury z matematyki Część VIII: Geometria analityczna ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już ósmą z dziesięciu części materiałów powtórkowych

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UN EUROPEJSKEJ w raach EUROPEJSKEGO FUNDUSZU SPOŁECZNEGO Nuer Projektu: POKL.04.00-00-59/08 NSTYTUT FZYK WYDZAŁNśYNER PROCESOWEJ,

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

2. Obwody prądu zmiennego

2. Obwody prądu zmiennego . Obwody prądu ziennego.. Definicje i wielkości charakteryzujące Spośród wielu oŝliwych przebiegów ziennych w czasie zajiey się jedynie przebiegai haronicznyi (sinusoidalnyi lub cosinusoidalnyi). Prądy

Bardziej szczegółowo