Nierówności między średnimi liczbowymi i ich zastosowanie. Renata Jurasińska. Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nierówności między średnimi liczbowymi i ich zastosowanie. Renata Jurasińska. Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie"

Transkrypt

1 Nierówności między średnimi liczbowymi i ich zastosowanie Renata Jurasińska Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie I. Średnie liczbowe i zaleŝności między nimi Średnie liczbowe (moŝe jedynie bez średniej kwadratowej) i nierówności między nimi uczniowie znają juŝ od pierwszej klasy szkoły średniej (a czasem nawet od gimnazjum). Przypomnę definicje tych średnich, podam twierdzenie o nierównościach między nimi, szkice dowodów, a takŝe przykłady zastosowań nierówności między średnimi do rozwiązywania róŝnorodnych zadań, prostych, trudniejszych, a nawet olimpijskich. Definicja. ŚREDNIA liczb,,, - to dowolna funkcja spełniająca warunek,,,,,,,,,,,, i jednocześnie niemalejąca ze względu na kaŝdą zmienną,,,. Najbardziej znane średnie, to średnia arytmetyczna, geometryczna, harmoniczna i kwadratowa. Definicja. ŚREDNIĄ ARYTMETYCZNĄ liczb rzeczywistych,,, nazywamy liczbę.

2 Definicja. ŚREDNIĄ GEOMETRYCZNĄ liczb nieujemnych,,, nazywamy liczbę Definicja 4. ŚREDNIĄ HARMONICZNĄ róŝnych od zera liczb rzeczywistych,,, nazywamy liczbę.. Definicja 5. ŚREDNIĄ KWADRATOWĄ liczb rzeczywistych,,, nazywamy liczbę. ZaleŜności pomiędzy średnimi,, i moŝna zapisać w postaci następującego twierdzenia Twierdzenie. Dla dowolnych liczb dodatnich,,, zachodzą nierówności. W kaŝdej z nierówności (), () i () równość ma miejsce wtedy i tylko wtedy, gdy. Środkowa nierówność () w Twierdzeniu. to słynna nierówność Cauchy ego między średnią geometryczną i arytmetyczną. Nierówność ta dla dwóch liczb nieujemnych

3 znana była juŝ w czasach Euklidesa, lecz jej ogólna postać pojawiła się znacznie później. Pierwsza znana wzmianka pochodzi z roku 79, kiedy to szkocki matematyk Colin Maclaurin sformułował następujące twierdzenie geometryczne Twierdzenie. JeŜeli dany odcinek podzielimy na kilka odcinków, to iloczyn długości tych odcinków będzie największy, jeśli wszystkie z tych odcinków będą równej długości. Oznaczmy przez,,, długości odcinków, na jakie został podzielony dany odcinek. Gdyby odcinki te były równej długości, to kaŝdy z nich miałby długość, a więc Twierdzenie. moŝemy zapisać w postaci nierówności, która jest równowaŝna nierówności (). Dowód Maclaurina nie był jednakŝe ścisły i zawierał lukę. Po raz pierwszy w jawnej postaci i ze ścisłym dowodem nierówność () została opublikowana przez francuskiego matematyka Augustina Cauchy ego w Wykładach z analizy algebraicznej (8 r.), dlatego teŝ nazywana jest zazwyczaj nierównością Cauchy ego. Obecnie znanych jest ponad 50 róŝnych dowodów nierówności ().

4 Zacznę od pokazania prostych dowodów tych nierówności dla n =, czyli dla dwóch dodatnich liczb a i b. Twierdzenie. dla n = moŝna zapisać w postaci Twierdzenie. Dla dodatnich liczb a i b zachodzą nierówności. W kaŝdej z tych nierówności równość zachodzi wtedy i tylko wtedy, gdy. Dowody algebraiczne nierówności ( ), ( ) i ( ) polegają na równowaŝnym przekształcaniu tych nierówności do oczywistych postaci i chyba nie wymagają specjalnych komentarzy. Niech więc, będą liczbami rzeczywistymi dodatnimi. Mamy kolejno dla ( ),, 4, 0. Dla ( ) otrzymujemy 4,,,

5 Z kolei dla ( ) dostajemy,,,, 0. Znacznie ciekawsze są dowody geometryczne, przytoczę jeden z nich, inne moŝna znaleźć np. w [9]. Niech i będą liczbami dodatnimi i niech. Na odcinku o długości a obieramy taki punkt C, Ŝe (jak na rysunku) Kreślimy okrąg o średnicy i jego środek oznaczamy przez. Wówczas mamy zaś,. 5

6 Z punktu prowadzimy styczną do górnego półokręgu i oznaczamy przez punkt styczności. Przez oznaczamy rzut prostokątny punktu na odcinek, zaś przez - punkt wspólny okręgu i odcinka o początku w punkcie O, prostopadłego do odcinka. Wyrazimy długości odcinków, i przez i. Z twierdzenia Pitagorasa dla trójkąta prostokątnego mamy, a stąd. Z podobieństwa trójkątów i mamy z kolei, Ŝe, a więc i po łatwych przekształceniach otrzymujemy, Ŝe Z trójkąta prostokątnego mamy z kolei a tym samym.,. Pokazaliśmy więc, Ŝe długości odcinków,, i są odpowiednimi średnimi liczb i. Korzystając w trójkątach prostokątnych, i z własności, Ŝe przyprostokątna jest krótsza od przeciwprostokątnej, otrzymujemy nierówności a stąd,. 6

7 MoŜna równieŝ zauwaŝyć, Ŝe pomiędzy średnimi dwóch liczb dodatnich i zachodzą równieŝ następujące ciekawe (i proste do wykazania) związki, mianowicie,,, czyli odwrotność średniej arytmetycznej liczb dodatnich i jest średnią harmoniczną odwrotności tych liczb;,,, czyli odwrotność średniej harmonicznej liczb dodatnich i jest średnią arytmetyczną odwrotności tych liczb;,,, czyli odwrotność średniej geometrycznej liczb dodatnich i jest średnią geometryczną odwrotności tych liczb. Dowody nierówności (), () i () dla liczb dodatnich są bardziej skomplikowane, podam tylko ich szkice, a zainteresowanych odsyłam np. do []. Dowód Cauchy ego nierówności () Jeśli, to oczywiście. NaleŜy pokazać, Ŝe jeśli nie wszystkie spośród liczb,,, są równe, to zachodzi nierówność ostra. Dla mamy a stąd Dalej, dla 4 mamy. jeśli nie wszystkie,,, są równe., 4 Powtarzając to rozumowanie m razy otrzymujemy, gdy, 7

8 , gdy nie wszystkie są równe. W ten sposób nierówność () została udowodniona dla n będących potęgami dwójki. Niech teraz n będzie dowolną liczbą naturalną i niech m będzie liczbą naturalną taką, Ŝe. Podstawmy,,,,. Mamy wówczas, gdy nie wszystkie są równe. Ale są sobie równe wtedy i tylko wtedy, gdy są sobie równe. Stąd ostatecznie, jeśli nie wszystkie są sobie równe dostajemy, czyli lub równowaŝnie co kończy dowód.,, Dowód nierówności (), wiąŝącej średnią arytmetyczną i kwadratową, był równieŝ zawarty w Wykładach z analizy algebraicznej Cauchy ego i oparty był na następującym rozumowaniu. Dowód Cauchy ego nierówności () 8

9 Indukcyjnie moŝna wykazać, Ŝe. Stąd mamy, czyli równowaŝnie co kończy dowód., Nierówność () między średnią harmoniczną i geometryczną następująco moŝna udowodnić Dowód nierówności (). ZauwaŜmy, Ŝe co kończy dowód., Warto jeszcze zwrócić uwagę na dwie nierówności, które są równowaŝnymi zapisami nierówności między średnimi i które są często wykorzystywane przy rozwiązywaniu zadań. Są to nierówności (4), czyli wynikająca z nierówności między średnią arytmetyczną i kwadratową; 9

10 oraz (5) czyli,, wynikająca z nierówności między średnią arytmetyczną i harmoniczną. NaleŜy równieŝ zauwaŝyć, Ŝe średnie: arytmetyczna, geometryczna, harmoniczna i kwadratowa są szczególnymi przypadkami tzw. średniej potęgowej. Definicja 6. ŚREDNIĄ POTĘGOWĄ stopnia liczb dodatnich,,, nazywamy liczbę,,, dla 0. dla 0 Definicję tę moŝna uzupełnić dla następująco,,, min,,,,,,, max,,,. ZauwaŜmy, Ŝe mamy i nierówności między średnimi przyjmują postać,,,. Nierówności te moŝna udowodnić wykorzystując fakt, Ŝe dla dowolnych liczb dodatnich,,, funkcja jest niemalejąca,,, 0

11 II. Zastosowanie nierówności między średnimi liczbowymi do rozwiązywania zadań. Dowodzenie nierówności Zad.. Udowodnić, Ŝe dla dowolnych liczb dodatnich,, zachodzi nierówność (6) 8 Z nierówności ( ) między średnią arytmetyczną i geometryczną mamy a więc,,,,,. MnoŜąc stronami te nierówności otrzymujemy (6). Zad.. Udowodnić, Ŝe dla dowolnych liczb nieujemnych,, zachodzi nierówność (7). Wykorzystując nierówność () dla trzech liczb nieujemnych,, otrzymujemy Analogicznie otrzymujemy nierówności. oraz. Dodając stronami otrzymane trzy nierówności otrzymujemy (7). Zad.. Udowodnić, Ŝe dla dowolnych liczb dodatnich,, zachodzi nierówność (8). Przekształcając lewą stronę nierówności (8) i stosując nierówność () otrzymujemy

12 . Zad. 4. (OM Leningrad 988) Udowodnić, Ŝe dla dowolnych liczb dodatnich,,, zachodzi nierówność (9) Wykorzystując nierówność (5) otrzymujemy co po prostych przekształceniach daje (9). 64, Zad. 5. Udowodnić, Ŝe dla dowolnych liczb dodatnich,, takich, Ŝe, zachodzi nierówność 5. Wykorzystując nierówność (4) i warunki zadania otrzymujemy 5. Po spierwiastkowaniu stronami dostajemy Ŝądaną nierówność.

13 Zad. 6. Udowodnić, Ŝe dla dowolnej liczby naturalnej zachodzą nierówności (0). Udowodnimy najpierw prawą nierówność. RozwaŜmy,,,,,,,,,,. Wykorzystując nierówność () otrzymujemy liczb postaci czyli równowaŝnie Wykorzystując znaną toŝsamość,. mamy dalej 6 6, co kończy dowód prawej nierówności (0). Dowód lewej nierówności jest podobny (naleŝy odpowiednio dobrać liczby).

14 Zad. 7. (XLI MOM, Korea Południowa, 000). Niech,, będą takimi liczbami rzeczywistymi dodatnimi, Ŝe. Udowodnić, Ŝe (). PoniewaŜ z załoŝenia mamy, Ŝe, moŝemy nierówność () uzaleŝnić od dwóch zmiennych, wykorzystując na przykład zaleŝność. Nierówność () moŝemy wtedy zapisać w postaci i dalej równowaŝnie w postaci (). Suma dowolnych dwóch spośród liczb,, jest dodatnia, mamy bowiem,,, zatem co najwyŝej jedna z nich moŝe być ujemna. Jeśli któraś z tych liczb jest faktycznie ujemna lub równa zero, to nierówność () jest oczywista. Jeśli zaś,, są dodatnie, to moŝemy korzystając z () zamiast szacować iloczyn liczb,, oszacować ich sumy, które jak pokazaliśmy są bardzo proste! Otrzymujemy nierówności które pomnoŝone stronami dają nierówność ().,,, Zad. 8. Wewnątrz trójkąta obrano punkt odległy od prostych, i odpowiednio o,,. Wykazać, Ŝe 7, gdzie jest polem trójkąta, zaś długością promienia okręgu opisanego na tym trójkącie. 4

15 Łatwo zauwaŝyć, Ŝe, a stąd czyli,. PoniewaŜ mamy oszacować iloczyn, zastosujemy nierówność między średnią arytmetyczną a geometryczną dla liczb,,. Otrzymujemy, a stąd 7 Wykorzystując znany wzór na pole trójkąta z którego wyznaczamy otrzymujemy ostatecznie 4, 4, , co kończy dowód.. Zadania optymalizacyjne W matematyce termin optymalizacja odnosi się do problemu znalezienia minimum lub maksimum zadanej funkcji. Praktyczne wyznaczanie optimum nie jest proste; z reguły zadania optymalizacyjne rozwiązuje się z wykorzystaniem rachunku róŝniczkowego. PokaŜę kilka zadań, do rozwiązania których wystarczy znajomość nierówności między średnimi liczbowymi. Zad. 9. Wśród prostokątów o przekątnej długości 0 wskaŝ ten, który ma największe pole. Oznaczmy długości boków prostokąta przez i. Z warunków zadania i twierdzenia Pitagorasa mamy wtedy 00. Pole prostokąta jest równe. Stosując nierówność () otrzymujemy 5

16 00 50, przy czym równość zachodzi wtedy i tylko wtedy, gdy, czyli gdy. Tak więc największe pole ma kwadrat o boku 5. Zad. 0. Wśród prostopadłościanów, w których suma długości wszystkich krawędzi wynosi wskaŝ ten, który ma największą objętość. Niech,, będą długościami boków prostopadłościanu, zaś jego objętością. Z warunków zadania mamy 4 czyli oraz. Z nierówności () otrzymujemy a stąd czyli,,, przy czym równość ma miejsce wtedy i tylko wtedy, gdy. Zatem największą objętość ma sześcian o krawędzi długości. Zad.. Jak dobrać oporności trzech oporników połączonych równolegle o łącznym oporze 0 Ω, aby opór zastępczy był największy? Jak wiadomo opór zastępczy oporów,, połączonych równolegle wyraŝa się wzorem Stąd mamy.. Stosując nierówność między średnią harmoniczną i arytmetyczną otrzymujemy 0 9, 6

17 przy czym równość zachodzi wtedy i tylko wtedy, gdy. Tak więc największy opór zastępczy otrzymamy, gdy oporniki będą jednakowej oporności.. Równania, układy równań i nierówności Zad.. (OM Wielka Brytania 975) Znaleźć wszystkie rozwiązania w liczbach rzeczywistych równania (). RozwaŜmy liczby,,,,. ZauwaŜmy, Ŝe, a więc średnia arytmetyczna tych liczb wynosi. Ta obserwacja oraz postać równania () sugerują zastosowanie nierówności () między średnią arytmetyczną i kwadratową. Otrzymujemy wtedy. Po prostych przekształceniach otrzymujemy, przy czym równość zachodzi (a tym samym spełnione jest równanie ()) wtedy i tylko wtedy, gdy. Oznaczając otrzymujemy z () a stąd czyli,,. 7

18 Mamy więc (4) lub (5). Po prostych obliczeniach otrzymujemy, Ŝe w przypadku (4) czyli dla,,,,,,,. W przypadku (5) otrzymujemy sprzeczność. Istnieje zatem dokładnie jedno rozwiązanie w liczbach rzeczywistych równania (). Zad.. Rozwiązać w liczbach dodatnich układ równań ,5. ZałóŜmy, Ŝe liczby dodatnie,, spełniają podany układ. Wtedy mnoŝąc drugie równanie przez 4 i dodając równania stronami otrzymujemy (6) Ale stosując nierówność między średnią arytmetyczną i geometryczną mamy (7)

19 , przy czym równość zachodzi wtedy i tylko wtedy, gdy (8) 64 4, 8 4, Z (6), (7) i (8) otrzymujemy, Ŝe 4, 4,5 i 5. Nietrudno sprawdzić, Ŝe otrzymana trójka 4; 4,5; 5 spełnia podany układ, jest więc jedynym jego rozwiązaniem w liczbach dodatnich. Zad. 4. Rozwiązać w liczbach dodatnich układ (9) 9. ZałóŜmy, Ŝe liczby dodatnie,, spełniają podany układ. Z nierówności (5) dostajemy Stąd wynika, Ŝe w przytoczonej nierówności mamy równość, co zachodzi wtedy i tylko wtedy, gdy (0). Z (9) i (0) dostajemy, 4, 6. Nietrudno sprawdzić, Ŝe otrzymana trójka,4,6 spełnia podany układ, jest więc jedynym jego rozwiązaniem w liczbach dodatnich. 9

20 Zad. 5. (OM Bułgaria 968) Wyznaczyć wszystkie liczby naturalne, dla których układ równań () 9 ma rozwiązanie w liczbach rzeczywistych,,,. Dla kaŝdej znalezionej wartości podać rozwiązanie. Niech liczby,,, spełniają układ (). Wtedy po pomnoŝeniu stronami obu równań otrzymujemy () 9. WyraŜenia w nawiasach występują odpowiednio w średniej arytmetycznej i harmonicznej liczb,,,, co sugeruje zastosowanie nierówności między tymi średnimi. Otrzymujemy wtedy czyli (),. Z () i () wnioskujemy, Ŝe 9, czyli. RozwiąŜemy teraz układ dla,,.. Dla otrzymujemy układ który jest oczywiście sprzeczny. 9,. Dla otrzymujemy układ 9, 0

21 który moŝna zapisać w równowaŝnej postaci 9 9. Rozwiązaniem tego układu (moŝna np. zastosować wzory Viete a lub sprowadzić układ do równania dwukwadratowego) są pary 9 5, 9 5 Są to jedyne rozwiązania układu () dla.. Dla otrzymujemy układ, 9 5, Po pomnoŝeniu stronami równań otrzymamy (4) 9. Z () mamy, Ŝe 9, przy czym równość (a więc (4)) zachodzi wtedy i tylko wtedy, gdy. Po prostych rachunkach otrzymujemy, Ŝe, czyli jedynym rozwiązaniem układu () dla jest trójka,,.

22 Polecana literatura. Witold Bednarek, Zbiór zadań dla uczniów lubiących matematykę, Gdańskie Wyd. Oświatowe, Gdańsk 995. Mirosław Grabowski, Karol Szymański, Zbiór zadań dla uczniów szkół średnich o zainteresowaniach matematycznych, WSiP, Warszawa 99. Lev Kourliandtchik, Wędrówki po krainie nierówności, Wydawnictwo Aksjomat, Toruń Lev Kourliandtchik, Powrót do krainy nierówności, Wydawnictwo Aksjomat, Toruń Aleksander Kubica, Tomasz Szymczyk, Nierówności, Perspektiv, Bielsko-Biała Henryk Pawłowski, Olimpiady i konkursy matematyczne, Oficyna Wydawnicza Tutor, Toruń Henryk Pawłowski, Zadania z olimpiad matematycznych z całego świata. Teoria liczb, algebra i elementy analizy matematycznej, Oficyna Wydawnicza Tutor, Toruń Henryk Pawłowski, Wojciech Tomalczyk, Zadania z matematyki dla olimpijczyków, Oficyna Wydawnicza Tutor, Toruń Miniatury matematyczne nr dla szkół gimnazjalnych, Wydawnictwo Aksjomat, Toruń 007

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Nierówności dla początkujących olimpijczyków Aleksander Kubica Tomasz Szymczyk wwwomgedupl Warszawa

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Cztery punkty na okręgu

Cztery punkty na okręgu Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) Wymagania przedmiotowe z matematyki w klasie II gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I

Wymagania edukacyjne z matematyki Klasa I Wymagania edukacyjne z matematyki Klasa I Ocena Celujący (obejmuje wymagania na ocenę bardzo dobrą) Ocena śródroczna DZIAŁ I - LICZBY I DZIAŁANIA - umie znajdować liczby spełniające określone nietypowe

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH 1-3 GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH 1-3 GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH 1-3 GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH IV-VI OSB

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH IV-VI OSB WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH IV-VI OSB POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo

Bardziej szczegółowo

Klasa pierwsza gimnazjum

Klasa pierwsza gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający ocena bardzo dobra (5) W - wykraczający ocena

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Dział programowy: Liczby i działania ( 1 )

Dział programowy: Liczby i działania ( 1 ) 1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM W RZEZAWIE

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM W RZEZAWIE SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM W RZEZAWIE DZIAŁ 1. LICZBY I DZIAŁANIA Uczeń: poziom konieczny ocena dopuszczająca zna podręcznik, z którego będzie korzystał w ciągu

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Na ocenę dopuszczającą uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

KLASA 1 DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) Aby otrzymać ocenę dopuszczającą uczeń:

KLASA 1 DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) Aby otrzymać ocenę dopuszczającą uczeń: KLASA 1 DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; zna PSO; posiada zeszyt, książkę oraz potrzebne przyrządy;

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASACH I-III GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASACH I-III GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASACH I-III GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Autor i nazwa programu nauczania: Marta Jucewicz, Marcin Karpiński, Jacek Lech MATEMATYKA Z PLUSEM. Program nauczania matematyki

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W GIMNAZJUM KONTRAKT MIĘDZY NAUCZYCIELEM, RODZICEM I UCZNIEM 1.Ocenianie jest procesem planowanym, systematycznym i jawnym. Każdy uczeń jest oceniany zgodnie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie I gimnazjum

Wymagania edukacyjne z matematyki w klasie I gimnazjum LICZBY I DZIAŁANIA Wymagania edukacyjne z matematyki w klasie I gimnazjum Dział Poziom wymagań koniecznych (na ocenę dopuszczającą) Poziom wymagań podstawowych (na ocenę dostateczną) Poziom wymagań rozszerzających

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie... Imię i Nazwisko... Klasa... Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY...... Liczba punktów...... Wynik procentowy Informacje dla ucznia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM KLASA I Na ocenę dopuszczającą: DZIAŁ 1. LICZBY I DZIAŁANIA Uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą. Aby otrzymać ocenę wyższą uczeń musi opanować wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM DZIAŁ I: LICZBY I WYRAŻENIA ALGEBRAICZNE Na o cenę dopuszczający uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80 VI Piotrkowski Maraton Matematyczny 9-.06.0 Test jednokrotnego wyboru Czas na rozwiązanie: godz. 5 min. Do zdobycia: 80 punktów. Przed Tobą 0 zadań testowych. W kaŝdym zadaniu jest dokładnie jedna poprawna

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w klasie 1ab w roku szkolnym 2011/2012

Wymagania na poszczególne oceny z matematyki w klasie 1ab w roku szkolnym 2011/2012 Wymagania ocen z matematyki klasa 1 gimnazjum Wymagania na poszczególne oceny z matematyki w klasie 1ab w roku szkolnym 2011/2012 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P -

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny, sposoby sprawdzania osiągnięć edukacyjnych oraz warunki i tryb uzyskania wyższej niż przewidywana ocena

Wymagania edukacyjne na poszczególne oceny, sposoby sprawdzania osiągnięć edukacyjnych oraz warunki i tryb uzyskania wyższej niż przewidywana ocena Wymagania edukacyjne na poszczególne oceny, sposoby sprawdzania osiągnięć edukacyjnych oraz warunki i tryb uzyskania wyższej niż przewidywana ocena Matematyka PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena

Bardziej szczegółowo