Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006"

Transkrypt

1 Modele dynamiczne Paweł Cibis 27 kwietnia 2006

2 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych 3 Ostateczna postać modelu Błąd prognozy ex post 4 Literatura

3 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych 3 Ostateczna postać modelu Błąd prognozy ex post 4 Literatura

4 Postać ogólna y = f (t) + ε ŷ = f (t)

5 Trend liniowy ŷ = a 0 + a 1 t a 0 wyrównany poziom zjawiska Y w okresie zerowym, a 1 przeciętny przyrost zjawiska Y w przedziale czasu [1, n].

6 Trend wykładniczy ŷ = a 0 a t 1 a 0 wyrównany poziom zjawiska Y w okresie zerowym, a 1 średni łańcuchowy wskaźnik dynamiki badanego zjawiska Y w przedziale czasu [1, n].

7 Trend wykładniczy ŷ = a 0 a t 1 ln ŷ = ln a 0 + t ln a 1 ŷ = ln ŷ, a 0 = ln a 0, a 1 = ln a 1 ŷ = a 0 + a 1t

8 Trend logarytmiczny ŷ = a 0 + a 1 ln t a 0 wyrównany poziom zjawiska Y w okresie zerowym, Przyrosty zjawiska maleją w czasie.

9 Trend logarytmiczny ŷ = a 0 + a 1 ln t t = ln t ŷ = a 0 + a 1t

10 Trend potęgowy ŷ = a 0 t a 1 a 0 wyrównany poziom zjawiska Y w okresie t = 1, Stosowany w modelach o liniowym związku między logarytmami zmiennych Y i t.

11 Trend potęgowy ŷ = a 0 t a 1 ln ŷ = ln a 0 + a 1 ln t ŷ = ln ŷ, t = ln t, a 0 = ln a 0 ŷ = a 0 + a 1 t

12 Trend logistyczny ŷ = a a 1 e t, a 0 > 0, a 1 > 1 a 0 poziom nasycenia badanego zjawiska.

13 Trend logistyczny ŷ = a a 1 e t, a 0 > 0, a 1 > 1 a 0 = 1 a 0, a 1 = a 1 a 0, ŷ = 1 ŷ, t = e t ŷ = a 0 + a 1t

14 Trend hiperboliczny ŷ = a 0 + a 1 t t = 1 t ŷ = a 0 + a 1 t

15 Trend hiperboliczny ŷ = a 0t t + a 1 a 0 = 1 a 0, a 1 = a 1 a 0, t = 1 t, ŷ = 1 ŷ ŷ = a 0 + a 1t

16 Wyodrębnianie tendencji rozwojowej Metoda adaptacyjna stosowana, gdy trend w miarę upływu czasu podlega zmianom. 1 Ustalamy długość segmentu k. 2 Rozpatrujemy n k + 1 k-elementowych ciągów kolejnych obserwacji: y t, y t+1,..., y t+k 1. 3 Dla każdego ciągu szacujemy z KMNK parametry liniowe trendów segmentowych: ŷ l = a0 l + al 1t, gdzie t = l, l + 1,..., l + k 1. 4 Dla każdego równania trendu odcinkowego obliczamy teoretyczne wartości zmiennej Y. 5 Obliczamy średnie arytmetyczne dla wartości teoretycznych zmiennej Y z tych samych okresów. Otrzymamy szereg czasowy wygładzony za pomocą trendu pełzającego.

17 Wyodrębnianie tendencji rozwojowej Metoda adaptacyjna stosowana, gdy trend w miarę upływu czasu podlega zmianom. 1 Ustalamy długość okresu średniej k. 2 Dla kolejnych okresów obliczamy średnie arytmetyczne k-okresowe: ȳ k 1 2 +i = yi +yi y k+i 1 k, dla k nieparzystych oraz i 1, 2,..., n k + 1; ȳ k 2 +i = 1 2 yi +yi y k+i k, dla k parzystych oraz i 1, 2,..., n k + 1 (średnie scentrowane). 3 Otrzymane średnie przyporządkowuje się wyrazowi środkowemu. Średnią k-okresową stosujemy Do eliminacji wahań okresowych o cyklu długości k.

18 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych 3 Ostateczna postać modelu Błąd prognozy ex post 4 Literatura

19 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych Etap I Wyodrębnienie tendencji rozwojowej Wyodrębniamy tendencję rozwojową za pomocą dowolnej metody: trendu liniowego; trendu nieliniowego; trendu pełzającego; średniej ruchomej.

20 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Jeżeli odchylenia od trendu w tych samych okresach jednego cyklu są mniej więcej stałe (bezwzględne wahania sezonowe), obliczamy: e t = y t ŷ t. Jeżeli w miarę wzrostu wartości trendu proporcjonalnie wzrastają odchylenia (bezwzględne wahania sezonowe) ilorazy są mniej więcej stałe obliczamy stosunki: u t = yt ŷ t. Wartości e t i u t zawierają wahania sezonowe i przypadkowe. W praktyce łatwiej jest najpierw policzyć oba wskaźniki, a następnie, na podstawie tego, w którym z wariantów są one mniej więcej stałe dla danej fazy cyklu, zdecydować o rodzaju wahań okresowych.

21 Etap III Eliminacja wahań przypadkowych Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych Dla każdego okresu cyklu obliczamy średnią arytmetyczną z tych wartości e t lub u t, które należą do danej fazy. Otrzymamy surowe wskaźniki wahań sezonowych: ē j bezwzględne wskaźniki sezonowości (addytywne) o ile jednostek poziom zjawiska w danej fazie wahań jest wyższy lub niższy od poziomu, jaki osiągnęłoby zjawisko, gdyby jego rozwój następował zgodnie z tendencją rozwojwą; ū j względne wskaźniki sezonowości (multiplikatywne) o ile procent poziom zjawiska w danej fazie wahań jest wyższy lub niższy od poziomu, jaki osiągnęłoby zjawisko, gdyby jego rozwój następował zgodnie z tendencją rozwojwą. j numer fazy wahań

22 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych Etap IV Obliczanie czystych wskaźników wahań sezonowych Obliczamy współczynniki korekcyjne: α = 1 p p i=1 ēi α = 1 p p i=1 ūi Suma wskaźników bezwzględnych jest równa zeru, a suma wskaźników względnych jest równa liczbie faz cyklu (p). Obliczamy czyste wskaźniki: s b j = ē j 1 p p i=1 ēi s w j = ū j 1 p p i=1 ūi

23 Ostateczna postać modelu Błąd prognozy ex post 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych 3 Ostateczna postać modelu Błąd prognozy ex post 4 Literatura

24 Ostateczna postać modelu Błąd prognozy ex post Prognostyczną wartość zmiennej na moment/okres t (stanowiący i-tą fazę cyklu) wyznaczamy jako: y (w) ti y ti = y (w) ti + s b i model addytywny y ti = y (w) ti s w i model addytywny wstępna prognoza (na okres t dla i-tej fazy cyklu) na podstawie modelu tendencji rozwojowej; si b, /sw i czyste (skorygowane) wskaźniki sezonowości dla i-tej fazy cyklu. Przy prognozowaniu na podstawie średniej ruchomej model prognostyczny ma postać: yt = 1 t 1 k i=t k y i, gdzie y i to wartość zmiennej prognozowanej w okresie i, a yt to prognoza na okres t.

25 Błąd prognozy ex post Ostateczna postać modelu Błąd prognozy ex post błąd bezwzględny: q t = y t yt ; błąd względny: φ t = yt y t y t ; średni kwadratowy błąd prognozy ex post: s = 1 T n T t=n+1 (y t yt ) 2 0,5 T numer ostatniego okresu, w którym sprawdzana jest prognoza; średni kwadratowy błąd prognozy ex post dla modelu ze średnią ruchomą: s = 1 n k T t=k+1 (y t yt ) 2 0,5 k stała wygładzania, n liczba wyrazów szeregu czasowego; ; ;

26 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap III Eliminacja wahań przypadkowych Etap IV Obliczanie czystych wskaźników wahań sezonowych 3 Ostateczna postać modelu Błąd prognozy ex post 4 Literatura

27 Literatura Wyodrębnianie tendencji rozwojowej Strahl D., Sobczak E., Markowska M., Bal-Domańska B. Modelowanie ekonometryczne z Excelem. Wrocław: AE Metody, przykłady, zadania. Red. J. Dziechciarz. Wrocław: AE Prognozowanie gospodarcze. Metody i zastosowanie. Red. M. Cieślak. Warszawa: PWN 2002.

28

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy

Bardziej szczegółowo

Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007

Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007 Regresja liniowa, dobór postaci analitycznej, transformacja liniowa Paweł Cibis pawel@cibis.pl 24 marca 2007 1 Regresja liniowa 2 Metoda aprioryczna Metoda heurystyczna Metoda oceny wzrokowej rozrzutu

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

23 Zagadnienia - Prognozowanie i symulacje

23 Zagadnienia - Prognozowanie i symulacje 1. WYJAŚNIJ POJĘCIE PROGNOZY I OMÓW PODSTAWOWE PEŁNIONE PRZEZ PROGNOZĘ FUNKCJE. Prognoza - jest to sąd dotyczący przyszłej wartości pewnego zjawiska o następujących właściwościach: jest sformułowany w

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński

Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007 Weryfikacja modelu Paweł Cibis pawel@cibis.pl 12 maja 2007 1 Badanie normalności rozkładu elementu losowego Test Hellwiga dla małej próby Test Kołmogorowa dla dużej próby 2 Testy Pakiet Analiza Danych

Bardziej szczegółowo

MODELOWANIE PROGNOSTYCZNE ZMIAN W WIELKOŚCI PRODUKCJI STALI W POLSCE DO 2020 ROKU

MODELOWANIE PROGNOSTYCZNE ZMIAN W WIELKOŚCI PRODUKCJI STALI W POLSCE DO 2020 ROKU 26 Prace Instytutu Metalurgii Żelaza nr 4/2016, tom 68 Bożena GAJDZIK, Jan SZYMSZAL MODELOWANIE PROGNOSTYCZNE ZMIAN W WIELKOŚCI PRODUKCJI STALI W POLSCE DO 2020 ROKU Celem niniejszej publikacji jest przedstawienie

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

gdzie. Dla funkcja ma własności:

gdzie. Dla funkcja ma własności: Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp 1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja

Bardziej szczegółowo

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Analiza Szeregów Czasowych

Analiza Szeregów Czasowych Analiza Szeregów Czasowych Plan 1. Uwagi wstępne (szeregi, przykłady, prognozowanie, ) 2. Cel analizy szeregów czasowych 3. Struktura szeregów czasowych (trend/składowa stała, wahania sezonowe, wahania

Bardziej szczegółowo

egzamin oraz kolokwium

egzamin oraz kolokwium KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/PSY w języku polskim Prognozowanie i symulacje Nazwa przedmiotu w języku angielskim Forecasting and simulation USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie

Bardziej szczegółowo

Modelowanie ekonomiczne w zarządzaniu firmami Materiały do wykładu

Modelowanie ekonomiczne w zarządzaniu firmami Materiały do wykładu Modelowanie ekonomiczne w zarządzaniu firmami Materiały do wykładu Dr Adam Kucharski Spis treści 1 Podstawowe pojęcia statystyczne 2 1.1 Populacja i zbiorowość................................. 2 1.2 Badanie

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska 2010/11. Cel studium przypadku: Studium poświęcone

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

Joanna Kisielińska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Joanna Kisielińska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie 1 DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Joanna Kisielińska Szkoła Główna

Bardziej szczegółowo

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Prognozowanie i symulacje Forecasting and simulations Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów:

Bardziej szczegółowo

LOGISTYKA. Zapas: definicja. Zapasy: podział

LOGISTYKA. Zapas: definicja. Zapasy: podział LOGISTYKA Zapasy Zapas: definicja Zapas to określona ilość dóbr znajdująca się w rozpatrywanym systemie logistycznym, bieżąco nie wykorzystywana, a przeznaczona do późniejszego przetworzenia lub sprzedaży.

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ Istota funkcjonowania przedsiębiorstwa produkcyjnego dr inż. Andrzej KIJ 1 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 q1 D2 q2 Q 2 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 +D2 D1 D2 q1

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

Nabycie umiejętności wyznaczania i interpretowania metod opisu struktury zbiorowości statystycznej

Nabycie umiejętności wyznaczania i interpretowania metod opisu struktury zbiorowości statystycznej Kod przedmiotu: PLPILA02-IEEKO-L-3p7-2012 Pozycja planu: B7 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu tatystyka opisowa 2 Rodzaj przedmiotu Podstawowy/Obowiązkowy 2 Kierunek studiów

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

Dobór wartości początkowych w modelu wyrównywania wykładniczego Browna a wyniki prognozowania

Dobór wartości początkowych w modelu wyrównywania wykładniczego Browna a wyniki prognozowania Zeszyty Naukowe nr 797 Uniwersytetu Ekonomicznego w Krakowie 2008 Katedra Statystyki Dobór wartości początkowych w modelu wyrównywania wykładniczego Browna a wyniki prognozowania 1. Wprowadzenie Metoda

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/201 Kierunek studiów: Zarządzanie i inżynieria

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO

PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO Jolanta BIJAŃSKA, Krzysztof WODARSKI Streszczenie: W artykule przedstawiono model komputerowy, który został opracowany

Bardziej szczegółowo

Zajęcia wyrównawcze z matematyki dla studentów kierunku zamawianego Biotechnologia na Wydziale Biologii i Ochrony Środowiska rok akademicki 2010/2011

Zajęcia wyrównawcze z matematyki dla studentów kierunku zamawianego Biotechnologia na Wydziale Biologii i Ochrony Środowiska rok akademicki 2010/2011 Zajęcia wyrównawcze z matematyki dla studentów kierunku zamawianego Biotechnologia na Wydziale Biologii i Ochrony Środowiska rok akademicki 2010/2011 Kierunek zamawiany: Biotechnologia Liczba grup: 2 (po

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca 1 Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright: Wydawnictwo Placet 2011 Wydanie ebook Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Dynamika poziomu i struktury wydatków gospodarstw domowych w Polsce w latach

Dynamika poziomu i struktury wydatków gospodarstw domowych w Polsce w latach Barbara Podolec Dynamika poziomu i struktury wydatków gospodarstw domowych w Polsce w latach 1993 2006 Wstęp W okresie transformacji gospodarczej w Polsce występował rokrocznie wzrost cen towarów i usług

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA

ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA. AUTOR: mgr inż. MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA WARUNKI ZALICZENIA 1 ANALIZA, PROGNOZOWANIE I SYMULACJA AUTOR: mgr inż. MARTYNA KUPCZYK DANE KONTAKTOWE 2 mgr inż. Martyna Kupczyk Katedra Systemów Logistycznych Pokój nr 115A (I piętro) e-mail: martyna.kupczyk@wsl.com.pl

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 013/014 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Wiadomości ogólne o ekonometrii

Wiadomości ogólne o ekonometrii Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria

Bardziej szczegółowo

Co to jest analiza regresji?

Co to jest analiza regresji? Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo