WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH"

Transkrypt

1 dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH FLUCTUATIONS IN TRAFFIC INTENSITY ON MUNICIPAL ROAD NETWORK Sreszczenie W pracy przedsawiono podsawy eoreyczne określenia współczynników przeliczeniowych dla porzeb szacowania naęŝenia ruchu drogowego. Przedmioowe współczynniki są niezbędne do szacowania SDR na podsawie krókorwałych wyrywkowych pomiarów ruchu dla dróg w obszarach miejskich. Określenie współczynników przeliczeniowych do szacowania naęŝeń ruchu drogowego w obszarach miejskich bazuje na: - ciągłym pomiarze ruchu drogowego na wloach kilkudziesięciu skrzyŝowań w róŝnych miasach Polski, wykonanym w laach 3 i 4, - wyznaczeniu współczynników przeliczeniowych szacowania naęŝeń ruchu, w ym wskaźników sezonowej, ygodniowej i dobowej zmienności ruchu niezbędnych do szacowania SDR z pomiarów wyrywkowych na podsawie kilku meod, w ym zgodnie z definicją GDDKiA oraz na podsawie modeli szeregów czasowych. Absrac The scope of he paper is he heoreic deerminaion of he calculaion coefficiens for esimaing raffic inensiy. The coefficiens are essenial for he esimaion of Medium Daily Traffic on he grounds of shor-erm arbirary measuremens of raffic inensiy in urban areas. The deerminaion of calculaion coefficiens for esimaing raffic inensiy in urban areas in based on he following facors: - coninuous measuremen of road raffic a he inles of several cross-roads in numerous Polish ciies, aken in 3 and 4; - designaion of calculaion coefficiens for esimaing raffic inensiy, including seasonal, weekly and daily variabiliy of raffic essenial for deermining medium daily raffic from accidenal measuremens on he basis of cerain mehods, in accordance wih GDDKiA definiion and ime series models.

2 . Wsęp Pomiary ciągłe ruchu drogowego na sieci dróg dają moŝliwość opisania charakerysyk wahań ruchu, jego wzrosu, rendów, regularności. Szczegółowe charakerysyki zmian ruchu wykorzysywane są do usalenia m.in. miarodajnych godzinowych naęŝeń ruchu i Średniodobowego NaęŜenia Ruchu (SDR), kóre sanowią podsawę do m.in.: planowania sieci komunikacyjnej miejskiej i zamiejskiej, zarządzania, urzymania i określenia pracy przewozowej, projekowania dróg i skrzyŝowań, konsrukcji nawierzchni, projekowania organizacji ruchu, oceny przepusowości i warunków ruchu, oceny oddziaływania dróg na środowisko, analiz ekonomicznych, wypadkowości ip. Sysemayczne analizy pozwalają na uzyskanie ypowych profili miesięcznych, ygodniowych i dobowych wahań naęŝeń ruchu w zaleŝności od charakeru ruchu i lokalizacji drogi w sieci komunikacyjnej. Z profili wahań naęŝeń ruchu uzyskuje się wskaźniki (współczynniki przeliczeniowe) wahań sezonowych W M, ygodniowych W T i wskaźniki dobowej zmienności ruchu W ZD. Te zaś, pozwalają na szacowanie średniodobowego naęŝenia ruchu (SDR) na podsawie krókorwałych, wyrywkowych pomiarów ruchu. Wskaźniki zmienności ruchu dla dróg w erenach miejskich obliczono na podsawie uzyskanych pomiarów ciągłych wykonany w ciągu roku 3 i 4. Moniorowano 4 skrzyŝowań serowanych akomodacyjną sygnalizacją świelną zlokalizowanych w 4 miasach: w Łodzi, Byomiu, Zabrzu i Zawierciu z wykorzysaniem Sysemu Zdalnej Konroli i Zbierania Danych SNS/ASR. Uzyskano w en sposób ciągły pomiar naęŝenia ruchu na 47 wloach skrzyŝowań w przekrojach oddalonych o ok. 4 7 m od linii warunkowego zarzymania. Wskaźniki zmienności ruchu dla dróg w erenach miejskich wyznaczono za pomocą klasycznych, uproszczonych meod wyznaczania współczynników przeliczeniowych (zgodnie z definicją GDDKiA) oraz na podsawie modeli szeregów czasowych.. Definicje wskaźników zmienności ruchu (wg GDDKiA) Wskaźnik wahań sezonowych W M o iloraz średniego dobowego ruchu w miesiącu do średniego dobowego ruchu w roku jes określany z zaleŝności: W M = SDR Mi () SDR gdzie: SDR Mi - średnio dobowy ruch i-ego miesiąca [P/dobę], SDR - średnio dobowy ruch w roku [P/dobę]. Wskaźnik wahań ygodniowych W T o iloraz średniego dobowego ruchu dnia ygodnia do średniego dobowego ruchu w roku: W T = SDR Ti () SDR gdzie: SDR Ti - średnio dobowy ruch i-ego dnia ygodnia [P/dobę], Współczynniki dobowej zmienności ruchu W ZD są sumą naęŝenia ruchu z h godzin w całodobowym naęŝeniu ruchu: W ZD = h n= U i procenowych udziałów U i [%] (3)

3 Procenowy udział naęŝenia ruchu z i-ej godziny w całodobowym naęŝeniu ruchu wyznacza się: N i U i = [%] (4) N dob U i procenowy udział naęŝenia ruchu z i-ej godziny w całodobowym naęŝeniu ruchu, N i, warość naęŝenia w i-ej godzinie, N dob naęŝenie dobowe. 3. Zasosowane modeli szeregów czasowych Teoria szeregów czasowych daje moŝliwości modelowania róŝnorodnych, bardzo specyficznych procesów oraz ich prognozowania. Wykorzysanie dosępnych w momencie obserwacji szeregu dla prognozy jego warości w przyszłym momencie +l sanowi podsawę do planowania m.in. w ekonomii, ransporcie ip. Modele sosowane do opisu wahań naęŝeń ruchu drogowego powinny być opare o realisyczne załoŝenia, w podobnych warunkach socjoekonomicznych. Szereg czasowy określa się jako realizację pewnego procesu (sochasycznego), w kórym kolejne obserwacje zmieniają się w nasępujących po sobie jednoskach czasowych w sposób losowy. Oznaczając przez (gdzie =,,..., n) momeny przedziału czasu, w kórych obserwowano warości pewnej zmiennej, a przez y - wyniki obserwacji, szereg czasowy moŝna zapisać jako zbiór: {y ; =,,..., n}. (5) Do wyznaczenia wskaźników zmienności wahań ruchu wykorzysano jednorównaniowe modele ekonomeryczne adapacyjne i klasyczne modele rendu. Spośród adapacyjnych modeli rendu wykorzysano: model średniej ruchomej, a w ym: - model średniej ruchomej prosej do wyznaczenia wskaźników ygodniowej zmienności ruchu - W T ), - model średniej ruchomej scenrowanej do wyznaczenia wskaźników sezonowych W M i procenowego udziału naęŝenia ruchu i-ej godziny w całodobowym ruchu Ū i, kóre sanowią podsawę do wyznaczenia wskaźników dobowej zmienności ruchu W ZD, muliplikaywną meodą Winersa - (wskaźniki ygodniowej zmienności ruchu - W T ). Klasycznymi modelami rendu (meodami analiycznymi) muliplikaywną meodą wskaźników sezonowości i meodą dopasowania funkcji rendu wg meody najmniejszych kwadraów określono wskaźniki wahań naęŝeń ruchu drogowego W M, W T oraz procenowego udziału naęŝenia ruchu i-ej godziny w całodobowym ruchu Ū i. Wyznaczenie wskaźników róŝnymi modelami miało na celu opymalne dopasowanie modelu szeregu eoreycznego do szeregu empirycznego przy jak najmniejszym miarach błędów niŝej podanych. Model średniej ruchomej, prosej z nieparzysą liczbą sąsiadujących ze sobą wyrazów przyjmuje posać: q ŷ = y + r ( = q +, q +,..., n q) q + (6) r= q+ gdzie: ŷ - eoreyczna warość zmiennej w szeregu y wyznaczona na momen lub okres, y - rzeczywisa warość zmiennej w szeregu w momencie lub okresie, q - usalona liczba nauralna.

4 Model średniej ruchomej scenrowanej o parzysej liczbie podokresów wyraŝa się wzorem: q ŷ = y q + y + r + y + q q r= q+ ( = q +, q +,..., n q) (7) gdzie: ŷ - eoreyczna warość zmiennej w szeregu y wyznaczona na momen lub okres, y - rzeczywisa warość zmiennej szeregu w momencie lub okresie, q = d/, d liczba podokresów w cyklu wahań. Klasyczna meoda wyodrębniania rendu polega na dopasowaniu określonej funkcji maemaycznej do badanego szeregu czasowego. Paramery funkcji rendu orzymuje się meodą najmniejszych kwadraów, a odpowiednia krzywa jes dopasowana do zbioru obserwacji {y ; =,,..., n}. Do opisu endencji rozwojowej zmienności godzinowych naęŝeń ruchu, dobowych i rocznych zasosowano funkcję liniową. Rozmiary wahań sezonowych usala się saysycznie obliczając wskaźniki sezonowości wyraŝone w procenach lub jednoskach bezwzględnych (absolunych). Wskaźniki wyraŝone w procenach wysępują w modelu muliplikaywnym, naomias wskaźniki absolune w modelu addyywnym. Wahania okresowe muliplikaywne wysępują wówczas, gdy w poszczególnych podokresach badane zjawisko odchyla się od swojego przecięnego poziomu o sałą wielkość względną. Model muliplikaywny daje względne procenowe wskaźniki sezonowości W M i W T, kóre przyjmują warości zbieŝne do warości wskaźników wyznaczonych zgodnie z definicją. Ponado przy paramerze a rendu dąŝącym do zera, uzyskuje się sałe odchylenia od rendu w ciągu całego roku. Do wyznaczenia wskaźników sezonowości wykorzysano meodę polegającą na wyznaczeniu dla poszczególnych faz cyklu wskaźników sezonowości lub bezwzględnych wahań sezonowych. Muliplikaywny model szeregu przyjmuje wówczas posać: y i = f( li )w i + ξ li (8) gdzie: y i warość szeregu czasowego w okresie (momencie) li, przy czym li = m(l - ) + i (l =,, N, i =,..., m), czyli warość w l-ym cyklu i-ej fazy, f funkcja rendu opisująca endencję rozwojową, w i wskaźnik sezonowości dla i-ej fazy kaŝdego cyklu, ξ li składnik losowy (zaburzenie). Wyznaczenie wskaźników sezonowych przebiega wieloeapowo poprzez: - wyodrębnieniu funkcji rendu f meodą najmniejszych kwadraów, - wyeliminowanie rendu z szeregu ; orzymuje się wówczas warości u li zawierające wahania sezonowe i przypadkowe: y li u li = ŷ li ( li =,,, n). (9) wyznaczenie surowych wskaźników sezonowości wg wzoru: N w i = u li = ( ui + u i uni ) N N () gdzie: l= N liczba okresów (cykli), m liczba faz w cyklu (liczba sezonów). wyznaczenie czysych wskaźników sezonowości surowe wskaźniki sezonowości koryguje się dzieląc kaŝdy z nich przez ich średnią arymeyczną ich suma powinna być równa lub bliska m : w i = w w i ()

5 Wskaźniki w i odpowiadają wskaźnikom W T, W M, oraz procenowemu udziałowi naęŝenia ruchu z i-ej godziny w całodobowym ruchu Ū. Jako rzecią meodę opisania zmian w ciągu roku modelem szeregów czasowych zasosowano meodę Winersa. Meoda a naleŝy do modeli adapacyjnych, kóre mają duŝą elasyczność i zdolność dososowawczą w przypadku nieregularnych zmian kierunku rendu bądź zniekszałceń i przesunięć wahań periodycznych (np. sezonowych) zmienne mają dość labilny przebieg w czasie np. wahania naęŝeń dobowych w ciągu roku. Meoda Winersa jes jedną z meod wygładzania wykładniczego sosowana jes do wygładzania szeregów czasowych, w kórych elemenami składowymi są rend liniowy, wahania okresowe oraz wahania przypadkowe. Poszczególne składniki obliczane są jako waŝone sumy warości bieŝących oraz warości hisorycznych. W wersji muliplikaywnej zakłada się, Ŝe kaŝda warość szeregu czasowego jes iloczynem warości z wykluczoną sezonowością oraz indeksu sezonowości dla danego okresu, a przyrosy względne warości rendu zmiennej Y, są w przybliŝeniu sałe lub zmieniają się w sposób regularny. Model Winersa w wersji muliplikaywnej przedsawia się nasępująco: r Fr = y r = () y F = α ( ) ( + ) + α F S C r Sr = ( y r y ) r (3) S = β( F F ) + ( β) S C =,, r y (4) C = γ + ( γ) C r F gdzie: F ocena warości średniej zmiennej Y w czasie, S ocena zmiany rendu zmiennej Y w czasie, C ocena efeku sezonowości zmiennej Y w czasie, r liczba faz cyklu sezonowego, α, β, γ paramery wygładzania, kórych warości naleŝą do przedziału [;]. Wygładzanie szeregu dobiera się ak, aby warości błędów popełnianych przy wygładzaniu były zminimalizowane. Badając miarę dopasowania rozpoznaje się prawidłowości wysępujące w podzbiorze inicjalnym i oblicza się warości eoreyczne dla podzbioru konrolnego. Porównanie warości eoreycznych z warościami empirycznymi uzyskuje się przez obliczenie miar dokładności dopasowania szeregu wygładzonego do szeregu empirycznego, w ym m.in.: błąd procenowy w chwili, błąd średni - ME, średni błąd procenowy - MPE oraz wskaźnik względnego poziomu resz v e, odchylenie sandardowe σ i współczynnik zmienności losowej v. Wadą powyŝszych miar jes o, Ŝe dodanie odchylenia warości empirycznych od warości eoreycznych są znoszone przez ujemne odchylenia. Miarami, kóre eliminują ę niedogodność są miary błędów bezwzględnych: średni błąd bezwzględny - MAE, średni bezwzględny błąd procenowy MAPE. JeŜeli warości bezwzględne z miar błędu ME i MAE są sobie równe, o warości eoreyczne są sysemaycznie niŝsze lub wyŝsze od warości rzeczywisych. Jeśli naomias warości ME i MPE są zdecydowanie niŝsze niŝ MA i MAPE, o błędy wygładzania są róŝnokierunkowe. Miarą uwypuklającą szczególnie duŝe błędy jes średni błąd kwadraowy MSE.

6 Współczynnik Theila przyjmuje warość, gdy warości eoreyczne pokrywają się z warościami empirycznym: T ( y ŷ ) = n+ I = T (5) y = n+ Pierwiasek ze współczynnika Theila informuje, jaki jes przecięny względny błąd dopasowania warości eoreycznych do warości empirycznych dla analizowanych okresów. 4. Wyniki przykładowych analiz 4.. Miesięczne wahania ruchu Na podsawie przeprowadzonych analiz modelami szeregów czasowych i definicji uzyskano wskaźniki wahań ruchu dla na sieci dróg w obszarach miejskich. WSKAŹNIKI WM,,9,8 WSKAŹNIKI W M,,,9,8 I II III IV V VI VII VIII IX X XI XII MIESI CE MIESIĄCE Rys.. Porównanie warości wskaźników sezonowych wahań ruchu W M wyznaczone wg średniej ruchomej (SR), dopasowania funkcji rendu meodą najmniejszych kwadraów (MNK) oraz definicji GDDKiA z roku 3 (D/3) i 4 (D/4). Charaker wahań naęŝeń ruchu drogowego w erenie miejskim jes odmienny od charakeru wahań ruchu na zamiejskich drogach krajowych. Na drogach krajowych rejesruje się znacznie większy średni dobowy ruch w okresie wakacyjnym niŝ średni dobowy ruch w roku, naomias na drogach w obszarach miejskich średni dobowy ruch w okresie wakacyjnym jes niŝszy od SDR w roku. Z analizy obliczeń wynika, Ŝe uzyskane meodą najmniejszych kwadraów (MNK) bardzo małe warości wskaźnika względnego poziomu resz v e i współczynnika zmienności losowej v, świadczą o dobrym dopasowaniu modelu do danych rzeczywisych, a wskaźniki W M mają warości pośrednie pomiędzy wskaźnikami W M wyznaczonymi według definicji z roku 3 i 4. NaęŜenie dobowe. 4.. Tygodniowe wahania ruchu sz ereg emp iry cz ny - naęŝ enia dobow e średnia ruchoma p rosa - 7 okresow a linia rendu y =,787 x D/3 D/3 D/4 D/4 SR SR MNK MNK SDR SDR Rys.. Wahania dobowego naęŝenia ruchu w wybranym przekroju dla 3r. wraz z szeregiem wygładzonym średnią ruchomą 7-okresową i rendem liniowym D n i ro k u 3

7 WSKAŹNIKI W T,3,,,,9,8,7,6,5 p o n ie d zia łe k w o re k ś ro d a c zw a re k p ią e k s o b o a n ie d zie la SR/3 M N K/3 W /3 D /3 SD R SR/4 M N K/4 W /4 D /4 D N I TY G O D N IA Rys.3. Porównanie warości wskaźników ygodniowych wahań ruchu W T wyznaczonych wg średniej ruchomej (SR), dopasowania funkcji rendu meodą najmniejszych kwadraów (MNK), meodą Winersa (W) oraz wg. definicji (D) z roku 3 i 4. Na drogach w erenie miejskim SDR w dniach roboczych od poniedziałku do czwarku przyjmuje zbliŝone warości. Na drogach krajowych zbliŝone warości posiada średni dobowy ruch od worku do czwarku, naomias średni dobowy ruch w poniedziałki jes zbliŝony do SDR w roku. Średni dobowy ruch w piąki zarówno na drogach w erenie miejskim jak i zamiejskim przyjmuje największe warości. Posługując się przyjęymi modelami uzyskano warości wskaźników ygodniowej zmienności ruchu W T bardzo zbliŝone do wyznaczonych zgodnie z definicją. Najlepsze dopasowanie do rzeczywisych danych uzyskano za pomocą modelu średniej ruchomej 7- okresowej mniejsze wskaźniki v e. RównieŜ warości współczynników Theil a zbliŝone do zera, świadczą o bardzo dobrym dopasowaniu warości eoreycznych do warości empirycznych szeregu Dobowe wahania ruchu. NaęŜenie godzinowe, szereg empiryczny - naęŝenia godzinowe linia rendu y =,38 x + 85,6 średnia ruchoma scenrowana 4-okresowa Godziny roku (dni roboczych) Rys. 4. Godzinowe wahania naęŝenia ruchu w roku 4 wraz rendem liniowymi i szeregiem wygładzonym średnią ruchomą 4-okresową. Przyjęymi modelami uzyskano warości procenowego udział naęŝenia ruchu i-ej godziny w całodobowym ruchu Ū i bardzo zbliŝone do wyznaczonych zgodnie z definicją. Najlepsze dopasowanie do rzeczywisych danych uzyskano za pomocą modelu średniej ruchomej scenrowanej 4-okresowej najmniejsze wskaźniki v e, σ i v.

8 Ū i S R / 3 M N K / 3 D / 3 S R / 4 M N K / 4 D / 4 G o d z i n y Rys. 5 Porównanie warości procenowego udziału naęŝenia ruchu i-ej godziny w całodobowym ruchu Ū i wyznaczonych wg średniej ruchomej (SR), dopasowania funkcji rendu meodą najmniejszych kwadraów (MNK) oraz definicji (D) w wybranym punkcie pomiarowym. Na podsawie uzyskanych, średnich dobowych wahań ruchu na wszyskich badanych wloach, dokonano podziału rozkładów na 3 ypowe krzywe dobowego rozkładu naęŝeń ruchu. U U U Krzywa Typu A Krzywa Typu B Krzywa Typu C Rys. 6. Typy rozkładów dobowych wahań ruchu. Typy rozkładów cechuje zróŝnicowany przebieg zmian naęŝeń ruchu w zakresie godzin szczyowych (rannych i popołudniowych) i zmiany naęŝeń pomiędzy godzinami szczyu (sosunek poziomu naęŝeń w godzinach między szczyowymi do naęŝenia w szczycie): Typ A charakeryzuje się dwoma szczyami ruchu. Typ B o brak szczyów, naęŝenia ruchu w godzinach dziennych (8 6 ) urzymują się na względnie sałym poziomie, Typ C o krzywa wahań dobowych z wyraźnym szczyem popołudniowym. Przyjęe ypy krzywych rozkładów dobowych mogą charakeryzować ruch na drogach zlokalizowany zarówno w cenralnych i pośrednich częściach mias jak i na obrzeŝach. 5. Wnioski W pracy wykazano, Ŝe modelami szeregów czasowych moŝna opisać zmiany naęŝeń ruchu w ciągu roku, wyznaczyć zarówno endencje rozwojowe, jak i wskaźniki zmienności ruchu m.in. sezonowej (W M ) i ygodniowej (W T ) oraz wskaźniki procenowego udziału naęŝenia ruchu i-ej godziny w całodobowym ruchu Ū i, jak i wahania przypadkowe. Przeprowadzone analizy i porównania z warościami wskaźników wyznaczonymi zgodnie z definicją GDDKiA wskazują, Ŝe przyjęa w pracy meodologia badań jes właściwa. Konynuacja pomiarów i analiz ruchu oraz wahań naęŝeń średniodobowych na sieci dróg miejskich sanowić będą podsawę do określenia endencji rozwojowej ruchu jak i celów prognosycznych. Powinna ona umoŝliwić jednoznaczne przypisanie ypowych rozkładów dobowych od funkcji drogi (ulicy) i jej lokalizacji w układzie komunikacyjnym miasa.

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

BADANIE WAHAŃ NATĘŻEŃ RUCHU Z POMIARÓW CIĄGŁYCH W PRZEKROJU ULICY

BADANIE WAHAŃ NATĘŻEŃ RUCHU Z POMIARÓW CIĄGŁYCH W PRZEKROJU ULICY ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: BUDOWNICTWO z. 102 2004 Nr kol. 1644 Anna OLMA Politechnika Śląska BADANIE WAHAŃ NATĘŻEŃ RUCHU Z POMIARÓW CIĄGŁYCH W PRZEKROJU ULICY Streszczenie.. Ciągłe pomiary

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

InŜynieria ruchu str. 114

InŜynieria ruchu str. 114 NATĘśENIE RUCHU InŜynieria ruchu str. 114 Pomiary wykonuje się oddzielnie dla następujących kategorii: motocykli, samochodów osobowych, lekkich samochodów cięŝarowych (dostawczych) o masie całkowitej

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

ZAŁĄCZNIK 2 ZASADY PRZEPROWADZANIA POMIARÓW RUCHU I OBLICZANIA ŚREDNIEGO DOBOWEGO RUCHU NA DROGACH POWIATOWYCH I GMINNYCH

ZAŁĄCZNIK 2 ZASADY PRZEPROWADZANIA POMIARÓW RUCHU I OBLICZANIA ŚREDNIEGO DOBOWEGO RUCHU NA DROGACH POWIATOWYCH I GMINNYCH ZAŁĄCZNIK 2 ZASADY PRZEPROWADZANIA POMIARÓW RUCHU I OBLICZANIA ŚREDNIEGO DOBOWEGO RUCHU NA DROGACH POWIATOWYCH I GMINNYCH 1. Zasady przeprowadzania pomiarów ruchu W celu określenia średniego dobowego ruchu

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Teoria błędów pomiarów geodezyjnych

Teoria błędów pomiarów geodezyjnych PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.

Bardziej szczegółowo

Analiza i prognozowanie szeregów czasowych

Analiza i prognozowanie szeregów czasowych Analiza i pognozowanie szeegów czasowych Pojęcie szeegu czasowego Szeeg czasowy (chonologiczny, dynamiczny, ozwojowy) pezenuje ozwój wybanego zjawiska w czasie; zawiea waości zjawiska y w jednoskach czasu,,

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/1, 2012, sr. 224 233 ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH 1991-2011 Kaarzyna Unik-Banaś Kaedra Zarządzania i Markeingu w Agrobiznesie

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO

MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO InŜynieria Rolnicza 11/2006 Małgorzaa Trojanowska Kaedra Energeyki Rolniczej Akademia Rolnicza w Krakowie MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM,

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

KLASYFIKACJA WARUNKÓW EKSPLOATACJI POJAZDÓW Z WYKORZYSTANIEM UDZIAŁU CZASU PRACY SILNIKA NA BIEGU JAŁOWYM

KLASYFIKACJA WARUNKÓW EKSPLOATACJI POJAZDÓW Z WYKORZYSTANIEM UDZIAŁU CZASU PRACY SILNIKA NA BIEGU JAŁOWYM Jacek KROPIWNICKI KLASYFIKACJA WARUNKÓW EKSPLOATACJI POJAZDÓW Z WYKORZYSTANIEM UDZIAŁU CZASU PRACY SILNIKA NA BIEGU JAŁOWYM Sreszczenie W pracy przedsawiono przykłady idenyfikacji warunków eksploaacji

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4, FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ

Bardziej szczegółowo

Zmienność wiatru w okresie wieloletnim

Zmienność wiatru w okresie wieloletnim Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH

WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH Nr 2/2005, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 121 128 Komisja Technicznej Infrasrukury Wsi Małgorzaa Trojanowska WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej:

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej: Zasosowanie echniki Heikin Ashi na rynku kapiałowym Krzyszof Borowski Opublikowany w: Sudia i Prace Kolegium Zarządzania i Finansów, Zeszy Naukowy 66, Warszawa 26, sr. 9-99. Po raz pierwszy japońskie echniki

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj

Bardziej szczegółowo

WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS

WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS MODELOWANIE INśYNIERSKIE ISSN 1896-771X 37, s. 11-18, Gliwice 2009 WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS ZALEśNOŚCI POZIOMÓW ZANIECZYSZCZEŃ

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Teoria kolejek w zastosowaniu do opisu procesu transportowego

Teoria kolejek w zastosowaniu do opisu procesu transportowego Jolana śak 1 Wydział Transporu Poliechniki Warszawskiej Teoria kolejek w zasosowaniu do opisu procesu ransporowego WPROWADZENIE Opisując rzeczywisy proces ransporowy rudno wyobrazić sobie sieć ransporową

Bardziej szczegółowo

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej:

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej: Zasosowanie echniki Heikin Ashi na rynku kapiałowym Krzyszof Borowski Opublikowany w: Sudia i Prace Kolegium Zarządzania i Finansów, Zeszy Naukowy 66, Warszawa 26, sr. 9-99. Po raz pierwszy japońskie echniki

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo