ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH"

Transkrypt

1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH Maria Szmuksa- Zawadzka Sudium Maemayki Zachodniopomorski Uniwersye Technologiczny w Szczecinie Jan Zawadzki Kaedra Zasosowań Maemayki w Ekonomii Zachodniopomorski Uniwersye Technologiczny w Szczecinie Sreszczenie: Arykuł poświęcony jes wykorzysaniu wybranych modeli wyrównywania wykładniczego: Browna, Hola i Hola-Winersa w prognozowaniu zmiennych ze złożona sezonowością w warunkach braku pełnej informacji. Prognozy wyjściowe będą budowane na podsawie szeregów oczyszczonych z sezonowości. Prognozy końcowe, uwzględniające wahania sezonowe, będą sumami prognoz wyjściowych i składników sezonowości lub iloczynami prognoz ego rodzaju i wskaźników sezonowości. Rozważania o charakerze eoreycznym zosaną zilusrowane przykładem empirycznym. Słowa kluczowe: złożona sezonowość, wyrównywanie wykładnicze, prognozowanie, brakujące dane WSTĘP W lieraurze saysyczno-ekonomerycznej można spokać wiele przykładów zasosowania modeli adapacyjnych do modelowania i prognozowania zjawisk, w kórych wysępuje jeden rodzaj wahań (np.: miesięczne, dekadowe). Dla danych nieczyszczonych (z sezonowością) najczęściej wykorzysywane były modele Hola-Winersa (addyywny i muliplikaywny). Naomias dla danych oczyszczonych z sezonowości meody wyrównywania wykładniczego: Browna

2 182 Maria Szmuksa-Zawadzka, Jan Zawadzki (prosy, liniowy i kwadraowy) oraz liniowy model Hola a akże meody numeryczne. Prognozy osaeczne, w zależności od sposobu eliminacji wahań, orzymuje się po przemnożeniu przez wskaźniki lub przez dodanie składników sezonowości 1. Prognozy dla danych oczyszczonych mogą być akże budowane jako sumy lub iloczyny warości rendów szacowanych KMNK i odpowiednio składników lub wskaźników sezonowości. Tego rodzaju posępowanie określane jes mianem meody wskaźnikowej lub meody wskaźników sezonowości (por. [Dimann 26, s.85], Zeliaś i inni 23, s.9]). W pracy [Szmuksa-Zawadzka, Zawadzki; 214] zaproponowana zosała procedura wykorzysania modeli adapacyjnych w prognozowaniu zmiennych ze złożoną sezonowością dla pełnych danych. Niniejsza praca sanowi rozszerzenie rozważań na przypadek wysępowania niesysemaycznych luk w danych. WPROWADZENIE TEORETYCZNE W niniejszej pracy podjęa zosanie próba wykorzysania modeli adapacyjnych do modelowania i prognozowania zmiennych ze złożoną sezonowością dla danych oczyszczonych z jednego lub dwóch rodzajów wahań sezonowych. Zakładać będziemy, że w szeregu czasowym dla danych dziennych wysępują wahaniami o cyklu ygodniowym (7 dniowym) i rocznym (12- miesięcznym). Mogą się one nakładać na siebie i na rend w sposób addyywny lub muliplikaywny. Ogólny zapis modelu addyywnego jes nasępujący: ( a ) ( a ( ) ) ( a ( ) ) ( ) ( ) Y ( a ) = P + M + D + V a (1) gdzie: P (a) () rend, M (a) () składniki sezonowości o cyklu 12 miesięcznym, D (a) () składniki sezonowości o cyklu 7 dniowym. Naomias posać ogólna modelu muliplikaywnego wyraża się wzorem: ( m ) ( m ( ) ) ( m ( ) ) ( ) ( ) Y ( m ) = P M D V m (2) gdzie: P (m) () rend, M (m) () - wskaźniki sezonowości o cyklu 12 miesięcznym, D (m) () - wskaźniki sezonowości o cyklu 7 dniowym. 1 Przegląd publikacji poświęconych meodom prognozowania, zarówno pełnych jak i brakujących danych oraz ich prakycznym zasosowaniom w odniesieniu do zmiennych z niezłożonymi wahaniami sezonowymi (miesięcznymi, kwaralnymi i dekadowymi), można znaleźć w pracy [Szmuksa-Zawadzka, Zawadzki; 212].

3 Zasosowanie wybranych modeli adapacyjnych 183 Bezpośrednie wykorzysanie modeli Hola-Winersa nie jes możliwe, ponieważ wymagałoby wprowadzenia dodakowego, czwarego równania opisującego wahania o cyklu rocznym uwzględniającego różną długość miesięcy. Jak się wydaje, ze względów prakycznych mogą wchodzić w grę m.in. modele Hola-Winersa dla danych oczyszczonych, z kórych wyeliminowano wahania o cyklu rocznym ( Y ). Jeżeli eliminacji dokonano odejmując składniki sezonowości o będzie o model w posaci addyywnej. W przypadku podzielenia warości zmiennej prognozowanej przez wskaźniki sezonowości będziemy mieć do czynienia z posacią muliplikaywną. Zapis modelu addyywnego Hola-Winersa (A_HW) jes nasępujący [Pawłowski 1973]: m ( Y c L ) + ( 1 α ) m 1 ( m ) ( ) m 1 + β δ 1 1 ( Y ) m + ( ) C = α (3) 1 = β 1 δ (4) C = 1 γ m Predykor opary na ym modelu przyjmuje posać: A _ HW γ (5) α, β, γ 1 (6) Π = δ (7) m + 1 h + C o o o 1+ h Prognozę osaeczną, uwzględniającą wahania sezonowe, orzymuje się na podsawie predykora o posaci: ( ) Π = Π M a ( ) (8) A _ HW A _ HW + Model muliplikaywny Hola-Winersa (M_HW) można zapisać nasępująco: m αy = C m ( α )( m + δ ) ( m ) ( ) m 1 + β δ = β 1 δ (1) C γ Y = + γ m ( ) C 1 m (9) (11) α, β, γ 1 (12) Predykory; wyjściowy i końcowy, wyrażają się wzorami: Π = + δ h C (13) ( ) M _ HW m 1 m + h ( ) Π = Π M m ( ) (14) M _ HW M _ HW Naomias w przypadku danych, z kórych wyeliminowano dodakowo akże wahania o cyklu ygodniowym ( Y ) do budowy prognoz mogą być wykorzysane na przykład prose modele Browna i modele Hola. Równanie addyywnego prosego modelu Browna (A_BS) jes nasępujące:

4 184 Maria Szmuksa-Zawadzka, Jan Zawadzki m ( α ) m = Y α (15) α 1 (16) Predykory wyjściowy i końcowy przyjmują posać: Π = m (17) A _ BS ( a ) ( a ) Π = Π + M ( ) D ( ) (18) A _ BS A _ BS + W modelu muliplikaywnym równanie modelu prosego Browna (M_BS) różni się od posaci addyywnej jedynie sposobem wyznaczenia warości oczyszczonych ( Y ) - są one ilorazami warości zmiennej prognozowanej i wskaźników sezonowości o cyklu rocznym i ygodniowym. Predykory wyjściowy i końcowy są nasępujące: Π = m (19) M _ BS ( m ) ( m ) Π = Π M ( ) D ( ) (2) M _ BS ) M _ BS Addyywny model liniowy Hola (A_H) można zapisać [Pawłowski 1973]: m ( α )( m δ ) = Y α (21) ( m m ) + ( β ) δ 1 = β δ (22) α, β 1 (23) Predykory wyjściowy i końcowy wyrażają się wzorami: Π = m + δ h (24) A _ H 1 ( a ) ( a ) Π = Π + M ( ) D ( ) (25) A _ H A _ H + Równania posaci muliplikaywnej modelu Hola (M_H) różnią się, podobnie jak w przypadku modelu Browna, jedynie sposobem eliminacji wahań sezonowych. Posacie predykorów są nasępujące: Π = m + δ h (26) A _ H 1 ( m ) ( m ) Π = Π M ( ) D ( ) (27) M _ H M _ H Jednym z ważniejszych zagadnień związanych z modelowaniem i prognozowaniem z wykorzysaniem modeli adapacyjnych w warunkach braku pełnej informacji jes wybór opymalnych warości sałych wygładzania Dla pełnych danych za opymalne uznaje się e warości sałych wygładzania, kóre minimalizują warość określonego miernika dokładności. Najczęściej są o błąd średnio-kwadraowy (RMSE) i procenowy błąd absoluny (MSE) albo związane z nimi przecięne błędy względne i pierwiasek kwadraowy ze współczynnika Theila (I) lub przecięny względny błąd prognozy (MAPE). Oblicza się je jako różnice absolune lub względne dla przedziału czasowego próby

5 Zasosowanie wybranych modeli adapacyjnych 185 oraz realizacji zmiennej prognozowanej. Okazuje się jednak, że orzymanie minimalnych ocen mierników dla warości wyrównanych nie jes jednoznaczne z orzymaniem minimalnych ocen błędów prognoz ex pos. Jeżeli celem modelowania jes budowa prognoz ex ane o podsawą wyboru opymalnych warości sałych wygładzania powinny być mierniki dokładności prognoz ex pos. Proces en ulega komplikacji w przypadku, gdy w szeregach czasowych wysępują luki w danych. Wyznacza się wedy dwa rodzaje prognoz: inerpolacyjne i eksrapolacyjne. Prognozy inerpolacyjne odnoszą się do ych okresów należących do przedziału czasowego próby, w kórych wysąpiły luki. Naomias prognozy eksrapolacyjne wybiegają poza en przedział. Jeżeli zna się warości realizacji w ym okresie o obliczamy mierniki dokładności ex pos. Należy liczyć się z ym, że w omawianej syuacji orzyma się najczęściej różne zbiory opymalnych warości sałych wygładzania odpowiednio dla: warości wyrównanych (WW), prognoz inerpolacyjnych (I) oraz prognoz eksrapolacyjnych (E) PRZYKŁAD EMPIRYCZNY Charakerysyka zmiennej Modelowaniu i prognozowaniu poddana zosanie dzienna sprzedaż paliw płynnych na sacji benzynowej X (w lirach). Kszałowanie się zmiennej prognozowanej w przedziale czasowym próby przedsawione zosało na rysunku 1. Rysunek 1. Wielkość sprzedaży paliw płynnych na sacji benzynowej X liry dni Źródło: Bank Danych Kaedry Zasosowań Maemayki w Ekonomii ZUT w Szczecinie W Tabeli 1 zesawione zosały oceny wskaźników i składników sezonowości o cyklach12 miesięcznym i 7 dniowym..

6 186 Maria Szmuksa-Zawadzka, Jan Zawadzki Tabela 1. Oceny wskaźników i składników sezonowości o cyklach12 miesięcznym i 7 dniowym. Dzień Wskaźniki Składniki Wskaźni Składniki Miesiąc sez. sez. ki sez. sez. Poniedziałek 1,28 131,3 Syczeń, ,19 Worek 1,15 71,9 Luy, ,38 Środa 1,27 146,1 Marzec, ,37 Czwarek 1,18 535,76 Kwiecień,987-5,84 Piąek 1,35 2,12 Maj 1,26 314,46 Soboa, ,9 Czerwiec 1,29 33,36 Niedziela, ,46 Lipiec 1, ,35 Sierpień 1,85 532,99 Wrzesień 1,22 191,27 Październik 1, ,72 Lisopad,931-36,9 Grudzień,971-37,28 Źródło: Szmuksa-Zawadzka, Zawadzki, 214 Na podwójnie skalowanych rysunkach 2 i 3 przedsawione zosały w posaci graficznej oceny wskaźników i składników sezonowości wahań o cyklu rocznym i ygodniowym. Rysunek 2. Oceny wskaźników i składników sezonowości wahań o cyklu rocznym wsk_mc 1,2 1,15 1,1 1,5 1,,95,9, skl_mc, wsk_mc(l) skl_mc(r) Źródło: opracowanie własne

7 Zasosowanie wybranych modeli adapacyjnych 187 Rysunek 3. Oceny wskaźników i składników sezonowości wahań o cyklu ygodniowym. wsk_dni 1,15 1,1 1,5 1,,95,9, skl_dni, Źródło: opracowanie własne wsk_dni(l) skl_dni(r) Z rysunków wynika, że sprzedaż paliw na badanej sacji charakeryzuje się isonymi wahaniami zarówno w skali roku jak i ygodnia. Widoczna jes duża zgodność przebiegu wskaźników i składników sezonowości. Oszacowania wskaźników i składników sezonowości zaware w Tabeli 1 zosaną wykorzysane najpierw do eliminacji wahań sezonowych a nasępnie wyznaczania prognoz końcowych Zakres badań Rozparywany będzie jeden warian luk niesysemaycznych. Luki wysępować będą w drugim roku przedziału czasowego próby: w poniedziałki, środy i piąki zn. w 157 spośród 724 dni. Udział luk będzie wynosić zaem 21,69% długości szeregu. Orzymano je przez wymazanie odpowiednich wielkości z pełnego szeregu. Do budowy prognoz dla danych, z kórych wyeliminowano wahania o cyklu rocznym ( Y ) zosaną wykorzysane modele Hola-Winersa w posaci addyywnej (A_HW) i muliplikaywnej (M_HW). Naomias dla danych, z kórych wyeliminowano zarówno wahania o cyklu rocznym jak i ygodniowym ( Y ) prognozy będą budowane na podsawie predykorów oparych na prosych modelach Browna (A_BS i M_BS) oraz modelach Hola (A_H i M_H). Dla każdej kombinacji sałych wygładzania obliczone zosaną oceny błędów względnych: warości wyrównanych (WW), prognoz inerpolacyjnych (I) i prognoz eksrapolacyjnych (E). Naomias analizie poddane zosaną zesawy sałych wygładzania charakeryzujące się minimalnymi ocenami błędów wymienionych wyżej rodzajów wielkości. Dla celów porównawczych zosaną podane akże oceny błędów: warości wyrównanych, prognoz iner- i eksrapolacyjnych orzymanych na podsawie predykorów oparych na modelach szeregu czasowego z liniowym rendem i periodycznymi składnikiem sezonowym (A_KL) i rendem -1

8 188 Maria Szmuksa-Zawadzka, Jan Zawadzki wykładniczym o sałej sopie wzrosu i relaywnie sałych wahaniach sezonowych (M_KL). Dla modeli charakeryzujących się minimalnymi ocenami błędów prognoz iner- i eksrapolacyjnych przeprowadzona zosanie dekompozycja błędów prognoz według dni ygodnia i miesięcy. Pracę kończyć będzie część wnioskowa doycząca oceny możliwości wykorzysania modeli wyrównania wykładniczego dla danych oczyszczonych z sezonowości w prognozowaniu zmiennych ze złożoną sezonowością w warunkach braku pełnej informacji. Analiza wyników modelowania i prognozowania W ablicy 2 zesawione zosały oceny błędów: warości wyrównanych (WW), prognoz inerpolacyjnych (I) i prognoz eksrapolacyjnych (E) orzymane dla paramerów wygładzania charakeryzujących się minimalnymi ocenami błędów wymienionych wyżej wielkości. Zesawiono w niej akże oceny błędów dla modeli klasycznych: A_KL oraz M_KL.W modelach ych wahania cyklu rocznym i ygodniowym były opisane za pomocą osobnych zbiorów zmiennych zero-jedynkowych. Model M_KL różnił się ym od modelu A_KL ym, że po lewej sronie szacowanego równania zamias zaobserwowanych warości zmiennej prognozowanej Y wysąpiły jej logarymy nauralne (por. np. [Kufel 21], [Szmuksa-Zawadzka; Zawadzki 211]). Tablica 2. Minimalne oceny średnich błędów względnych: warości wyrównanych (WW), prognoz inerpolacyjnych (I) i prognoz eksrapolacyjnych (E) oraz opymalne warości sałych wygładzania Model Miernik doyczy Sałe wygładzania MAPE(%) α β γ WW I E MODELE ADDYTYWNE A_BS1 WW,7 12, 12,88 16,17 A_BS2 I,16 12,26 12,62 15, A_BS3 E,22 12,48 12,66 14,86 A_H1 WW,15,15 13,55 12,78 297,72 A_H2 I,15,3 15,99 12,61 49,2 A_H3 E,2,6 5,21 17,58 13,31 A_HW1 WW,1,2,1 11,33 13,93 22,97 A_HW2 I,1,4,1 11,36 13,89 45,45 A_HW3 E,3,8,3 12,93 15,4 12,94 A_KL 11,54 15,17 16,59 MODELE MULTIPLIKATYWNE M_BS1 WW,4 15,68 16,34 16,66 M_BS2 I,1 16,3 16,9 18,35 M_BS3 E,38 17,22 19,28 12,14

9 Zasosowanie wybranych modeli adapacyjnych 189 Model Miernik doyczy Sałe wygładzania MAPE(%) α β γ WW I E M_H1 WW,15,15 17,22 17,56 258,52 M_H2 I,4,3 35,13 16,67 17,18 M_H3 E,12,1 31,48 16,99 11,59 M_HW1 WW,1,2,1 12,74 12,74 17,97 M_HW2 I,1,4,1 12,98 12,69 14,26 M_HW3 E,7,1,3 14,48 13,47 11,2 M_Kl 11,51 14,17 15,6 Źródło: opracowanie własne Wysępujące przy oznaczeniach modeli kolejne cyfry oznaczają modele charakeryzujące się minimalnymi ocenami błędów: 1 - warości wyrównanych, 2 - prognoz inerpolacyjnych, 3 - prognoz eksrapolacyjnych. Analiza błędów warości wyrównanych oraz błędów obu rodzajów prognoz orzymanych na podsawie modeli wyrównywania wykładniczego zosanie poprzedzona krókim omówieniem wyników orzymanych dla modeli klasycznych. Niższe o 1 p.p. oceny błędów prognoz iner- i eksrapolacyjnych orzymano dla predykora oparego na modelu wykładniczym o sałej sopie wzrosu z relaywnie sałą sezonowością (M_KL). W rakcie omawiania wyników modelowania i prognozowania będziemy odwoływać się do ego modelu klasycznego. Z informacji zawarych w ablicy wynika, że minimalną oceną błędu warości wyrównanych wynoszącą 11,33% orzymano dla addyywnej posaci modelu Hola-Winersa (A_HW1) o sałych wygładzania wynoszących: α =,1, β =,2 oraz γ =,1. Nasępnym w kolejności był model muliplikaywny Hola- Winersa (M_HW1) z ocena 12,74%. Spośród modeli z podwójnie eliminowaną sezonowością najniższą ocenę błędu względnego (12,78%) orzymano dla predykora oparego na modelu Hola (A_H1) o sałych wygładzania α =,15 i β =,15. Oceny przecięego błędu względnego orzymanego dla modelu klasycznego(m_kl) jes ylko o 1,68% wyższa od oceny uzyskanej dla modelu A_HW1. W przypadku prognoz inerpolacyjnych z oceną 12,61%, najwyższą efekywnością charakeryzował się model addyywny Hola (A_H2), o akiej samej ocenie parameru α jak w modelu A_HW1, ale ocenie parameru β =,3. Model klasyczny (M_KL) charakeryzuje się oceną błędu o 23,7% wyższą. Oceny bardzo zbliżone orzymano dla dwóch sałych modeli Browna (A_H2 i A_H3) o paramerach wygładzania wynoszących,16 oraz,22. Oceny ylko nieznacznie wyższe orzymano dla dwóch modeli Hola w posaci muliplikaywnej (M_H1 i M_H2). Na rysunku 4 przedsawione zosały aproksymany eoreyczne empirycznych rozkładów błędów prognoz inerpolacyjnych orzymane na

10 19 Maria Szmuksa-Zawadzka, Jan Zawadzki podsawie najlepszego predykora adapacyjnego (A_H2) oraz predykora klasycznego (M_KL). Z rysunku wynika, że błędy prognoz adapacyjnych przyjmują częściej niższe warości. Rysunek 4. Rozkłady błędów prognoz inerpolacyjnych orzymanych na podsawie modeli A_H2 oraz M_KL Odseki 3 2 1,,8,16,24,32,4,48,56,64 MAPE Źródło: opracowanie własne Zdecydowanie najniższą ocenę błędu prognoz eksrapolacyjnych orzymano dla muliplikaywnej posaci modelu Hola-Winersa (M_HW3) o sałych wygładzania wynoszących odpowiednio: α =,7, β =,1,γ =,8. Wynosiła ona 11,2% i była o 28,21% niższa od oceny dla predykora klasycznego. Dwie najniższe w kolejności oceny błędu orzymano akże dla posaci muliplikaywnych modeli Hola (M_H3) i Browna (M_BS3) o sałych wygładzania wynoszących:,12;,1oraz,38. Przyjęły one warości 11,58% oraz 12,14% i były niższe o: 25,77% i 22,18 od oceny orzymanej dla klasycznego predykora z rendem wykładniczym i relaywnie sałą sezonowością. Widzimy zaem, że przy niemal akiej samej ocenie błędu warości wyrównanych efekywność prognoz inerpolacyjnych a zwłaszcza eksrapolacyjnych okazała się zdecydowanie wyższa od prognoz orzymanych na podsawie predykora klasycznego. Spośród modelu addyywnych najniższą oceną charakeryzuje się model Hola-Winersa (A_HW3) o sałych wygładzania wynoszących odpowiednio: α =,3, β =,8 oraz γ =,3. Orzymana ocena błędu 12,94% jes o 17,6% niższa od uzyskanej dla predykora klasycznego. Kszałowanie się aproksyman eoreycznych empirycznych rozkładów błędów prognoz eksrapolacyjnych orzymanych na podsawie najlepszego predykora adapacyjnego (M_HW2) oraz predykora klasycznego (M_KL) zosało przedsawione graficznie na rysunku 5.

11 Zasosowanie wybranych modeli adapacyjnych 191 Rysunek 5 Aproksymany eoreyczne rozkładów błędów prognoz eksrapolacyjnych orzymanych na podsawie modeli M_HW2 oraz M_KL Odseki ,,8,16,24,32,4,48,56,64 MAPE Źródło: opracowanie własne Z rysunku wynika, że błędy prognoz adapacyjnych, podobnie jak w przypadku prognoz inerpolacyjnych, przyjmują częściej niższe warości niż dla modelu klasycznego. Różnice w rozkładach są bardziej widoczne niż dla prognoz inerpolacyjnych. W ablicy 3 zesawione zosały zdezagregowane oceny błędów prognoz inerpolacyjnych i eksrapolacyjnych orzymane na podsawie równań o minimalnych ocenach błędów. W celach porównawczych zesawiono w niej akże zdezagregowane błędy prognoz dla modelu klasycznego. Z uwagi na o, że prognozy inerpelacyjne odnoszą się do poniedziałków, śród i piąków i doyczą one okresów, w kórych wysąpiły luki, zosanie podana ich liczba. To samo doyczy miesięcy. Tablica 3. Zdezagregowane oceny błędów prognoz iner- i eksrapolacyjnych według dni ygodnia i miesięcy. Błędy prognoz inerpolacyjnych (%) Błędy prognoz eksrapolacyjnych (%) Liczba prognoz A_H2 M_KL M_HW3 KL Ogółem ,61 14,18 11,2 15,65 Poniedziałek 52 8,4 8,72 1,71 21,9 Worek 8,45 12,49 Środa 53 18,65 18,24 9,91 14,5 Czwarek 1,28 12,93 Piąek 52 11,2 15,49 8,95 18,53 Soboa 18,99 18,89 Niedziela 11,23 16,35 Syczeń 14 6,7 9,53 11,13 12,3

12 192 Maria Szmuksa-Zawadzka, Jan Zawadzki Błędy prognoz inerpolacyjnych (%) Błędy prognoz eksrapolacyjnych (%) Liczba prognoz A_H2 M_KL M_HW3 KL Luy 12 9,1 1,4 12,94 9,62 Marzec 13 12,94 11,25 7,5 9,71 Kwiecień 13 13,28 13,81 1,93 12,34 Maj 13 11,99 13,84 11,48 23,92 Czerwiec 13 12,51 14,23 9,26 21,87 Lipiec 13 5,76 9,94 6,96 14,38 Sierpień 13 9,3 11,54 7,91 12,78 Wrzesień 13 5,6 6,4 11,98 17,8 Październik 14 11,29 16,98 14,12 2,75 Lisopad 12 8,59 1,3 16,93 17,61 Grudzień 14 42,49 39,84 17,72 14,65 Źródło: opracowanie własne Z informacji zawarych w abeli 3 wynika, że dla poniedziałków i śród zbliżone są oceny błędów prognoz inerpolacyjnych orzymanych na podsawie najlepszego z modeli adapacyjnych i orzymanych na podsawie predykora klasycznego. Naomias około 4,5 p.p. niższe błędy orzymano na podsawie modelu Hola. W przypadku dezagregacji na miesiące najniższą ocenę dla modelu Hola wynoszącą 5,6% orzymano dla września. Błędami nieznacznie wyższymi charakeryzują się lipiec i syczeń. Oceny błędów w granicach 9% orzymano akże dla luego, sierpnia i lisopada. Najwyższą ocenę przekraczającą 4% orzymano dla grudnia. Dla modelu klasycznego najniższą ocenę orzymano akże dla września jes ona ok. 1 p.p. wyższa niż dla predykora adapacyjnego. Oceny w granicach 1% orzymano dla sycznia, lipca, luego oraz lisopada. Niższe oceny błędów ok. 1,5 p.p. i 2,7 p.p. orzymano na podsawie predykora klasycznego odpowiednio dla marca i lisopada. Największą różnicę wynoszącą ponad 5,5 p.p. odnoowano dla października. Najwyższą warość błędu dla predykora klasycznego przyjął akże w grudniu. Wynikać o mogło, z nagłego załamania się pogody w porównaniu z rokiem poprzednim. W przypadku prognoz eksrapolacyjnych przecięna ocena błędu dla predykora adapacyjnego była niższa o 4,45 p.p. od błędu dla predykora klasycznego. Oceny błędów prognoz eksrapolacyjnych dla dni ygodnia dla modelu Hola-Winersa wahają się do 8,45% dla worku do 18,95% i 18,99% dla piąku i soboy. Dla pozosałych dni kszałują się na poziomie ok. 1%-19%. Dla modelu klasycznego oceny błędów wahają się od 12,45% i 12,93% dla worku i czwarku do 21,9% dla poniedziałku. Najwyższe różnice dla dni ygodnia, wynoszące 1,38p.p. i 9,58 orzymano dla poniedziałku i piąku a najniższą minus,1 dla soboy. Najniższą ocenę błędów w przypadku

13 Zasosowanie wybranych modeli adapacyjnych 193 miesięcy dla predykora oparego na modelu muliplikaywnym Hola-Winersa orzymano dla lipca i marca wynoszą one odpowiednio: 6,96% oraz 7,5%. Oceny w granicach 8%-9% orzymano dla sierpnia i czerwca. Naomias ocenami najwyższymi charakeryzują się grudzień (17,72%) i lisopad (16,93%). Oceny błędów orzymane dla predykora klasycznego zaware są w przedziale od 9,62% - 9,71% dla luego i marca do 23,92% dla maja. Maksymalne różnice dokładności prognoz wynoszące 12,62 p.p. i 12,44 p.p. orzymano odpowiednio dla czerwca i maja. Jedynie w grudniu błąd prognozy dla predykora klasycznego był niższy (o 3,7 p.p.) od błędu dla predykora adapacyjnego. PODSUMOWANIE Z przeprowadzonych w pracy badań wyprowadzić można nasępujące wnioski: 1. Kryerium wyboru modelu dla celów prognozowania nie mogą być przecięne błędy względne warości wyrównanych, lecz błędy względne prognoz inerpolacyjnych lub prognoz eksrapolacyjnych. 2. W przypadku modelowania i prognozowania zmiennych o niezby silnej dynamice, w kórych wysępują luki niesysemayczne, opymalne warości sałych wygładzania w modelach Hola i Hola-Winersa przybierają warości bliskie zeru. 3. Minimalne oceny błędów: warości wyrównanych, prognoz inerpolacyjnych oraz prognoz eksrapolacyjnych orzymano na podsawie różnych modeli adapacyjnych. 4. Dokładność prognoz inerpolacyjnych orzymana na podsawie najlepszego predykora adapacyjnego była ok. 23,7% wyższa od dokładności prognoz dla predykora klasycznego. 5. Dokładność prognoz eksrapolacyjnych orzymanych na podsawie najlepszych predykorów adapacyjnych był ok. 22,2% - 28,2 % wyższa od dokładności dla predykora klasycznego. 6. W oku badań wykazano, modele wyrównywania wykładniczego dla danych oczyszczonych z sezonowości mogą być użyecznym narzędziem prognozowania zmiennych ekonomicznych ze złożoną sezonowością. BIBLIOGRAFIA Dimann P. (26) Prognozowanie w przedsiębiorswie. Meody i ich zasosowanie, Wolers Kluwer Polska, Kraków. Kufel T. (21) Ekonomeryczna analiza cykliczności procesów gospodarczych o wysokiej częsoliwości obserwowania, Wydawnicwo Naukowe Uniwersyeu Mikołaja Kopernika, Toruń. Pawłowski Z. (1973) Prognozowanie ekonomeryczne, PWN, Warszawa.

14 194 Maria Szmuksa-Zawadzka, Jan Zawadzki Szmuksa-Zawadzka M., Zawadzki J. (211) Zasosowanie modelowania ekonomerycznego w prognozowaniu brakujących danych w szeregach o wysokiej częsoliwości, Prace Naukowe Uniwersyeu Ekonomicznego we Wrocławiu. Ekonomeria 34,Wrocław, sr Szmuksa-Zawadzka M., Zawadzki J. (212) Z badań nad meodami prognozowania na podsawie niekomplenych szeregów czasowych z wahaniami okresowymi (sezonowymi), Przegląd Saysyczny, Tom 59, s , Warszawa. Szmuksa-Zawadzka M., Zawadzki J. (214) Modele wyrównywania wykładniczego w prognozowaniu zmiennych ekonomicznych ze złożoną sezonowością (w druku). Zeliaś A., Pawełek B., Wana S. (23) Prognozowanie ekonomiczne. Teoria, przykłady, zadania. PWN, Warszawa. THE APPLICATION OF SELECTED ADAPTATION MODELS IN FORECASTING THE MISSING DATA IN THE TIME SERIES WITH COMPLEX SEASONALITY FOR UNSYSTEMATIC GAPS Absrac: The paper is devoed o he applicaion of seleced exponenial smoohing models: Brown, Hol and Hol-Winers in predicion of variables wih complex seasonaliy in he condiion of lack of full informaion. Oupu forecass will be buil on he basis of ime series cleansed from seasonaliy. Final forecass, aking ino accoun seasonal flucuaions, will be a sum of oupu forecass and seasonal componens or muliply of forecass and he seasonal indicaors. Theoreical consideraions will be illusraed by an empirical example. Keywords: complex seasonaliy, exponenial smoohing, forecasing, gaps in daa

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4, FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

MODELE HARMONICZNE ZE ZŁOŻONĄ SEZONOWOŚCIĄ W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI

MODELE HARMONICZNE ZE ZŁOŻONĄ SEZONOWOŚCIĄ W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIV/3, 2013, str. 81 90 MODELE HARMONICZNE ZE ZŁOŻONĄ SEZONOWOŚCIĄ W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI Maria Szmuksta Zawadzka, Jan

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH

WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA SIECI DRÓG MIEJSKICH dr hab. inŝ. Kazimierz Kłosek Prof. nzw. Poliechniki Śląskiej, Kierownik Kaedry Dróg i Mosów dr inŝ. Anna Olma Wydział Budownicwa Poliechniki Śląskiej Gliwice, Polska WAHANIA NATĘśEŃ RUCHU DROGOWEGO NA

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/1, 2012, sr. 224 233 ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH 1991-2011 Kaarzyna Unik-Banaś Kaedra Zarządzania i Markeingu w Agrobiznesie

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH

MODELOWANIE PROCESU OBSŁUGI STATKÓW POWIETRZNYCH LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE Arur KIERZKOWSKI 1 Saek powierzny, proces obsługi, modelownie procesów ransporowych MODELOWANIE

Bardziej szczegółowo

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO

Bardziej szczegółowo

MARIA SZMUKSTA-ZAWADZKA, JAN ZAWADZKI

MARIA SZMUKSTA-ZAWADZKA, JAN ZAWADZKI PRZEGLĄD STATYSTYCZNY NUMER SPECJALNY 1 2012 MARIA SZMUKSTA-ZAWADZKA, JAN ZAWADZKI Z BADAŃ NAD METODAMI PROGNOZOWANIA NA PODSTAWIE NIEKOMPLENTYCH SZERGÓW CZASOWYCH Z WAHANIAMI OKRESOWYMI (SEZONOWYMI) 1.

Bardziej szczegółowo

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności)

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Różnica bilansowa dla Operaorów Sysemów Dysrybucyjnych na laa 2016-2020 (kórzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Deparamen Rynków Energii Elekrycznej i Ciepła Warszawa 201 Spis

Bardziej szczegółowo

Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzystaniem wybranych metod statystycznych

Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzystaniem wybranych metod statystycznych dr Anna Koz owska-grzybek mgr Marcin Kowalski Kaedra Mikroekonomii Akademia Ekonomiczna w Poznaniu Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzysaniem wybranych

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO

Bardziej szczegółowo

MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO

MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM, LOGISTYCZNE I KRZYśOWANIA HEURYSTYCZNEGO InŜynieria Rolnicza 11/2006 Małgorzaa Trojanowska Kaedra Energeyki Rolniczej Akademia Rolnicza w Krakowie MODELE PROGNOSTYCZNE SPRZEDAśY ENERGII ELEKTRYCZNEJ ODBIORCOM WIEJSKIM OPARTE NA WYMIARZE FRAKTALNYM,

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

O METODZIE PROGNOZOWANIA BRAKUJĄCYCH DANYCH W DZIENNYCH SZEREGACH CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI

O METODZIE PROGNOZOWANIA BRAKUJĄCYCH DANYCH W DZIENNYCH SZEREGACH CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 2012, str. 202 212 O METODZIE PROGNOZOWANIA BRAKUJĄCYCH DANYCH W DZIENNYCH SZEREGACH CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI Maria Szmuksta-Zawadzka Zachodniopomorski

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Uniwersye Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saysyki

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Spis treści. Summaries

Spis treści. Summaries Spis treści Wstęp.............................................................. 7 Ireneusz Kuropka: Przydatność wybranych modeli umieralności do prognozowania natężenia zgonów w Polsce.............................

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009 Uniwersye Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saysyki Jarosław

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku

Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku Pior GRZEJSZCZK, Roman BRLIK Wydział Elekryczny, Poliechnika Warszawska doi:1.15199/48.215.9.12 naliyczny opis łączeniowych sra energii w wysokonapięciowych ranzysorach MOSFET pracujących w mosku Sreszczenie.

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Budowa scenariuszy wzrostu gospodarczego w ujęciu regionalnym

Budowa scenariuszy wzrostu gospodarczego w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Budowa scenariuszy wzrosu gospodarczego w ujęciu regionalnym Wsęp Wzros gospodarczy wskazywany jes przez eorię ekonomii za najważniejszy czynnik deerminujący poziom rozwoju

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

Analiza taksonomiczna porównania przyspieszenia rozwoju społeczeństwa informacyjnego wybranych krajów

Analiza taksonomiczna porównania przyspieszenia rozwoju społeczeństwa informacyjnego wybranych krajów Ekonomiczne Problemy Usług nr 1/2017 (126),. 1 ISSN: 1896-382X www.wnus.edu.pl/epu DOI: 10.18276/epu.2017.126/1-08 srony: 71 79 Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo