Sztuczne sieci neuronowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sztuczne sieci neuronowe"

Transkrypt

1 Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe uczone algorytmem BP. 7. Zastosowana. Poznań, 2006

2 Wprowadzene Sztuczna seć neuronowa (SSN) - defnce: Zbór prostych ednostek oblczenowych przetwarzaących dane, komunkuących sę ze sobą pracuących równolegle. Lub nacze: Zbór połączonych ze sobą ednostek weścwo-wyścowych. Z każdym połączenem skoarzona est waga, która może zostać zmenona w trakce uczena. Dowolna sztuczna seć neuronowa może być zdefnowana poprzez określene: modelu sztucznego neuronu, topolog, reguły uczena sec.

3 Model sztucznego neuronu Sztuczny neuron = neuron: można rozpatrywać ako specyfczny przetwornk sygnałów. x 1 x 2 x 3 1 w 0 w w w f(e) y w n x n Podstawowe elementy składowe: n weść neuronu wraz z wagam w (wektor wag w wektor sygnałów weścowych x) eden sygnał wyścowy y pobudzene e neuronu ako suma ważona sygnałów weścowych pomneszona o próg Θ n e = w x = 1 Θ = w T x Θ wprowadźmy wagę w 0 = Θ, podłączone do stałego sygnału x 0 = 1; wówczas: n e = w w T x = x =0 funkca aktywac (prześca): y = f (e)

4 Funkce aktywac Ma stotne znaczene dla dzałana neuronu. Podstawowe typy funkc: lnowa y = k e nelnowe (cągłe necągłe, unpolarne bpolarne) funkca skoku ednostkowego, progowa (McCulloch Ptts): f () e = 1 0 dla dla e Θ e < Θ funkca sgmodalna: współczynnk stromośc β f () e 1 = 1+ exp ( βe) f(e) 1,2 1 0,8 0,6 0,4 0, e funkca tangens hperbolczny: αe f ( e) = tgh( ) 2 1 exp( αe) = 1+ exp( αe)

5 Inspraca: neuron bologczny budowa: soma, akson, dendryty, synapsy znaczene błony komórkowe w przesyłanu sygnału; polega ono na propagac zaburzena różncy potencałów pomędzy wnętrzem a zewnętrzem komórk; przyczyną tych zaburzeń est chwlowa utrata szczelnośc przez błonę komórkową zasada dzałana: wpływaące dendrytam bodźce (modulaca częstotlwośc) sumuą sę (oddzaływaą ze sobą) na błone komórkowe przy pomocy aksonu zakończonego synapsą/synapsam przekazywane są do nnego neuronu/neuronów po propagac sygnału różnca potencałów odbudowywana est przez tzw. pompy onowe neuronów mamy ~1010, dendrytów ~ różne rodzae neuronów

6 Topologa sec neuronowe (archtektura) Ogólne wyróżna sę dwa typy archtektur SSN: 1) sec ednokerunkowe ( ang. feedforwarded) t. sec o ednym kerunku przepływu sygnałów; Szczególnym przypadkem archtektury ednokerunkowe est seć warstwowa, reprezentuąca zdecydowane napopularneszą topologę; wysca sec warstwa wyscowa warstwy ukryte warstwa wescowa wesca sec 2) Inne, np. sec rekurencyne (feedback, bdrectonal) t. sec ze sprzężenam zwrotnym (seć Hopfelda) albo sec uczena sę przez współzawodnctwo (Kohonena) Zasady łączena neuronów mędzy sobą - każdy z każdym, - połączena mędzy kolenym warstwam w secach warstwowych, - tylko z pewną grupą neuronów, naczęśce z tzw. sąsedztwem.

7 Charakterystyka procesu uczena sec Wyróżna sę dwa podstawowe sposoby uczena sec: 1. uczene nadzorowane (ang. supervsed learnng), 2. uczene nenadzorowane (ang. unsupervsed learnng). Uczene nadzorowane dany est zbór przykładów uczących składaący sę z par weśce-wyśce (x, z), gdze z est pożądana odpowedzą sec na sygnały weścowe x (=1,..m). Zadanem sec est nauczyć sę możlwe ak nadokładne funkc przyblżaące powązane weśca z wyścem. x seć adaptacyna W y oblczane odległośc z - y Poządana odpowedź z Odległość pomędzy rzeczywstą a pożądaną odpowedzą sec est marą błędu używaną do korekc wag sec. Typowym przykładem est uczene sec welowarstwowe algorytmem wsteczne propagac błędu; każdy neuron lokalne zmnesza swó błąd stosuąc metodę spadku gradentu.

8 Reguła Wdrowa-Hoffa Reguły uczena sec neuronowych Dotyczy uczena nadzorowanego sec ednokerunkowych, gdze mnmalzue sę błąd pomędzy pożądaną a aktualną odpowedzą. δ = z y = z w Korekta wag est następuąca (Wdrow,Hoff 1962): T x w = η δ x Reguła delta Obowązue dla neuronów z cągłym funkcam aktywac nadzorowanego trybu uczena. Regułę delta wyprowadza sę ako wynk mnmalzac kryterum błędu średnokwadratowego Q. 2 N 1 ( z y ) = Q, Q = ( δ ) 2 1 N Q = 2 = 1 = 1 2 Korekta wag: w = η δ f '( e ) x gdze f () oznacza pochodną funkc aktywac. W przypadku funkc sgmodalne: w = η δ (1 y ) y Stosowana est do uczena welowarstwowych sec neuronowych wraz z algorytmem wsteczne propagac błędów (Rumelhart, McClelland 1986) x

9 Charakterystyka procesu uczena Uczene sę teracyne / uczene sę w ednym kroku Algorytm uczena: globalny (w kolene terac uczene obemue całą seć), lokalny (w kolene terac uczene obemue część sec) Sposób propagac sygnałów przez seć: synchronczny asynchronczny: przesyłane żetonów (counter-propagaton): specyfczny model propagac sygnału bazuący na dyskretnym pobudzenu w postac tzw. żetonu. Charakterystyka wybranych typów sec Typ sec Topologa Propagaca pobudzena Perceptron warstwowa synchron. SOM warstwowa synchron. Hopfeld rekurencyna synchr. lub asynchr Połączena każdy z każdym warstwam spec. ednowarstwa każdy z każdym nadzor. Uczene teracyne nenadzor. teracyne nenadzor. w ednym kroku

10 Wybrane typy sec neuronowych Warstwowe sec lnowe - Adalne/Madalne, Warstwowe sec nelnowe - welowarstwowa uczona algorytmem wsteczne propagac błędów, - sec welowarstwowe z modyfkacam algorytmu wsteczne propagac błędów, - sec z funkcam o symetr kołowe RBF. Sec ze sprzężenem zwrotnym - sec Hopfelda, - dwukerunkowa pamęć asocacyna BAM, Sec uczone przez współzawodnctwo - sec Kohonena, LVQ, - odwzorowane cech stotnych oraz sec samoorganzuące sę SOM, Sec rezonansowe ART oraz sec z kontrpropagacą, Sec neuronowe zntegrowane z algorytmam metaheurystycznym - symulowane wyżarzane maszyna Boltzmana, - algorytmy genetyczne, Metody hybrydowe wykorzystuące sec neuronowe, Systemy rozmyto-neuronowe.

11 Uwag na temat stosowane sec neuronowych R.Tadeusewcz (2000): Sec neuronowe mogą być stosowane z dużym prawdopodobeństwem odnesena sukcesu wszędze tam, gdze poawaą sę problemy zwązane z tworzenem model matematycznych pozwalaących odwzorowywać złożone zależnośc pomędzy pewnym sygnałam weścowym a wybranym sygnałam wyścowym Potrzeba automatycznego w wynku tzw. procesu uczena modelowana złożonych zależnośc. T.Mtchell (1997): Cechy charakterystyczne problemów dla SNN Przykłady uczące opsane są przez pary atrybut-wartość (na ogół zdefnowanych na skalach lczbowych; np. różnego rodzau sygnały lub rezultaty pomarów), Przyblżana funkca może meć wartośc dyskretne lub rzeczywste; może być także wektorem wartośc, Dane mogą zawerać błędy lub podlegać zaszumenu ; SSN są odporne na różnego rodzau uszkodzena danych, Akceptowalny est dług czas uczena sec, Akceptaca dla potencalne duże lczby parametrów algorytmu, które wymagaą dostroena metodam eksperymentalnym, Zadane ne wymaga rozumena przez człoweka funkc nauczone przez SNN - trudnośc z nterpretacą wedzy nabyte przez seć.

12 Algorytm wsteczne propagac błędów (backpropagaton) Jak znaleźć błąd popełnany przez neurony z warstw ukrytych? Błąd k-tego neuronu w l-te warstwe est równy sume błędów popełnonych przez neurony (p) z warstwy l+1-sze ważonych po wagach w k(p,l+1) łączących ten neuron z neuronam te warstwy: δ Nl+ 1 ( kl, ) = wk( p, l ) δ + 1 ( pl, + 1) p= 1

13 Algorytm wsteczne propagac błędu (backpropagaton, BP): 1. Poda na weśce sec koleny wektor wymuszeń x. 2. Przepropagu wymuszene przez seć, oblczaąc pobudzena neuronów w kolenych warstwach, aż do warstwy wyścowe. 3. Wektor wyść otrzymany w warstwe wyścowe y porówna z wektorem uczącym/oczekwanym z oblcz na te podstawe błędy δ popełnone przez neurony te warstwy. 4. Dokona wsteczne propagac błędu do kolenych warstw ukrytych, t. do ostatne, przedostatne td., aż do osągnęca warstwy wyścowe. 5. Dla każdego neuronu w sec dokona modyfkac wartośc wag stosowne do welkośc popełnonego błędu. 6. Sprawdź, czy błąd średnokwadratowy popełnany przez seć dla wszystkch przykładów ze zboru uczącego Q spadł ponże zadane wartośc Qstop; eśl tak - zakończ pracę, w przecwnym raze przedź do kroku 1.

14 Parametry reguły delta algorytmu wsteczne propagac błędu początkowa konfguraca wektora wag w: newelke wartośc losowe (dotyczy to wększośc algorytmów uczących). współczynnk prędkośc uczena η Decydue o wpływe błędu popełnanego przez neuron na korektę wartośc wag. Właścwy dobór ma kluczowe znaczene dla prędkośc zbeżnośc algorytmu: zbyt mała wartość spowalna proces uczena zwększa ryzyko wpadnęca w pułapkę lokalnego mnmum (punkt reprezentuący konfgurace sec porusza sę "małym kroczkam" po kraobraze energetycznym) E S p S k w

15 Człon momentu (bezwładnośc) Metoda nawększego spadku gradentu, opsana formułą (2.5): w Q = η w skłana -tą wagę do zmany wartośc stosowne do beżące wartośc gradentu w chwl, bez względu na dotychczasowy przebeg uczena. W welu przypadkach powodue to zbyt chaotyczne nadążane wektora wag za wektorem pobudzeń; est to szczególne wdoczne przy stosowanu modyfkac wag po prezentac każdego wzorca. Dlatego formułę tę rozbudowue sę często o tzw. człon bezwładnośc (momentum): w t t Q = η + α w w t 1 (0.1) Uzależna on (przez współczynnk α) wartość beżące modyfkac wag od modyfkac przeprowadzone w kroku poprzednm. Im wększe α w stosunku do η, tym algorytm est bardze stablny. Z reguły przymue sę α=0.9. Problem doboru welkośc warstw ukrytych Problem doboru rozmaru poedyncze warstwy pozostae do dzś otwarty. Brak ednoznaczne reguły określaące optymalny rozmar dane warstwy sec przy danym zborze uczącym. Znane są edyne ogólne zalecena, podyktowane ntucą dośwadczenem praktycznym: zbyt mała welkość warstw czyn seć nezdolną do adaptac do zadanego zboru przykładów/wymuszeń: w trakce uczena błąd średnokwadratowy utrzymue dużą wartość zbyt duże warstwy wprowadzaą ryzyko tzw. "uczena na pamęć": dysponuąc dużą lczbą neuronów seć "obemue" każdym z nch małą grupę przykładów (w skranym przypadku poedynczy wzorzec), unkaąć bardze kosztownego poszukwana akeś generalzac

16 Kedy przeprowadzać modyfkacę wag? Dwa podeśca: tzw. batch updatng: Przy prezentac kolenych przykładów poprawk wartośc wag w są kumulowane. Co pewną lczbę prezentac (z reguły równą rozmarow zboru uczącego, tzw. epoka/epoch) wag są modyfkowane przy pomocy tych skumulowanych poprawek. modyfkaca przyrostowa: Poprawk oblczone przy prezentac wzorca są używane bezpośredno (w tym samym kroku algorytmu) do modyfkac wag. Powszechne uważa sę, że batch updatng obcążone est poważną wadą: podczas kumulac poprawek wartośc wag może zachodzć ch wzaemne znoszene sę. Wypadkowa poprawka może być neznaczna, mmo że podczas prezentac poszczególnych wzorców dzałane neuronu obarczone było znacznym błędem. Powodue to obnżene "ruchlwośc" procesu przeszukwana przestrzen wag, a co za tym dze np. trudnośc z wyścem z mnmum lokalnego. Modyfkaca przyrostowa pozbawona est te wady: algorytm est bardze "ruchlwy", ryzyko utknęca w mnmum lokalnym est mnesze. Ne est ono ednak całkowce wyelmnowane: eśl przykłady w kolenych epokach prezentowane są stale w te same kolenośc, traektora sec/neuronu w przestrzen wag może ulec "zapętlenu".

17 Problem "przeuczena" "Przeuczene" (overlearnng): seć uczy sę "zbyt dobrze" poedynczych obektów, ne generalzuąc (szczególne stotne w nteresuącym nas zastosowanu w uczenu maszynowym, ML) y y x x Jak zapobec przeuczenu? dobrze dobrane kryterum stopu "eroza" wag; np. w : = 1 ( ε ) w Ten sam efekt da sę uzyskać dodaąc człon kary do błędu średnokwadratowego: Q = new Q + 1 γ w 2 Wada: bardze karze za edną dużą wagę, nż za wele małych. usuwane wag usuwane nadmarowych neuronów specalzowane algorytmy uczące: cascade correlaton 2

18 Uwag na temat stosowane sec neuronowych R.Tadeusewcz (2000): Sec neuronowe mogą być stosowane z dużym prawdopodobeństwem odnesena sukcesu wszędze tam, gdze poawaą sę problemy zwązane z tworzenem model matematycznych pozwalaących odwzorowywać złożone zależnośc pomędzy pewnym sygnałam weścowym a wybranym sygnałam wyścowym Potrzeba automatycznego w wynku tzw. procesu uczena modelowana złożonych zależnośc. T.Mtchell (1997): Cechy charakterystyczne problemów dla SNN Przykłady uczące opsane są przez pary atrybut-wartość (na ogół zdefnowanych na skalach lczbowych; np. różnego rodzau sygnały lub rezultaty pomarów), Przyblżana funkca może meć wartośc dyskretne lub rzeczywste; może być także wektorem wartośc, Dane mogą zawerać błędy lub podlegać zaszumenu ; SSN są odporne na różnego rodzau uszkodzena danych, Akceptowalny est dług czas uczena sec, Akceptaca dla potencalne duże lczby parametrów algorytmu, które wymagaą dostroena metodam eksperymentalnym, Zadane ne wymaga rozumena przez człoweka funkc nauczone przez SNN - trudnośc z nterpretacą wedzy nabyte przez seć.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Algorytmy. i podstawy programowania. eci. Proste algorytmy sortowania tablic. 4. Wskaźniki i dynamiczna alokacja pami

Algorytmy. i podstawy programowania. eci. Proste algorytmy sortowania tablic. 4. Wskaźniki i dynamiczna alokacja pami MAREK GAGOLEWSKI INSTYTUT BADAŃ SYSTEMOWYCH PAN Algorytmy podstawy programowana 4. Wskaźnk dynamczna alokaca pam ec. Proste algorytmy sortowana tablc Matera ly dydaktyczne dla studentów matematyk na Wydzale

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 1 PLAN: Jak (klasyczne) komputery ocenaą flozofę Alberta Enstena Hstora korzene teor sztucznych sec neuronowych

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich

Bardziej szczegółowo

SZTUCZNE SIECI NEURONOWE

SZTUCZNE SIECI NEURONOWE METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

Nieeuklidesowe sieci neuronowe

Nieeuklidesowe sieci neuronowe Unwersytet Mkoaja Kopernka Wydza Fzyk, Astronom Informatyk Stosowanej IS Helena Jurkewcz numer albumu: 177622 Praca magsterska na kerunku Fzyka Komputerowa Neeukldesowe sec neuronowe Opekun pracy dyplomowej

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych Sztuczne sieci neuronowe i algorytmy genetyczne Artykuł pobrano ze strony eioba.pl SPIS TREŚCI 1. ARCHITEKTURY, ALGORYTMY UCZENIA I PROJEKTOWANIE SIECI NEURONOWYCH 1.1. HISTORIA ROZWOJU SZTUCZNYCH SIECI

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Jarosław Piersa piersaj(at)mat.uni.torun.pl Abstrakt Poniższy referat dotyczy zagadnień uczenia w sieciach neuronowych i bayesowskich(sieciach

Bardziej szczegółowo

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1.

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1. Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Mateusz Błażej Nr albumu: 130366 Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE Wocech BOŻEJKO Zdzsław HEJDUCKI Marusz UCHROŃSKI Meczysław WODECKI Streszczene: W pracy przedstawono metodę wykorzystana harmonogramów powykonawczych

Bardziej szczegółowo

Dobór procesora sygnałowego w konstrukcji regulatora optymalnego

Dobór procesora sygnałowego w konstrukcji regulatora optymalnego Pomary Automatyka Robotyka 10/2008 Dobór procesora sygnałowego w konstrukc regulatora optymalnego Marusz Pauluk Potr Bana Darusz Marchewka Mace Rosół W pracy przedstawono przegląd dostępnych obecne procesorów

Bardziej szczegółowo

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 187-192, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI ZBIGNIEW KOSMA, BOGDAN NOGA Instytut Mechank Stosowane,

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

SIECI NEURONOWE Wprowadzenie

SIECI NEURONOWE Wprowadzenie SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 28 listopad 2012 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 5 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów

Metody klasyfikacji i rozpoznawania wzorców.  Najważniejsze rodzaje klasyfikatorów Metody klasyfikacji i rozpoznawania wzorców www.michalbereta.pl Najważniejsze rodzaje klasyfikatorów Dla określonego problemu klasyfikacyjnego (tzn. dla danego zestawu danych) należy przetestować jak najwięcej

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komsa Egzamnacyna dla Aktuaruszy LXVIII Egzamn dla Aktuaruszy z 29 wrześna 14 r. Część I Matematyka fnansowa WERSJA TESTU A Imę nazwsko osoby egzamnowane:... Czas egzamnu: 0 mnut 1 1. W chwl T 0 frma ABC

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu

Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu Budowa i zróżnicowanie neuronów - elektrofizjologia neuronu Neuron jest podstawową jednostką przetwarzania informacji w mózgu. Sygnał biegnie w nim w kierunku od dendrytów, poprzez akson, do synaps. Neuron

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

Systemy Just-in-time. Sterowanie produkcją

Systemy Just-in-time. Sterowanie produkcją Systemy Just-n-tme Sterowane proukcją MRP MRP II Just n tme OPT 1 Sterowane proukcją MRP MRP II Just n tme OPT Koszty opóźneń Kary umowne Utrata zamówena Utrata klenta Utrata t reputacj 2 Problemy z zapasam

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

Grupowanie. Wprowadzenie. Metody hierarchiczne. Modele mieszane (mixture models) Metody najmniejszych kwadratów. Zastosowania

Grupowanie. Wprowadzenie. Metody hierarchiczne. Modele mieszane (mixture models) Metody najmniejszych kwadratów. Zastosowania Grupowane Wprowadzene Metody herarchczne Modele meszane (mxture models) Metoda Expectaton-maxmzaton (EM) Metody namneszych kwadratów Krytera akośc grupowana Algorytm k-średnch Zastosowana Statstcal Pattern

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji

Wstęp do teorii sztucznej inteligencji Wstęp do teorii sztucznej inteligencji Wykład V Algorytmy uczenia SSN Modele sieci neuronowych. SSN = Architektura + Algorytm Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa δ i = z i y

Bardziej szczegółowo

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH Szymon Chojnack Zakład Wspomagana Analzy Decyzj, Szkoła Główna Handlowa, Warszawa 1 WPROWADZENIE Gospodarka krajów rozwnętych podlega

Bardziej szczegółowo

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

-ignorowanie zmiennej wartości pieniądza w czasie, -niemoŝność porównywania projektów o róŝnych klasach ryzyka.

-ignorowanie zmiennej wartości pieniądza w czasie, -niemoŝność porównywania projektów o róŝnych klasach ryzyka. Podstawy oceny ekonomcznej przedsęwzęć termo-modernzacyjnych modernzacyjnych -Proste (statyczne)-spb (prosty czas zwrotu nakładów nwestycyjnych) -ZłoŜone (dynamczne)-dpb, NPV, IRR,PI Cechy metod statycznych:

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo