Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu"

Transkrypt

1 Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład Maxwella prędkości cząsteczek gazu doskonałego Średnia energia kinetyczna ruchu postępowego cząsteczek gazu doskonałego Energia wewnętrzna gazu doskonałego jedno- i dwuatoowego Średnia energia kinetyczna ruchu postępowego i wewnętrznego cząsteczki dwuatoowej Zasada ekwipartycji energii Energia wewnętrzna gazu doskonałego wieloatoowego

2 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Gaz składa się z bardzo wielkiej liczby będących w ciągły ruchu cząsteczek. Odbicia cząsteczek od ścianek zbiornika są źródłe ciśnienia wywieranego przez gaz na te ścianki. Ziana pędu pojedynczej cząsteczki o asie i prędkości : p x ( ) ( ) x x x Wydawnictwo aukowe PW S Copyright 005 John Wiley and Sons, Inc Ziana pędu ścianki: + x a siła działająca na ściankę od pojedynczej cząsteczki wyniesie: Po wysuowaniu po wszystkich cząsteczkach: F p t L x x P L F L x i L xi V i xi

3 Wprowadzając średnią kwadratu składowej prędkości pojedynczej cząsteczki: i uwzględniając, Ŝe i xi i yi i zi x i xi otrzyay: x i i skąd, wprowadzając prędkość średnią kwadratową (jako pierwiastek ze średniej z kwadratu prędkości pojedynczej cząsteczki): sr.kw. i i i xi Ostatecznie otrzyay: P F L i L xi V i xi V sr.kw. V sr.kw. skąd, noŝąc obustronnie przez V ay: PV sr.kw. n sr.kw. gdzie n to liczba oli a to liczba ogadry.

4 Prędkość średnia kwadratowa cząsteczek gazu doskonałego Porównując otrzyany wynik: PV n gazu doskonałego: PV nrt otrzyay równanie: śr.kw. RT M nrt n śr.kw. z równanie stanu z którego wynika, Ŝe: gdzie M to asa olowa rozwaŝanego gazu. Prędkości cząsteczek wybranych gazów w teperaturze pokojowej (00 K) sr.kw. gaz asa olowa [0 - kg/ol] śr.kw. [/s] wodór (H),0 90 hel (He) 4,0 70 para wodna (HO) 8,0 645 azot () 8,0 57 tlen (O),0 48 dwutlenek węgla (CO) 44,0 4 dwutlenek siarki (SO) 64, 4 4

5 Rozkład Maxwella prędkości cząsteczek gazu doskonałego P M πrt M RT ( ) d 4π exp d Prędkości te przyjują wartości z zakresu do 0 do + Wydawnictwo aukowe PW S Rozkład Maxwella prędkości cząsteczek tlenu w teperaturze 00 K. Pole Pd jest prawdopodobieństwe, Ŝe prędkość wybranej cząsteczki będzie iała wartość w zakresie od do +d. Pole pod krzywą jest równe jedności. Pokazano trzy prędkości charakterystyczne, w ty sr.kw., prędkość średnią kwadratową 5

6 Rozkład Maxwella prędkości cząsteczek gazu doskonałego Wydawnictwo aukowe PW S Rozkład Maxwella prędkości cząsteczek tlenu dla teperatury 00 i 80 K. Pole pod kaŝdą krzywą jest równe jedności. 6

7 n śr.kw. śr.kw. Z równania: n RT n n Ek,sr. May takŝe średnią energię kinetyczną ruchu postępowego pojedynczej cząsteczki gazu: E Średnia energia kinetyczna ruchu postępowego cząsteczek gazu doskonałego śr.kw. RT gdzie k to stała Boltzanna k,sr. k R 8, J 6,0 0 ( ol K) ol,8 0 W danej teperaturze T wszystkie cząsteczki gazu doskonałego, niezaleŝnie od swojej asy, ają taką saą średnią energię kinetyczną ruchu postępowego równą (/). Mierząc teperaturę gazu oŝey wyznaczyć średnią energię kinetyczną ruchu postępowego cząsteczek tego gazu Mówiąc o ruchu postępowy cząsteczki gazu ay na yśli ruch środka asy tej cząsteczki 7 J K

8 Wprowadzając stałą Boltzanna k do równania stanu gazu doskonałego otrzyay: PV nrt n jeszcze jedną postać równania stanu gazu doskonałego. W równaniu ty to liczba cząsteczek gazu w objętości V. Z postaci tego równania wynika, Ŝe liczba cząsteczek dwóch róŝnych gazów, zajujących tę saą objętość, w tej saej teperaturze i o ty say ciśnieniu, będzie taka saa. Sprawdzian Mieszanina gazów zawiera cząsteczki typu, i, których asy cząsteczkowe spełniają nierówność > >. Uszereguj te cząsteczki według ich: a) średniej energii kinetycznej b) prędkości średniej kwadratowej W kaŝdy przypadku zacznij od wartości największej 8

9 Energia wewnętrzna gazu doskonałego jedno- i dwuatoowego Energia wewnętrzna gazu jednoatoowego (brak oddziaływań poiędzy atoai gazu) wyniesie: śr.kw. U gdzie to liczba cząsteczek gazu w rozwaŝanej objętości. Dla większych cząsteczek, naleŝy uwzględnić energię kinetyczną związaną z obrotai oraz kinetyczną i potencjalną z oscylacjai. Energia wewnętrzna będzie wobec tego zawierać następujące wyrazy: U śr.kw E k obr,śr + Ek osc,śr + E p osc,śr Poinięto wkład elektronowy, który jest na ogół znacznie niejszy od pozostałych. Gaz dwuatoowy oŝna rozpatrywać jako skrajny przypadek ieszaniny dwóch gazów jednoatoowych w stosunku :, w której kaŝdy ato gazu oddziałuje (połączył się w cząsteczkę) z jedny atoe gazu B. 9

10 W ieszaninie dwóch gazów i B, bez oddziaływań poiędzy atoai i B, ciśnienie będzie suą ciśnień cząstkowych: P F P + P; P V a więc: PV,śr.kw. ; P V,śr.kw.,śr.kw.,śr.kw. + + Po wyrównaniu się teperatur: ( + ) PV co oznacza, Ŝe:,śr.kw. ;,śr.kw. ;,śr.kw.,śr.kw.. Zate bezpośrednia wyiana energii poprzez zderzenia poiędzy cząsteczkai róŝnych gazów w ieszaninie prowadzi do równości średnich energii kinetycznych cząsteczek obu gazów. Ciśnienia cząstkowe wywierane przez oba gazy będą róŝne i zaleŝne od koncentracji cząsteczek ( i /V) obu gazów. 0

11 ZałóŜy, Ŝe w ieszaninie dwóch gazów jednoatoowych kaŝdy ato gazu oddziałuje z jakiś atoe gazu B (są związane w dwuatoową cząsteczkę B). Przy zderzeniach, które prowadzą do wyiany energii i do ustalenia równowagi, waŝne są tylko prędkości atoów, a nie działające poiędzy nii siły. r r adal zate średnie energie B kinetyczne cząsteczek są równe: r r r r r + BB + BB PoniewaŜ: ś + M B B r r r r r + B B+ BB Zate: ś M r r + B B + r co oznacza, Ŝe: M B ś M gdyŝ r r B 0 bo względny ruch atoów w cząsteczce jest całkowicie przypadkowy. (/) dla ŚM cząsteczki i (/) dla kaŝdego atou

12 Średnia energia kinetyczna ruchu postępowego i wewnętrznego cząsteczki dwuatoowej Z jednej strony ay zate: r B r B co oznacza, Ŝe całkowita średnia energia kinetyczna cząsteczki dwuatoowej jest równa: E + k, calk z drugiej zaś wiey, Ŝe średnia energia kinetyczna związana z ruche środka asy ŚM wynosi: E k, ś Oznacza to, Ŝe brakująca energia równa na cząsteczkę jest średnią energią kinetyczną ruchu wewnętrznego cząsteczki dwuatoowej, czyli jej obrotów wokół środka asy i oscylacji.

13 Zasada ekwipartycji energii Energię ruchu wewnętrznego cząsteczki dwuatoowej oŝna wyrazić jako energię ruchu obrotowego (dwie osie obrotu) i energię kinetyczną oscylacji wzdłuŝ wiązania poiędzy atoai. Wydawnictwo aukowe PW S a kaŝdy stopień swobody przypada zate energia: zasada ekwipartycji energii Pojedynczy ato nie a energii kinetycznej ruchu obrotowego, a cząsteczka dwuatoowa nie a trzeciej osi obrotu. Dla cząsteczki zbudowanej z r atoów liczba stopni swobody wynosi r, po trzy na ato. Całkowita energia kinetyczna wyniesie wobec tego (/)r, z tego energia kinetyczna ruchu ŚM (ruchu postępowego) to (/), a energia kinetyczna przypadająca na pozostałe stopnie swobody (obroty i oscylacje, bez energii potencjalnej) wyniesie (/)(r-).

14 Energia wewnętrzna gazu doskonałego wieloatoowego Całkowita energia wewnętrzna gazu dwuatoowego wyniesie: U Energia wewnętrzna gazu dwuatoowego bez oscylacji wyniesie: U dla większych cząsteczek, dla których liczba atoów wynosi r >, bez oscylacji (6 stopni swobody, dla ŚM i obroty): U + Uwzględnienie oscylacji zwiększa U o (r-6) do: U ( r ) Udział lub brak udziału oscylacji w energii wewnętrznej, jest efekte kwantowy i zaleŝy od teperatury. 4

15 Energia wewnętrzna gazu wieloatoowego doskonałego zaleŝy tylko od teperatury, nie zaleŝy od ciśnienia i objętości gazu. Wniosek ten potwierdza tzw. doświadczenie Joule a zbiornik zbiornik B teroetr Doświadczenie Joule a (84) Dwa zbiorniki połączone krane, zanurzone w wodzie. Początkowo zbiornik zawierał spręŝone powietrze ( at), a zbiornik B był odpopowany. Po otwarciu kranu część powietrza przepłynęła do zbiornika B. Po ustaleniu równowagi terodynaicznej, teroetr nie wykazał ziany teperatury kąpieli wodnej. Ciepło wydzielone podczas spręŝania gazu w zbiorniku B jest równe ciepłu straconeu przez gaz w zbiorniku na wykonanie pracy spręŝania. Gaz jako całość nie zienił teperatury. 5, K Prawo Joule a Thosona Energia wewnętrzna gazu doskonałego zaleŝy tylko od jego teperatury 5

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej Ciśnienie i temperatura gazu doskonałego Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład awella prędkości cząsteczek gazu doskonałego

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA Fizyka - cząsteczkowa Dział fizyki badający budowę i własności aterii przy założeniu, że każde ciało składa się z dużej liczby bardzo ałych cząsteczek. Cząsteczki te

Bardziej szczegółowo

Zjawiska transportu 22-1

Zjawiska transportu 22-1 Zjawiska transport - Zjawiska transport Zjawiska transport są zjawiskai, które występją jeżeli kład terodynaiczny nie jest w stanie równowagi: i v! const - w kładzie występje akroskopowy przepływ gaz lb

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha Ciepło właściwe Autorzy: Zbigniew Kąkol Bartek Wiendlocha 01 Ciepło właściwe Autorzy: Zbigniew Kąkol, Bartek Wiendlocha W module zapoznamy się z jednym z kluczowych pojęć termodynamiki - ciepłem właściwym.

Bardziej szczegółowo

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

Układ termodynamiczny

Układ termodynamiczny Uład terodynaiczny Uład terodynaiczny to ciało lub zbiór rozważanych ciał, w tóry obo wszelich innych zjawis (echanicznych, eletrycznych, agnetycznych itd.) uwzględniay zjawisa cieplne. Stan uładu charateryzuje

Bardziej szczegółowo

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym

Bardziej szczegółowo

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 138 WYKŁAD - STAN GAZOWY i CHEMIA GAZÓW kinetyczna teoria gazów ogromna liczba małych cząsteczek, doskonale

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2011/2012 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Czas zajęć: 1 godzina z 2 przeznaczonych na temat w rozkładzie materiału;

Czas zajęć: 1 godzina z 2 przeznaczonych na temat w rozkładzie materiału; Anna Chielewska Krzysztofik Nauczyciel cheii Zespół Szkół Mechanicznych w Lublinie Lublin, dn. 11.01.2005 Scenariusz zajęć edukacyjnych z cheii opracowany dla klasy 1At Techniku Mechanicznego na podstawie

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki) Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

MASA ATOMOWA STECHIOMETRIA

MASA ATOMOWA STECHIOMETRIA MASA ATOMOWA wzorce: J. Dalton wodór J.J. Berzelius tlen od 1961 r. skala oparta na węglu 12 { 12 98,89%; 13 1,11%} 12 6 ato 6n + 6p + 6e Jednostka asy atoowej jest to 1 / 12 asy atou węgla 12 j..a. 1

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 Testy 3 40. Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 41. Balonik o masie 10 g spada ze stałą prędkością w powietrzu. Jaka jest siła wyporu? Jaka jest średnica

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Jaka jest średnia masa atomowa miedzi stanowiącej mieszaninę izotopów,

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek Termodynamika cz. 2 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Gaz doskonały Definicja makroskopowa (termodynamiczna)

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK Wykład 4. Gazy.. Gaz doskonały, półdoskonały i rzeczywisty.. Równanie stanu gazu doskonałego; uniwersalna stała gazowa.3. RównowaŜne sformułowania równania stanu gazu doskonałego; stała gazowa.4. Odstępstwa

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą

Gaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą Terodynaika 16-1 16 Terodynaika Założenia teorii kinetycno oekuarnej Ga doskonały ode ideanego układu bardo wieu cąstecek, które: i ają asę w najprostsy prypadku wsystkie taką saą, ii nie ają objętości

Bardziej szczegółowo

Mol, masa molowa, objętość molowa gazu

Mol, masa molowa, objętość molowa gazu Mol, masa molowa, objętość molowa gazu Materiały pomocnicze do zajęć wspomagających z chemii opracował: Błażej Gierczyk Wydział Chemii UAM Mol Mol jest miarą liczności materii. 1 mol dowolnych indywiduów

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Temat XXI. Przemiany fazowe

Temat XXI. Przemiany fazowe Temat XXI Przemiany fazowe Definicja: Faza termodynamiczna Faza termodynamiczna jest jednolitą częścią układu fizycznego, oddzieloną od innych jego części powierzchniami, nazywanymi granicami faz. Definicja:

Bardziej szczegółowo

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny. Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Termodynamika Część 2

Termodynamika Część 2 Termodynamika Część 2 Równanie stanu Równanie stanu gazu doskonałego Równania stanu gazów rzeczywistych rozwinięcie wirialne równanie van der Waalsa hipoteza odpowiedniości stanów inne równania stanu Równanie

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

Temperatura i energia kinetyczna gazów.

Temperatura i energia kinetyczna gazów. Wykład z fizyki, Piotr Posmykiewicz 49 W Y K Ł A D XII Temperatura i energia kinetyczna gazów. Temperatura jest nam wszystkim znana jako miara tego czy ciało jest ciepłe, czy zimne. W wykładzie tym pokaŝemy,

Bardziej szczegółowo

VII Podkarpacki Konkurs Chemiczny 2014/15. ETAP II r. Godz Zadanie 1 (11 pkt)

VII Podkarpacki Konkurs Chemiczny 2014/15. ETAP II r. Godz Zadanie 1 (11 pkt) VII Podkarpacki Konkurs heiczny 2014/15 KPKh ETAP II 20.12.2014 r. Godz. 10.302.30...... Nazwisko, iię Szkoła, iejscowość Rec. I Rec. II Tabela wyników Zad.1 Zad.2 Zad.3 Sua Wynik końcowy Uwaga! Masy olowe

Bardziej szczegółowo

Gazy. - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings

Gazy. - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings Gazy - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings Ciśnienie p = F S 1 atm = 101325 Pa 1 atm = 760 mm Hg = 760 Torr N 2 m = kg m 2 s 2 m =

Bardziej szczegółowo

5. Ruch harmoniczny i równanie falowe

5. Ruch harmoniczny i równanie falowe 5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Gazy. Ciśnienie F S. p = 1 atm = Pa 1 atm = 760 mm Hg = 760 Torr. - Uniformly fills any container. - Mixes completely with any other gas

Gazy. Ciśnienie F S. p = 1 atm = Pa 1 atm = 760 mm Hg = 760 Torr. - Uniformly fills any container. - Mixes completely with any other gas Gazy - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings Ciśnienie p = F S 1 atm = 10135 Pa 1 atm = 760 mm Hg = 760 Torr N = m kg m s m = kg s m

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

Ć W I C Z E N I E N R C-7

Ć W I C Z E N I E N R C-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C-7 SPRAWDZANIE PRAWA BAROMETRYCZNEGO I. Zagadnienia

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Technika próżniowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika próżniowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika próżniowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika próżniowa Zakres materiału 1. Podstawy fizyczne. Wytwarzanie próżni 3. Pomiary próżni 4. Urządzenia

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

Termodynamika Wykazać, Ŝe sprawność silnika Carnota, w którym substancją roboczą jest gaz doskonały, wynosi η = (T 1 -T 2 )/T 1.

Termodynamika Wykazać, Ŝe sprawność silnika Carnota, w którym substancją roboczą jest gaz doskonały, wynosi η = (T 1 -T 2 )/T 1. Termodynamika 1 1. Niech zaleŝność ciepła właściwego od temperatury ma postać: c=a+bt 2, gdzie A i B są stałymi, a T temperaturą w skali Celsjusza. Porównać ciepło właściwe tej substancji w zakresie temperatur

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

Ciepło i pierwsza zasada termodynamiki.

Ciepło i pierwsza zasada termodynamiki. Wykład z fizyki, Piotr Posmykiewicz 162 W Y K Ł A D XIII Ciepło i pierwsza zasada termodynamiki. Ciepło jest energią, która jest przekazywana z jednego układu do drugiego w wyniku róŝnicy temperatur obu

Bardziej szczegółowo

Zapis równań reakcji chemicznych oraz ich uzgadnianie

Zapis równań reakcji chemicznych oraz ich uzgadnianie Zapis równań reakcji chemicznych oraz ich uzgadnianie Równanie reakcji chemicznej jest symbolicznym zapisem reakcji przy uŝyciu symboli wzorów oraz odpowiednich współczynników i znaków. Obrazuje ono przebieg

Bardziej szczegółowo

Temperatura mieszanki oddechowej za pierwszym stopniem automatu

Temperatura mieszanki oddechowej za pierwszym stopniem automatu Temperatura mieszanki oddechowej za pierwszym stopniem automatu Celem niniejszego artykułu jest pokazanie praktycznego sposobu na wyznaczanie temperatury mieszanki oddechowej po rozpręŝeniu na pierwszym

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Opracował: dr inż. Tadeusz Lemek

Opracował: dr inż. Tadeusz Lemek Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Opracował:

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH

OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH 1 OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH Np.: WYZNACZANIE ILOŚCI SUBSTRATÓW KONIECZNYCH DLA OTRZYMANIA OKREŚLONYCH ILOŚCI PRODUKTU PODSTAWY OBLICZEŃ CHEMICZNYCH

Bardziej szczegółowo

00516 Termodynamika D Część 1

00516 Termodynamika D Część 1 1 00516 Termodynamika D Dane osobowe właściciela arkusza 00516 Termodynamika D Część 1 Energia wewnętrzna. I zasada termodynamiki Ciepło właściwe i przemiany fazowej Model gazów doskonałych Aktualizacja

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo