W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego
|
|
- Kamila Witkowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Bangkok, Thailand, March 011
2 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie Schrodingera
3 3/0-W3 Fale rawdoodobieństwa Rozkład elektronów na ekranie owinien być sumą rozkładów dla każdej szczeliny oddzielnie - obserwujemy obraz interferencyjny dla dwóch szczelin Do wyjaśnienia tego aradoksu musimy stworzyć nowy formalizm matematyczny: fale materii traktować jako fale rawdoodobieństwa wytwarzającą na ekranie obraz rążków rawdoodobieństwa B P 1 Rozkład obserwowany A r r 1 P Rozkład klasyczny
4 4/0-W3 Funkcja falowa Formalizm matematyczny za omocą którego usuwa się te aradoksy, rzyisuje każdej cząstce materialnej funkcję falową (,y,z,t) będącą funkcją wsółrzędnych i czasu Znajdując rozkład natężenia w obrazie dyfrakcyjnym można określić rawdoodobieństwo, że elektron adnie w określonym miejscu ekranu Kwadrat amlitudy funkcji falowej jest roorcjonalny do gęstości rawdoodobieństwa znalezienia elektronu w danym elemencie obszaru
5 5/0-W3 Właściwości funkcji falowej Prawdoodobieństwo znalezienia się elektronu w objętości dvddydz P ddydz gdzie warunek unormowania funkcji falowej dv 1 zasada suerozycji 1 + funkcja falowa owinna być ograniczona < V funkcja falowa nie stanowi bezośrednio obserwowanej wielkości. Fale klasyczne i fale odowiadające cząstkom odlegają równaniom matematycznym tego samego tyu, lecz w rzyadku klasycznym amlituda fali jest bezośrednio obserwowana, a dla funkcji falowej nie.
6 6/0-W3 h λ h π π λ h k π k h π Funkcja falowa cząstki oruszającej się wzdłuż osi, której długość fali jest równa λ o ( k t ) A cos o ω Stąd widać, iż rzeczywista ostać funkcji falowej jest niewłaściwa bo istniałyby unkty, gdzie nie można jej zaobserwować. Leiej zatem stosować ostać zesoloną i( k o ωt ) Ae ( k t ) A cos o ω ( i( k t )) i( k t ) Ae o ω Ae o ω ( ) A Pokazaliśmy, że jeżeli ęd cząstki osiada określoną wartość, to cząstkę można znaleźć z jednakowym rawdoodobieństwem w dowolnym unkcie rzestrzeni. Inaczej mówiąc, jeżeli ęd cząstki jest dokładnie znany, to nic nie wiemy o jej miejscu ołożenia.
7 7/0-W3 Paczki falowe materii Dla cząstki znajdującej się w t0 w określonym obszarze rzestrzeni kwadrat modułu funkcji falowej rzyjmuje ostać funkcji Gaussa A e σ (, 0) A e e( ik ) 4σ Tak zlokalizowana funkcja nazywana jest aczką falową o
8 8/0-W3 B B Suerozycja fal monochromatycznych Paczka falowa jest suerozycją fal o różnych długościach, odowiadają one różnym wartościom ędu k wsółczynniki Fouriera σ π e e 4σ 4σ ( k) e σ ( k k ) ( ) σ e π e e [ ] ( ) o σ o ( ik ) B e( ik ) o ( ik ) B( k) e( ik) B o ( ) B ( ) σ π n e σ e π n dk ( ) o σ ( ) o σ σ σ
9 9/0-W3 Zasada nieoznaczoności czym węższa jest rzestrzennie aczka falowa tym szerszy rozkład o ędzie σ σσ σ niemożliwe jest jednoczesne dokładne określenie wartości wsółrzędnej i ędu cząstki
10 10/0-W3 Zasada nieoznaczoności w ociągu λ chcemy zmierzyć rędkość ociągu wiedząc, że każdy wagon ma długość λ minęło nas n wagonów w ciągu czasu t okonana rzez ociąg droga wynosi l nλ l λ średnia rędkość ociągu wynosi l nλ v l t nλ t v vλ 4 v l t λ t im większy rzedział czasu tym omiar rędkości dokładniejszy, ale maleje dokładność ołożenia ociągu w chwili omiaru v n w mechanice kwantowej ociąg to aczka falowa o długości fali λ rozciągająca się na obszar l nλ λ h h 4 λ 4
11 11/0-W3 Znaczenie zasady nieoznaczoności Heisenberga szerokość aczki falowej 1/ k t1/ ω k E ω E t S Działanie S można określić z dokładnością stałej Plancka Zasada nieoznaczoności określa granice możliwości naszych omiarów. Jest jednym z fundamentalnych twierdzeń mechaniki kwantowej: wyjaśnia dyfrakcję na szczelinie energie cząstek są zawsze większe od zera elektron nie sada na jądro atomowe
12 1/0-W3 Prędkość gruowa aczki klasycznie v g dω dk k E ( k ω ) ω E m m dω dk k m dω k v g dk m m v v g Paczka falowa rzemieszcza się z rędkością równą rędkości cząstki relatywistycznie E Eo + E de c c d dω de mv v g c c dk d E mc v v
13 13/0-W3 Rozływanie się aczki falowej Udowodnimy, że ojedynczej aczce falowej właściwy jest rozrzut wartości rędkości gruowej v g, który owinien rowadzić do zwiększenia szerokości. ( vg )t dvg 1 v v m o t g d - szerokość aczki falowej rośnie roorcjonalnie do t g m Rozływania się aczki falowej można uniknąć umieszczając cząstkę w studni otencjału o swobodny elektron zlokalizowany w chwili oczątkowej w obszarze o m (tyowy rozmiar atomu) o uływie sekundy będziemy mieć 1100 km
14 14/0-W3 Cząstka w studni otencjału wystęuje nałożenie się dwóch fal rozchodzących się w rzeciwnych kierunkach owstaje fala stojąca E (ev) E E 3 ik iωt ik iωt ( ) ( ik ik ) iωt t Be Be B e e e, iωt iωt (, t) ibe sin( k) Ae sin( k) Z warunków brzegowych n k n E n bo (0,t)0 n sin ( kl) 0 π n m ml kl nπ k n 00 sin 0 ( k) nπ L E E 1 e ik L e i n ik dozwolone wartości liczby falowej i energii cząstki λ
15 15/0-W3 Równanie Schrodingera-jak? E + m A sin k U( ) ( + ϕ) m m( E U 1 ) k ( E U ) k A sin d d d d d d ( k + ϕ) k m [ E U1 ] m [ E U( ) ] 1 (a) (b) (c) E 0 0 E 0 K /m U 1 U U 3 U() Jest to stacjonarne, jednowymiarowe równanie Schrödingera słuszne w układach nierelatywistycznych od warunkiem, że rozkład rawdoodobieństwa nie zmienia się w czasie
16 16/0-W3 Równanie Schrodingera W sytuacjach stacjonarnych, gdy otencjał nie zmienia się w czasie, zmienne rzestrzenne i czas można rozsearować i zaisać funkcję falową w ostaci: iω, y, z, t, y, z e d d ( ) ( ) t Postać rzestrzennej funkcji falowej, dla rzyadku jednowymiarowego, wyznaczamy z równania Schrödingera: m [ E U( ) ] stacjonarne, jednowymiarowe równanie Schrödingera równania Newtona fale dźwiękowe i fale w strunach równania Mawella fale świetlne równanie Schrödingera fale materii (funkcja falowa)
17 17/0-W3 Równanie Schrodingera dla d m cząstki swobodnej E U( ) U( ) 0 d k d d d m E którego rozwiązaniem jest d oznaczając rzyjmując B0 (cząstka orusza się w kierunku dodatnich ) iωt i ( ) ( ) ( k ωt t e Ae ), k m E [ ] tylko kinetyczna E ik ik ( ) Ae + Be m m m k E m π π λ k h funkcją falową cząstki swobodnej jest fala łaska o długości λ określonej zależnością de Broglie a
18 18/0-W3 Równanie Schrodingera dla nieskończonej jamy otencjału U E 3 E E 1 U d d m [ E U( ) ] U( ) 0 k m E 0 L U0 k d ik Ae + d warunki brzegowe ( 0 ) ( L) 0 A + B 0 sin Ae ( kl) 0 ikl ik ( ) Be + Be ikl kl π n E n n n ( ) C sin C Ai ml L wartości energii E n nazywamy wartościami własnymi odowiadające im funkcje falowe n funkcjami własnymi 0 nπ ( ikl ) 0 A e ikl e n1,,3... π
19 19/0-W3 Wnioski energia jest skwantowana, wystęują dyskretne wartości (oziomy) energii (n liczba kwantowa) cząstka nie może osiadać energii zerowej wynika z zasady nieoznaczoności L L E > 0 m stałą C wyznaczamy z warunku unormowania L L * nπ d C sin d L 0 0 L C 1 nπ C L n ( ) sin L L dla obiektów klasycznych oszczególne oziomy są tak bliskie, że nierozróżnialne 1 L 0 sin nπ L L d
20 Bangkok, Thailand, March 011
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Bardziej szczegółowoPODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Bardziej szczegółowor. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa
r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i
Bardziej szczegółowoElementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy
Bardziej szczegółowoFALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Bardziej szczegółowoRozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Bardziej szczegółowoElementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
Bardziej szczegółowoElementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy
Bardziej szczegółowoFizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Bardziej szczegółowoMechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Bardziej szczegółowoDualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
Bardziej szczegółowoJak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
Bardziej szczegółowoCiało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Bardziej szczegółowoJak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
Bardziej szczegółowoZjawisko Comptona opis pół relatywistyczny
FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych
Bardziej szczegółowoλ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoVII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Bardziej szczegółowoZasada nieoznaczoności Heisenberga
Fale materii paczki falowe o różnej szerokości Dwa gaussowskie rozkład amplitud fal armonicznc o różnc szerokościac σ p i różnc wartościac średnic pędu p. Części rzeczwista ReΨ i urojona mψ funkcji falowc
Bardziej szczegółowoRównanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Bardziej szczegółowoV. RÓWNANIA MECHANIKI KWANTOWEJ
V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych
Bardziej szczegółowoRównanie Schrödingera
Fizyka 2 Wykład 3 1 Równanie Schrödingera Chcemy znaleźć dopuszczalne wartości energii układu fizycznego, dla którego znamy energię potencjalną. Z zasady odpowiedniości znamy postać hamiltonianu. Wybieramy
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 12 Janusz Andrzejewski Światło Falowa natura Dyfrakcja Interferencja Załamanie i odbicie Korpuskuralna natura Teoria promieniowania ciała doskonale czarnego Zjawisko fotoelekryczne Zjawisko
Bardziej szczegółowoWykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi
Bardziej szczegółowoPoczątek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Bardziej szczegółowoPrędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Bardziej szczegółowoWykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie
Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,
Bardziej szczegółowoFizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Bardziej szczegółowoChemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Bardziej szczegółowoPODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoRównanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
Bardziej szczegółowoIX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy
Bardziej szczegółowoMechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Bardziej szczegółowoJednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
Bardziej szczegółowoStara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Bardziej szczegółowoRÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Bardziej szczegółowoPodstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Bardziej szczegółowoh 2 h p Mechanika falowa podstawy pˆ 2
Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie
Bardziej szczegółowoMechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
Bardziej szczegółowoFizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Bardziej szczegółowoDoświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja
Doświadczenie Younga 1801 Thomas Young Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga c.d. fotodetektor + głośnik fala ciągły sygnał o zmiennym
Bardziej szczegółowoWykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Bardziej szczegółowoWłasności falowe materii
Część 3 Własności falowe materii 1. Rozpraszanie promieni X 2. Fale De Brogliea 3. Rozpraszanie elektronu 4. Ruch falowy 5. Transformata Fouriera 6. Zasada nieokreśloności 7. Cząsteczka w pudle 8. Prawdopodobieństwo,
Bardziej szczegółowoTeorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Bardziej szczegółowoKomentarz 3 do fcs. Drgania sieci krystalicznej. I ciepło właściwe ciała stałego.
Komentarz do fcs. Drgania sieci krystalicznej. I cieło właściwe ciała stałego. Drgania kryształu możemy rozważać z dwóch unktów widzenia. Pierwszy to makroskoowy, gdy długość fali jest znacznie większa
Bardziej szczegółowoPromieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Bardziej szczegółowoStatystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Bardziej szczegółowoZad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Bardziej szczegółowoFale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.
Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.
Bardziej szczegółowoIII. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Bardziej szczegółowoFoton, kwant światła
015-0- Fizyka kwantowa dotyczy świata mikroskopowego wiele wielkości jest skwantowanyc, tzn. występuje w całkowityc wielokrotnościac pewnyc minimalnyc porcji zwanyc kwantami Foton, kwant światła Zjawiska
Bardziej szczegółowoWykład 18: Elementy fizyki współczesnej -2
Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;
Bardziej szczegółowoFizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Bardziej szczegółowoΨ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoWykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
Bardziej szczegółowoProblemy fizyki początku XX wieku
Mechanika kwantowa Problemy fizyki początku XX wieku Promieniowanie ciała doskonale czarnego Ciałem doskonale czarnym nazywamy ciało całkowicie pochłaniające na nie promieniowanie elektromagnetyczne, niezależnie
Bardziej szczegółowogdzie λ - długość fali, h - stała Plancka, p - pęd cząstki.
3.7. Model współczesny Louis Victor Pierre Raymond de Broglie (189-1987) (Rysunek 3-35) w swojej pracy doktorskiej z 194 roku, wysunął przypuszczenie, że skoro fale elektromagnetyczne mogą przejawiać naturę
Bardziej szczegółowoMetody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Bardziej szczegółowofalowa natura materii
10 listopada 2016 1 Fale de Broglie a Dyfrakcja promieni X 1895 promieniowanie X dopiero w 1912 dowód na ich falowa naturę - to promieniowanie elektromagnetyczne zjawiska falowe: ugięcia, dyfrakcji - trudne:
Bardziej szczegółowoOPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Bardziej szczegółowoWykład 21: Studnie i bariery cz.1.
Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera
Bardziej szczegółowoAtom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie
Bardziej szczegółowoKwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Bardziej szczegółowoZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA
ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO
Bardziej szczegółowoŁadunek elektryczny jest skwantowany
1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek
Bardziej szczegółowoŚwiatło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Bardziej szczegółowoNieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Bardziej szczegółowoOPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Bardziej szczegółowoWykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoRozdział 4 Równanie Schrödingera
Rozdział 4 Równanie Schrödingera 4.1 Równanie falowe Schrödingera 4. Obserwable, stany stacjonarne, wartości średnie 4.3 Nieskończona studnia potencjału 4.4 Skończona studnia potencjału 4.5 Trójwymiarowa
Bardziej szczegółowoFale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Bardziej szczegółowoPodstawy fizyki kwantowej
Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego
Bardziej szczegółowoZasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:
Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn
Bardziej szczegółowoWykład 26. Elementy mechaniki kwantowej.
1 Wykład 6 Elementy mechaniki kwantowej. 11.1 Modele atomu Thomsona i Rutherforda. Pierwsza próba stworzenia modelu atomu na podstawie zebranych danych doświadczalnych była dokonana przez J.J. Thomsona
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowoWykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Bardziej szczegółowoMechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.
Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowoŚwiatło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
Bardziej szczegółowo2.14. Zasada zachowania energii mechanicznej
Wykład 6 14 Zasada zachowania energii mechanicznej Informatyka 011/1 Stajesz na szczycie góry Mocujesz deskę, zakładasz gogle i zaczynasz szaleńczy zjazd W miarę jak twoja energia otencjalna zamienia się
Bardziej szczegółowoWykład 13 Mechanika Kwantowa
Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne
Bardziej szczegółowo( n) Łańcuchy Markowa X 0, X 1,...
Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}
Bardziej szczegółowowykład 1. Fizyka Jądrowa Bogdan Muryn
wykład 1. Fizyka Jądrowa Bogdan Muryn Jednostki: Podczas tego wykładu obowiązują jednostki układu SI. Przez ładunek będziemy rozumieć (o ile nie zaznaczymy inaczej): Q Q 4 Wtedy ładunek elementarny ma
Bardziej szczegółowoPodstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera
Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka
Bardziej szczegółowoPOSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Bardziej szczegółowoWykład 26 Wersja robocza Elementy mechaniki kwantowej.
Piotr Posmykiewicz Wykład z fizyki 1 Wykład 6 Wersja robocza Elementy mechaniki kwantowej. 6.1 Modele atomu Thomsona i Rutherforda. Pierwsza próbę stworzenia modelu atomu na podstawie zebranych danych
Bardziej szczegółowoFale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoWłasności falowe cząstek. Zasada nieoznaczoności Heisenberga.
Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego
Bardziej szczegółowoPodstawy fizyki sezon 1 VIII. Ruch falowy
Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym
Bardziej szczegółowoWYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu Transport Studia I stopnia
Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Przedmiot: Rodzaj przedmiotu: Kod przedmiotu: Rok: I Semestr: I Forma studiów: Rodzaj zajęć i liczba godzin 60 w semestrze: Wykład 30 Ćwiczenia
Bardziej szczegółowoMini-quiz 0 Mini-quiz 1
rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą
Bardziej szczegółowoPrzedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
Bardziej szczegółowoMechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.
Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te
Bardziej szczegółowo