KLUCZ PUNKTOWANIA ODPOWIEDZI
|
|
- Sylwester Markiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI
2
3 Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości funkcji. 0 Zdający otrzymuje punkt, jeśli obliczy wartość funkcji f dla x = 009. f 009 = = 009 ( ) Interpretowanie otrzymanych wyników. 0 Zdający otrzymuje punkt, jeśli zapisze wniosek. Punkt P należy do wykresu funkcji f. b) Rysowanie w układzie współrzędnych zbioru opisanego układem warunków. 0 Zdający otrzymuje punkty, jeśli narysuje bezbłędnie zbiór opisany w zadaniu. y 0 x Zdający otrzymuje punkt, jeśli narysuje proste o równaniach y = x +, i na tym zakończy lub popełni błędy w zaznaczaniu opisanego zbioru. y = x Zadanie. Zapisanie wielomianu, który przy dzieleniu przez dany dwumian daje wskazany iloraz i daną resztę. Zdający otrzymuje punkt, jeśli zapisze wielomian ( x) W w postaci wynikającej z warunków zadania. W ( x) = ( x )(8x + x ) 5 0
4 Wiadomości i rozumienie Wykonywanie działań na wielomianach. 0 Zdający otrzymuje punkt, jeśli uporządkuje wielomian W ( x). W ( x) = 8x x 8x + 9. Wyznaczanie pierwiastków wielomianu. 0 Zdający otrzymuje punkty, jeśli obliczy pierwiastki wielomianu W ( x). x =, 5, x = 0,5, x =, 5. Zdający otrzymuje punkt, jeśli zapisze wielomian W ( x) w postaci iloczynu czynnika stopnia pierwszego i czynnika stopnia drugiego, np. W ( x) = (x )(x 9) i na tym zakończy rozwiązanie lub popełni błędy w wyznaczaniu pierwiastków wielomianu. Zadanie. a) Wiadomości i rozumienie Wykorzystanie definicji funkcji wykładniczej. 0 Zdający otrzymuje punkt, jeśli obliczy wartość podstawy a. a =. b) Rysowanie wykresu funkcji typu y = f ( x) b. 0 Zdający otrzymuje punkty, jeśli narysuje wykres funkcji ( x) = f ( x) y g. 5 g(x) y= x Zdający otrzymuje punkt, jeśli narysuje tylko wykres funkcji y = f ( x) i na tym poprzestanie lub popełni błędy przy dalszym przekształcaniu wykresu. Interpretowanie liczby rozwiązań równania z parametrem. 0 Zdający otrzymuje punkt, jeśli poda wszystkie wartości parametru m, dla których równanie g ( x) = m ma dokładnie jedno rozwiązanie. {} 0, + ) m.
5 Zadanie. Wykorzystanie definicji ciągu arytmetycznego. 0 Zdający otrzymuje punkt, jeśli rozpozna, że ciąg liczb monet wkładanych do skarbca przez kolejne dni przez skarbnika jest arytmetyczny. Liczby monet wkładanych przez kolejne dni przez skarbnika tworzą ciąg arytmetyczny o pierwszym wyrazie równym 5 i różnicy równej. Zdający podaje opis matematyczny sytuacji w postaci funkcji. Zdający otrzymuje punkt, jeśli zapisze wzór na ( n) po południu. ( n) [ 5 + ( n ) ] 0 M liczbę monet w n tym dniu 5 + M = k + n 50n = n 6n + k. Formułowanie wniosków wynikających z postaci badanego wyrażenia. 0 Zdający otrzymuje punkty, jeśli zapisze warunek wystarczający na to, aby w skarbcu zawsze były monety i wyznaczy najmniejszą liczbę k. np. M ( n) = ( n ) + k 69 > 0, więc najmniejszą liczbą k jest 70 albo Δ < 0 (bo n w N ) czyli 6 k < 0, stąd k > 69, więc najmniejszą liczbą k jest 70. Zdający otrzymuje punkt, jeśli zapisze tylko warunek wystarczający na to, aby w skarbcu zawsze były monety i na tym zakończy rozwiązanie lub popełni błędy przy wyznaczaniu najmniejszej liczby k. np. ( ) ( ) 6 k < 0. M n = n + k 69 > 0 lub Δ < 0, bo n w N, stąd Posługiwanie się definicją i własnościami funkcji kwadratowej. 0 Zdający otrzymuje punkt, jeśli obliczy, w którym dniu w skarbcu była najmniejsza liczba monet. n =. Zadanie 5. Wykonywanie działań na potęgach o wykładnikach rzeczywistych. 0 Zdający otrzymuje punkty, jeśli wykaże równość B = 9 A. Zdający otrzymuje punkty, jeśli poprawnie zastosuje wzór na iloczyn potęg o tych samych podstawach i wzór na potęgę potęgi i na tym zakończy. ( + ) B = = = od jej lewej strony do prawej albo = + ( ), o ile dowód równości jest prowadzony 5
6 9 A = do lewej. + ( ) = + Matematyka poziom rozszerzony ( + ), o ile dowód równości jest prowadzony od jej prawej strony Zdający otrzymuje punkt, jeśli poprawnie zastosuje jedynie wzór na iloczyn potęg o tych samych podstawach albo tylko wzór na potęgę potęgi i na tym zakończy. ( + ) B = = lub B =... = = ( ),o ile dowód równości jest prowadzony od jej lewej strony do prawej albo ( + ) + A = ( ) = + lub 9 A =... = ( ) 9 równości jest prowadzony od jej prawej strony do lewej. Zadanie 6. = + ( + ), o ile dowód Posługiwanie się definicją logarytmu. 0 Zdający otrzymuje punkt, jeśli wykorzysta definicję logarytmu i zapisze wszystkie warunki określające dziedzinę funkcji f. 9 x > 0, cosx > 0, cosx. Wiadomości i rozumienie Rozwiązywanie nierówności kwadratowej. 0 Zdający otrzymuje punkt, jeśli rozwiąże nierówność kwadratową. x,. ( ) Odczytywanie z wykresu odpowiedniej funkcji zbioru rozwiązań nierówności trygonometrycznej w przedziale ograniczonym. 0 Zdający otrzymuje punkty, jeśli poda zbiór rozwiązań nierówności cos x > 0 i w przedziale (, ). cos x y π π π 0 π π π x π π x, i π π x i x. Zdający otrzymuje punkt, jeśli poda zbiór rozwiązań tylko jednej z nierówności. 6
7 Matematyka poziom rozszerzony Zapisanie części wspólnej zbiorów w postaci sumy przedziałów liczbowych. 0 Zdający otrzymuje punkt, jeśli zapisze dziedzinę funkcji f. π π π π π π D f =,,,. Zadanie 7. Stosowanie własności ciągu geometrycznego. 0 Zdający otrzymuje punkt, jeśli wykorzysta własność ciągu geometrycznego i zapisze równanie opisujące warunki zadania. ( + ) = ( x )( 6x + ) x. Wiadomości i rozumienie Rozwiązywanie równania kwadratowego. 0 Zdający otrzymuje punkt, jeśli rozwiąże równanie kwadratowe. x = lub x = 5. 5 Wybór ciągu spełniającego warunki zadania. 0 Zdający otrzymuje punkt, jeśli wybierze odpowiednią wartość x, tak aby wszystkie wyrazy ciągu były dodatnie. x = 5. Stosowanie definicji ciągu geometrycznego. 0 Zdający otrzymuje punkt, jeśli obliczy iloraz ciągu. q =. Oszacowanie ilorazu sumy 9-tu przez sumę 0-tu początkowych wyrazów ciągu geometrycznego. 0 Zdający otrzymuje punkty, jeśli oszacuje iloraz. 9 np. Przekształcając równoważnie nierówność < dostaje kolejno: ( ) <, <, < 0, co jest prawdą. To kończy dowód. Zdający otrzymuje punkt, jeśli wykorzysta wzór na sumę n początkowych wyrazów ciągu S9 geometrycznego i zapisze iloraz w postaci umożliwiającej oszacowanie. S S S 9 0 =
8 Zadanie 8. Podanie opisu matematycznego danej sytuacji problemowej. 0 Zdający otrzymuje punkty, jeśli zapisze zależność między promieniami okręgów. R + r = ( R r). Zdający otrzymuje punkt, jeśli zapisze długość przeciwprostokątnej trójkąta prostokątnego równoramiennego ABC w zależności od R i r i na tym zakończy rozwiązanie lub w dalszej części popełni błędy. B R R r A r. C AB = R + r. Przetwarzanie informacji do postaci ułatwiającej rozwiązanie problemu. 0 Zdający otrzymuje punkty, jeśli obliczy stosunek promieni większego i mniejszego okręgu. R = +. r R + r = R r do postaci Zdający otrzymuje punkt, jeśli przekształci zależność ( ) umożliwiającej obliczenie stosunku promieni i na tym zakończy rozwiązanie. R R np. r ( + ) = R( ) lub = +, r r r r lub + = R R. 8
9 Zadanie 9. Wiadomości i rozumienie Wyznaczanie środka i promienia okręgu. 0 Zdający otrzymuje punkt, jeśli narysuje w układzie współrzędnych opisany w zadaniu okrąg i zaznaczy dany punkt A. y 5 0 A x Wyznaczanie równania rodziny prostych (nierównoległych do osi Oy) przechodzących przez dany punkt. 0 Zdający otrzymuje punkt, jeśli zapisze równanie szukanej rodziny stycznych. y = ax lub ax y = 0. Analizowanie wzajemnego położenia prostej i okręgu. 0 Zdający otrzymuje punkt, jeśli zapisze warunek styczności prostej k o równaniu y = ax i danego okręgu. Odległość środka okręgu S od prostej k jest równa promieniowi okręgu. Stosowanie wzoru na odległość punktu od prostej. 0 Zdający otrzymuje punkt, jeśli zapisze równanie z niewiadomą a. a ( ) =. a + Wyciąganie wniosku i zapisanie równania prostej. 0 Zdający otrzymuje punkt, jeśli zapisze równanie szukanej stycznej. y = x. 9
10 Zadanie 0. Analizowanie sytuacji i budowanie jej modelu matematycznego. 0 Zdający otrzymuje punkty, jeśli zapisze liczbę wszystkich zdarzeń elementarnych oraz liczby zdarzeń elementarnych sprzyjających zdarzeniu A w tym samym modelu. n n n Ω= = n ( n ), A = = n n Ω = n n, A = n n gdzie n liczba kul czarnych, n liczba kul białych, dla lub ( ) n. Zdający otrzymuje punkt, jeśli zapisze tylko liczbę wszystkich zdarzeń elementarnych i na tym zakończy rozwiązanie. Obliczanie prawdopodobieństwa. 0 Zdający otrzymuje punkt, jeśli zapisze prawdopodobieństwo zdarzenia A w postaci wyrażenia wymiernego. n P ( A) =. n ( ) Analizowanie sytuacji i budowanie jej modelu matematycznego. 0 Zdający otrzymuje punkt, jeśli rozwiąże nierówność w urnie. W urnie są kule albo jest 8 kul. n 9 > ( n ) i poda liczbę kul Zadanie. Wykorzystanie funkcji trygonometrycznych w trójkącie prostokątnym. Zdający otrzymuje punkt, jeśli obliczy cosinusa kąta między krawędzią boczną a krawędzią podstawy ostrosłupa. cosα =. Narysowanie przekroju ostrosłupa płaszczyzną. 0 Zdający otrzymuje punkt, jeśli zaznaczy właściwy przekrój na rysunku. 0 0
11 S F α C A E O B D Zastosowanie twierdzenia cosinusów. 0 Zdający otrzymuje punkty, jeśli obliczy wysokość opuszczoną na podstawę AB w trójkącie równoramiennym ABF (szukanym przekroju). a 5 h p =. Zdający otrzymuje punkty, jeśli obliczy długość ramienia trójkąta równoramiennego ABF i na tym zakończy rozwiązanie. a 6 AF = BF =. Zdający otrzymuje punkt, jeśli zastosuje twierdzenie cosinusów i zapisze równanie z niewiadomą x, gdzie x = BF i na tym zakończy rozwiązanie lub w dalszej części popełni błędy. x = a + a a a. Obliczanie pola przekroju ostrosłupa 0 Zdający otrzymuje punkt, jeśli obliczy pole przekroju. a 5 P p =. Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w kluczu punktowania przyznajemy maksymalną liczbę punktów.
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomoci i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojcia wartoci argumentu i wartoci funkcji.
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2009 Czas pracy 180 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego Czas pracy 180
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Sponsorem wydruku schematu odpowiedzi jest wydawnictwo
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM ROZSZERZONY Katalog zadań poziom rozszerzony
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
Sponsorem wydruku schematu odpowiedzi jest wydawnictwo
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA. Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA We współpracy Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY Marzec 014 Zadanie 1 Wyróżnienie na osi
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 4 5 6 7 8 9 0 4 5 6 7 8 9 0 Odpowiedź
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 00 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 00 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od. do 5. podane były
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych
Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM Matematyka Poziom rozszerzony Listopad W kluczu są prezentowane przykładowe prawidłowe odpowiedzi. Należy również uznać odpowiedzi ucznia, jeśli są
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH Nr zadania 1 3 4 Liczba punktów D B A
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
Standardy wymagań maturalnych z matematyki - matura 2010
Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1
Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY
Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
Próbny egzamin maturalny z matematyki 2010
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki 00 Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki
Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
III. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2019
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15
EGZAMIN MATURALNY 2011 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM ROZSZERZONY MAJ 0 Egzamin maturalny z matematyki poziom rozszerzony Zadanie (0 4) Obszar standardów Użycie i tworzenie
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
EGZAMIN MATURALNY 2010 MATEMATYKA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 00 MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 00 Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
ROZWIĄZANIA DO ZADAŃ
TURNIRJ MATEMATYCZNY ELIPSA dla klas LO ROZWIĄZANIA DO ZADAŃ Zadanie. (2 pkt.) Dla jakich wartości parametru m (m R), część wspólna przedziałów A = (, m m i B = 2m 2, + ) jest zbiorem pustym? / Jeśli A
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
MATEMATYKA POZIOM PODSTAWOWY
EGZMN MTURLNY W ROKU SZKOLNYM 06/0 FORMUŁ O 04 ( STR MTUR ) MTEMTYK POZOM POSTWOWY ZSY OENN ROZWĄZŃ ZŃ RKUSZ MM-P MJ 0 Zadania zamknięte Punkt przyznaje się za wskazanie poprawnej odpowiedzi Zadanie (0
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera