Nierówności między średnimi liczbowymi i ich zastosowanie. Renata Jurasińska. Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nierówności między średnimi liczbowymi i ich zastosowanie. Renata Jurasińska. Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie"

Transkrypt

1 Nierówności między średnimi liczbowymi i ich zastosowanie Renata Jurasińska Instytut Matematyki Uniwersytetu Rzeszowskiego III LO w Rzeszowie I. Średnie liczbowe i zaleŝności między nimi Średnie liczbowe (moŝe jedynie bez średniej kwadratowej) i nierówności między nimi uczniowie znają juŝ od pierwszej klasy szkoły średniej (a czasem nawet od gimnazjum). Przypomnę definicje tych średnich, podam twierdzenie o nierównościach między nimi, szkice dowodów, a takŝe przykłady zastosowań nierówności między średnimi do rozwiązywania róŝnorodnych zadań, prostych, trudniejszych, a nawet olimpijskich. Definicja. ŚREDNIA liczb,,, - to dowolna funkcja spełniająca warunek,,,,,,,,,,,, i jednocześnie niemalejąca ze względu na kaŝdą zmienną,,,. Najbardziej znane średnie, to średnia arytmetyczna, geometryczna, harmoniczna i kwadratowa. Definicja. ŚREDNIĄ ARYTMETYCZNĄ liczb rzeczywistych,,, nazywamy liczbę.

2 Definicja. ŚREDNIĄ GEOMETRYCZNĄ liczb nieujemnych,,, nazywamy liczbę Definicja 4. ŚREDNIĄ HARMONICZNĄ róŝnych od zera liczb rzeczywistych,,, nazywamy liczbę.. Definicja 5. ŚREDNIĄ KWADRATOWĄ liczb rzeczywistych,,, nazywamy liczbę. ZaleŜności pomiędzy średnimi,, i moŝna zapisać w postaci następującego twierdzenia Twierdzenie. Dla dowolnych liczb dodatnich,,, zachodzą nierówności. W kaŝdej z nierówności (), () i () równość ma miejsce wtedy i tylko wtedy, gdy. Środkowa nierówność () w Twierdzeniu. to słynna nierówność Cauchy ego między średnią geometryczną i arytmetyczną. Nierówność ta dla dwóch liczb nieujemnych

3 znana była juŝ w czasach Euklidesa, lecz jej ogólna postać pojawiła się znacznie później. Pierwsza znana wzmianka pochodzi z roku 79, kiedy to szkocki matematyk Colin Maclaurin sformułował następujące twierdzenie geometryczne Twierdzenie. JeŜeli dany odcinek podzielimy na kilka odcinków, to iloczyn długości tych odcinków będzie największy, jeśli wszystkie z tych odcinków będą równej długości. Oznaczmy przez,,, długości odcinków, na jakie został podzielony dany odcinek. Gdyby odcinki te były równej długości, to kaŝdy z nich miałby długość, a więc Twierdzenie. moŝemy zapisać w postaci nierówności, która jest równowaŝna nierówności (). Dowód Maclaurina nie był jednakŝe ścisły i zawierał lukę. Po raz pierwszy w jawnej postaci i ze ścisłym dowodem nierówność () została opublikowana przez francuskiego matematyka Augustina Cauchy ego w Wykładach z analizy algebraicznej (8 r.), dlatego teŝ nazywana jest zazwyczaj nierównością Cauchy ego. Obecnie znanych jest ponad 50 róŝnych dowodów nierówności ().

4 Zacznę od pokazania prostych dowodów tych nierówności dla n =, czyli dla dwóch dodatnich liczb a i b. Twierdzenie. dla n = moŝna zapisać w postaci Twierdzenie. Dla dodatnich liczb a i b zachodzą nierówności. W kaŝdej z tych nierówności równość zachodzi wtedy i tylko wtedy, gdy. Dowody algebraiczne nierówności ( ), ( ) i ( ) polegają na równowaŝnym przekształcaniu tych nierówności do oczywistych postaci i chyba nie wymagają specjalnych komentarzy. Niech więc, będą liczbami rzeczywistymi dodatnimi. Mamy kolejno dla ( ),, 4, 0. Dla ( ) otrzymujemy 4,,,

5 Z kolei dla ( ) dostajemy,,,, 0. Znacznie ciekawsze są dowody geometryczne, przytoczę jeden z nich, inne moŝna znaleźć np. w [9]. Niech i będą liczbami dodatnimi i niech. Na odcinku o długości a obieramy taki punkt C, Ŝe (jak na rysunku) Kreślimy okrąg o średnicy i jego środek oznaczamy przez. Wówczas mamy zaś,. 5

6 Z punktu prowadzimy styczną do górnego półokręgu i oznaczamy przez punkt styczności. Przez oznaczamy rzut prostokątny punktu na odcinek, zaś przez - punkt wspólny okręgu i odcinka o początku w punkcie O, prostopadłego do odcinka. Wyrazimy długości odcinków, i przez i. Z twierdzenia Pitagorasa dla trójkąta prostokątnego mamy, a stąd. Z podobieństwa trójkątów i mamy z kolei, Ŝe, a więc i po łatwych przekształceniach otrzymujemy, Ŝe Z trójkąta prostokątnego mamy z kolei a tym samym.,. Pokazaliśmy więc, Ŝe długości odcinków,, i są odpowiednimi średnimi liczb i. Korzystając w trójkątach prostokątnych, i z własności, Ŝe przyprostokątna jest krótsza od przeciwprostokątnej, otrzymujemy nierówności a stąd,. 6

7 MoŜna równieŝ zauwaŝyć, Ŝe pomiędzy średnimi dwóch liczb dodatnich i zachodzą równieŝ następujące ciekawe (i proste do wykazania) związki, mianowicie,,, czyli odwrotność średniej arytmetycznej liczb dodatnich i jest średnią harmoniczną odwrotności tych liczb;,,, czyli odwrotność średniej harmonicznej liczb dodatnich i jest średnią arytmetyczną odwrotności tych liczb;,,, czyli odwrotność średniej geometrycznej liczb dodatnich i jest średnią geometryczną odwrotności tych liczb. Dowody nierówności (), () i () dla liczb dodatnich są bardziej skomplikowane, podam tylko ich szkice, a zainteresowanych odsyłam np. do []. Dowód Cauchy ego nierówności () Jeśli, to oczywiście. NaleŜy pokazać, Ŝe jeśli nie wszystkie spośród liczb,,, są równe, to zachodzi nierówność ostra. Dla mamy a stąd Dalej, dla 4 mamy. jeśli nie wszystkie,,, są równe., 4 Powtarzając to rozumowanie m razy otrzymujemy, gdy, 7

8 , gdy nie wszystkie są równe. W ten sposób nierówność () została udowodniona dla n będących potęgami dwójki. Niech teraz n będzie dowolną liczbą naturalną i niech m będzie liczbą naturalną taką, Ŝe. Podstawmy,,,,. Mamy wówczas, gdy nie wszystkie są równe. Ale są sobie równe wtedy i tylko wtedy, gdy są sobie równe. Stąd ostatecznie, jeśli nie wszystkie są sobie równe dostajemy, czyli lub równowaŝnie co kończy dowód.,, Dowód nierówności (), wiąŝącej średnią arytmetyczną i kwadratową, był równieŝ zawarty w Wykładach z analizy algebraicznej Cauchy ego i oparty był na następującym rozumowaniu. Dowód Cauchy ego nierówności () 8

9 Indukcyjnie moŝna wykazać, Ŝe. Stąd mamy, czyli równowaŝnie co kończy dowód., Nierówność () między średnią harmoniczną i geometryczną następująco moŝna udowodnić Dowód nierówności (). ZauwaŜmy, Ŝe co kończy dowód., Warto jeszcze zwrócić uwagę na dwie nierówności, które są równowaŝnymi zapisami nierówności między średnimi i które są często wykorzystywane przy rozwiązywaniu zadań. Są to nierówności (4), czyli wynikająca z nierówności między średnią arytmetyczną i kwadratową; 9

10 oraz (5) czyli,, wynikająca z nierówności między średnią arytmetyczną i harmoniczną. NaleŜy równieŝ zauwaŝyć, Ŝe średnie: arytmetyczna, geometryczna, harmoniczna i kwadratowa są szczególnymi przypadkami tzw. średniej potęgowej. Definicja 6. ŚREDNIĄ POTĘGOWĄ stopnia liczb dodatnich,,, nazywamy liczbę,,, dla 0. dla 0 Definicję tę moŝna uzupełnić dla następująco,,, min,,,,,,, max,,,. ZauwaŜmy, Ŝe mamy i nierówności między średnimi przyjmują postać,,,. Nierówności te moŝna udowodnić wykorzystując fakt, Ŝe dla dowolnych liczb dodatnich,,, funkcja jest niemalejąca,,, 0

11 II. Zastosowanie nierówności między średnimi liczbowymi do rozwiązywania zadań. Dowodzenie nierówności Zad.. Udowodnić, Ŝe dla dowolnych liczb dodatnich,, zachodzi nierówność (6) 8 Z nierówności ( ) między średnią arytmetyczną i geometryczną mamy a więc,,,,,. MnoŜąc stronami te nierówności otrzymujemy (6). Zad.. Udowodnić, Ŝe dla dowolnych liczb nieujemnych,, zachodzi nierówność (7). Wykorzystując nierówność () dla trzech liczb nieujemnych,, otrzymujemy Analogicznie otrzymujemy nierówności. oraz. Dodając stronami otrzymane trzy nierówności otrzymujemy (7). Zad.. Udowodnić, Ŝe dla dowolnych liczb dodatnich,, zachodzi nierówność (8). Przekształcając lewą stronę nierówności (8) i stosując nierówność () otrzymujemy

12 . Zad. 4. (OM Leningrad 988) Udowodnić, Ŝe dla dowolnych liczb dodatnich,,, zachodzi nierówność (9) Wykorzystując nierówność (5) otrzymujemy co po prostych przekształceniach daje (9). 64, Zad. 5. Udowodnić, Ŝe dla dowolnych liczb dodatnich,, takich, Ŝe, zachodzi nierówność 5. Wykorzystując nierówność (4) i warunki zadania otrzymujemy 5. Po spierwiastkowaniu stronami dostajemy Ŝądaną nierówność.

13 Zad. 6. Udowodnić, Ŝe dla dowolnej liczby naturalnej zachodzą nierówności (0). Udowodnimy najpierw prawą nierówność. RozwaŜmy,,,,,,,,,,. Wykorzystując nierówność () otrzymujemy liczb postaci czyli równowaŝnie Wykorzystując znaną toŝsamość,. mamy dalej 6 6, co kończy dowód prawej nierówności (0). Dowód lewej nierówności jest podobny (naleŝy odpowiednio dobrać liczby).

14 Zad. 7. (XLI MOM, Korea Południowa, 000). Niech,, będą takimi liczbami rzeczywistymi dodatnimi, Ŝe. Udowodnić, Ŝe (). PoniewaŜ z załoŝenia mamy, Ŝe, moŝemy nierówność () uzaleŝnić od dwóch zmiennych, wykorzystując na przykład zaleŝność. Nierówność () moŝemy wtedy zapisać w postaci i dalej równowaŝnie w postaci (). Suma dowolnych dwóch spośród liczb,, jest dodatnia, mamy bowiem,,, zatem co najwyŝej jedna z nich moŝe być ujemna. Jeśli któraś z tych liczb jest faktycznie ujemna lub równa zero, to nierówność () jest oczywista. Jeśli zaś,, są dodatnie, to moŝemy korzystając z () zamiast szacować iloczyn liczb,, oszacować ich sumy, które jak pokazaliśmy są bardzo proste! Otrzymujemy nierówności które pomnoŝone stronami dają nierówność ().,,, Zad. 8. Wewnątrz trójkąta obrano punkt odległy od prostych, i odpowiednio o,,. Wykazać, Ŝe 7, gdzie jest polem trójkąta, zaś długością promienia okręgu opisanego na tym trójkącie. 4

15 Łatwo zauwaŝyć, Ŝe, a stąd czyli,. PoniewaŜ mamy oszacować iloczyn, zastosujemy nierówność między średnią arytmetyczną a geometryczną dla liczb,,. Otrzymujemy, a stąd 7 Wykorzystując znany wzór na pole trójkąta z którego wyznaczamy otrzymujemy ostatecznie 4, 4, , co kończy dowód.. Zadania optymalizacyjne W matematyce termin optymalizacja odnosi się do problemu znalezienia minimum lub maksimum zadanej funkcji. Praktyczne wyznaczanie optimum nie jest proste; z reguły zadania optymalizacyjne rozwiązuje się z wykorzystaniem rachunku róŝniczkowego. PokaŜę kilka zadań, do rozwiązania których wystarczy znajomość nierówności między średnimi liczbowymi. Zad. 9. Wśród prostokątów o przekątnej długości 0 wskaŝ ten, który ma największe pole. Oznaczmy długości boków prostokąta przez i. Z warunków zadania i twierdzenia Pitagorasa mamy wtedy 00. Pole prostokąta jest równe. Stosując nierówność () otrzymujemy 5

16 00 50, przy czym równość zachodzi wtedy i tylko wtedy, gdy, czyli gdy. Tak więc największe pole ma kwadrat o boku 5. Zad. 0. Wśród prostopadłościanów, w których suma długości wszystkich krawędzi wynosi wskaŝ ten, który ma największą objętość. Niech,, będą długościami boków prostopadłościanu, zaś jego objętością. Z warunków zadania mamy 4 czyli oraz. Z nierówności () otrzymujemy a stąd czyli,,, przy czym równość ma miejsce wtedy i tylko wtedy, gdy. Zatem największą objętość ma sześcian o krawędzi długości. Zad.. Jak dobrać oporności trzech oporników połączonych równolegle o łącznym oporze 0 Ω, aby opór zastępczy był największy? Jak wiadomo opór zastępczy oporów,, połączonych równolegle wyraŝa się wzorem Stąd mamy.. Stosując nierówność między średnią harmoniczną i arytmetyczną otrzymujemy 0 9, 6

17 przy czym równość zachodzi wtedy i tylko wtedy, gdy. Tak więc największy opór zastępczy otrzymamy, gdy oporniki będą jednakowej oporności.. Równania, układy równań i nierówności Zad.. (OM Wielka Brytania 975) Znaleźć wszystkie rozwiązania w liczbach rzeczywistych równania (). RozwaŜmy liczby,,,,. ZauwaŜmy, Ŝe, a więc średnia arytmetyczna tych liczb wynosi. Ta obserwacja oraz postać równania () sugerują zastosowanie nierówności () między średnią arytmetyczną i kwadratową. Otrzymujemy wtedy. Po prostych przekształceniach otrzymujemy, przy czym równość zachodzi (a tym samym spełnione jest równanie ()) wtedy i tylko wtedy, gdy. Oznaczając otrzymujemy z () a stąd czyli,,. 7

18 Mamy więc (4) lub (5). Po prostych obliczeniach otrzymujemy, Ŝe w przypadku (4) czyli dla,,,,,,,. W przypadku (5) otrzymujemy sprzeczność. Istnieje zatem dokładnie jedno rozwiązanie w liczbach rzeczywistych równania (). Zad.. Rozwiązać w liczbach dodatnich układ równań ,5. ZałóŜmy, Ŝe liczby dodatnie,, spełniają podany układ. Wtedy mnoŝąc drugie równanie przez 4 i dodając równania stronami otrzymujemy (6) Ale stosując nierówność między średnią arytmetyczną i geometryczną mamy (7)

19 , przy czym równość zachodzi wtedy i tylko wtedy, gdy (8) 64 4, 8 4, Z (6), (7) i (8) otrzymujemy, Ŝe 4, 4,5 i 5. Nietrudno sprawdzić, Ŝe otrzymana trójka 4; 4,5; 5 spełnia podany układ, jest więc jedynym jego rozwiązaniem w liczbach dodatnich. Zad. 4. Rozwiązać w liczbach dodatnich układ (9) 9. ZałóŜmy, Ŝe liczby dodatnie,, spełniają podany układ. Z nierówności (5) dostajemy Stąd wynika, Ŝe w przytoczonej nierówności mamy równość, co zachodzi wtedy i tylko wtedy, gdy (0). Z (9) i (0) dostajemy, 4, 6. Nietrudno sprawdzić, Ŝe otrzymana trójka,4,6 spełnia podany układ, jest więc jedynym jego rozwiązaniem w liczbach dodatnich. 9

20 Zad. 5. (OM Bułgaria 968) Wyznaczyć wszystkie liczby naturalne, dla których układ równań () 9 ma rozwiązanie w liczbach rzeczywistych,,,. Dla kaŝdej znalezionej wartości podać rozwiązanie. Niech liczby,,, spełniają układ (). Wtedy po pomnoŝeniu stronami obu równań otrzymujemy () 9. WyraŜenia w nawiasach występują odpowiednio w średniej arytmetycznej i harmonicznej liczb,,,, co sugeruje zastosowanie nierówności między tymi średnimi. Otrzymujemy wtedy czyli (),. Z () i () wnioskujemy, Ŝe 9, czyli. RozwiąŜemy teraz układ dla,,.. Dla otrzymujemy układ który jest oczywiście sprzeczny. 9,. Dla otrzymujemy układ 9, 0

21 który moŝna zapisać w równowaŝnej postaci 9 9. Rozwiązaniem tego układu (moŝna np. zastosować wzory Viete a lub sprowadzić układ do równania dwukwadratowego) są pary 9 5, 9 5 Są to jedyne rozwiązania układu () dla.. Dla otrzymujemy układ, 9 5, Po pomnoŝeniu stronami równań otrzymamy (4) 9. Z () mamy, Ŝe 9, przy czym równość (a więc (4)) zachodzi wtedy i tylko wtedy, gdy. Po prostych rachunkach otrzymujemy, Ŝe, czyli jedynym rozwiązaniem układu () dla jest trójka,,.

22 Polecana literatura. Witold Bednarek, Zbiór zadań dla uczniów lubiących matematykę, Gdańskie Wyd. Oświatowe, Gdańsk 995. Mirosław Grabowski, Karol Szymański, Zbiór zadań dla uczniów szkół średnich o zainteresowaniach matematycznych, WSiP, Warszawa 99. Lev Kourliandtchik, Wędrówki po krainie nierówności, Wydawnictwo Aksjomat, Toruń Lev Kourliandtchik, Powrót do krainy nierówności, Wydawnictwo Aksjomat, Toruń Aleksander Kubica, Tomasz Szymczyk, Nierówności, Perspektiv, Bielsko-Biała Henryk Pawłowski, Olimpiady i konkursy matematyczne, Oficyna Wydawnicza Tutor, Toruń Henryk Pawłowski, Zadania z olimpiad matematycznych z całego świata. Teoria liczb, algebra i elementy analizy matematycznej, Oficyna Wydawnicza Tutor, Toruń Henryk Pawłowski, Wojciech Tomalczyk, Zadania z matematyki dla olimpijczyków, Oficyna Wydawnicza Tutor, Toruń Miniatury matematyczne nr dla szkół gimnazjalnych, Wydawnictwo Aksjomat, Toruń 007

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Klasa II: DZIAŁ 1. POTĘGI Lekcja organizacyjna. Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum W POTĘGI zna i rozumie pojęcie potęgi o wykładniku naturalnym umie obliczyć potęgę o

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM I. POTĘGI. 1. Zna i rozumie pojęcie potęgi o wykładniku naturalnym. 2. Umie zapisać potęgę w postaci iloczynu. 3. Umie zapisać iloczyn jednakowych

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 Ocenę dopuszczającą otrzymuje uczeń, który: (Symetrie) zna pojęcie punktów symetrycznych względem prostej, umie rozpoznawać figury

Bardziej szczegółowo

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Nierówności dla początkujących olimpijczyków Aleksander Kubica Tomasz Szymczyk wwwomgedupl Warszawa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra (5); (6)

Bardziej szczegółowo

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Opracowano na podstawie programu Matematyka z plusem Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra

Bardziej szczegółowo

Egzamin gimnazjalny z matematyki 2016 analiza

Egzamin gimnazjalny z matematyki 2016 analiza Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

POTĘGI I PIERWIASTKI. POTĘGA O

POTĘGI I PIERWIASTKI. POTĘGA O PROGRAMOWYDZIAŁ LEKCYJNAJEDNOSTKA JEDNOSTKA TEMATYCZNA KATEGORIA A UCZEŃ ZNA: SZCZEGÓŁOWE CELE EDUKACYJNE KATEGORIA B UCZEŃ ROZUMIE: KATEGORIA C UCZEŃ UMIE: KATEGORIA D UCZEŃ UMIE: POTĘGI I PIERWIASTKI.

Bardziej szczegółowo

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);

Bardziej szczegółowo

Matematyka klasa II Dział programowy: 1. Potęgi (14 h)

Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Wymagania podstawowe na ocenę: 14 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach.

Bardziej szczegółowo

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy

Bardziej szczegółowo

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH POZIOMY WYMAGAŃ EDUKACYJNYCH: ocena dopuszczająca (2)

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM Wymagania podstawowe(k- ocena dopuszczająca, P ocena dostateczna), wymagania ponadpodstawowe( R ocena dobra, D ocena bardzo dobra, W ocena celująca) DZIAŁ 1:

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

DOROTA BANIAK Zabierzów, Klasa 2c, 2e

DOROTA BANIAK Zabierzów, Klasa 2c, 2e DOROTA BANIAK Zabierzów, 1.09.2016 Klasa 2c, 2e PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W - wykraczający ocena celująca

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP.168/2/2010 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna

Bardziej szczegółowo

OPRACOWANIE MONIKA KASIELSKA

OPRACOWANIE MONIKA KASIELSKA KONSPEKT LEKCJI MATEMATYKI DIAGNOZA UMIEJĘTNOŚCI ZGODNYCH ZE STANDARDAMI WYMAGAŃ MATURALNYCH PRZEDMIOT : Matematyka KLASA: III TEMAT: Rozwiązywanie problemów poprzez stosowanie algorytmów. STANDARDY WYMAGAŃ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocenę dopuszczający otrzymuje uczeń, który potrafi: Ocenę dostateczną otrzymuje uczeń, który potrafi: Ocenę dobrą otrzymuje uczeń, który potrafi:

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) Wymagania przedmiotowe z matematyki w klasie II gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012

Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012 Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2 Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy Prezentowane wymagania edukacyjne są zintegrowane z planem wynikowym autorstwa Agnieszki amińskiej, Doroty Ponczek, będącym propozycją

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza I

Model odpowiedzi i schemat oceniania do arkusza I Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

Cztery punkty na okręgu

Cztery punkty na okręgu Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Matematyka z plusem dla gimnazjum

Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ A,B,C,D,F WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Realizowany przez : mgr Emilię Wójcicką, mgr Małgorzatę Maniecką, mgr IzabellęKomperdę,

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Barbara Pierzchała Gimnazjum Zgromadzenia Sióstr Najświętszej Rodziny z Nazaretu W Krakowie Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo