Wykład 18: Elementy fizyki współczesnej -2
|
|
- Radosław Piasecki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl 1
2 Efekt fotoelektryczny 1887 Hertz; 1888 Stoletow 190 von Lenard Metal plate Collector e - Vacuum chamber Photoelectrons A
3 I c b Inny metal c katody niż a i b, Natężenie oświetlenia jak b a Silniejsze b oświetlenie niż a - 0 Różnica potencjałów U [V] + Co się nie zgadza z teorią falową? 1. Energia kinetyczna fotoelektronu jest niezależna od natężenia padającego promieniowania. Dla danej częstości światła, silny strumień i słaba wiązka dostarczają wybijanym elektronom tyle samo energii. 3
4 Max. energia kinetyczna. Zjawisko fotoelektryczne nie występuje, jeżeli częstość światła jest niższa od częstości progowej (lub długości granicznej) bez względu na to jak intensywne jest światło padające na tarczę. E k Li Na 3. Nie obserwuje się żadnego upływu czasu pomiędzy oświetleniem metalu i emisją fotoelektronu. Klasycznie, energia jest gromadzona i dostarczana w sposób ciągły. 0 f 0 f 1 f częstotliwość Wiadomo, że metal zawiera dużą ilość swobodnych elektronów (m e masa elektronu, -e - ładunek elektronu), około 1 lub na atom. Te elektrony są quasi-swobodne czyli nie są związane z atomami lecz mogą, po dostarczeniu pewnej energii, opuścić metal. Energia ta nosi nazwę pracy wyjścia W z metalu. Praca wyjścia jest różna dla różnych metali i zależy od stanu powierzchni. Typowe wartości W zmieniają się od do 8 ev. 4
5 Wyjaśnienie Einsteina: W 1905 r. Einstein wysunął hipotezę, że światło jest skwantowane (pojęcie wprowadzone przez M.Plancka) i istnieje w porcjach zwanych fotonami. Energia kwantu E f = hν a jego pęd E hν p = = = c c Einstein zaproponował mechanizm efektu fotoelektrycznego. Założył, że foton może zostać zaabsorbowany przez elektron jeżeli energia fotonu przekracza konkretną wartość: h λ hν W praca wyjścia z metalu Pojedynczy foton jest absorbowany przez pojedynczy elektron, który może uzyskać energię kinetyczną E k = hν W 5
6 Minimalna energia fotonu hf dla wybicia elektronu o energii kinetycznej E k =½ mv E E k =½ mv W Energia kinetyczna elektronu Padający foton wnętrze metalu na zewnątrz metalu Elektrony emitowane z metalu pod wpływem promieniowania elektromagnetycznego noszą nazwę fotoelektronów. Jest to zjawisko fotoelektryczne zewnętrzne. Efekt nie zachodzi na swobodnych elektronach. 6
7 Wykorzystanie zasady zachowania energii. h = W + E k Jeżeli E k = 0 to hc h gr = = W gr = gr hc W jest to graniczna długość światła, przy której zachodzi zjawisko fotoelektryczne. E k = U h e U h h W = e e U h h tg = h = e tg e W e o Jest to więc sposób wyznaczenia pracy wyjścia oraz wartości stałej Plancka. 7
8 Przykład 1: Eksperyment wykazał, że gdy promieniowanie elektromagnetyczne o długości fali 70 nm pada na powierzchnię Al, są emitowane fotoelektrony. Elektrony o największej energii kinetycznej są zatrzymywane przez przyłożenie odpowiedniego pola elektrycznego o różnicy potencjałów V. Oblicz pracę wyjścia z metalu. Rozwiązanie: E k = eu = ( C)(0.405 V) = J E f W = = hc hf = = 34 ( Js)( m/s) 19 = m J E f Ek = J = = J / ev 8 19 ev J 8
9 Przykład : Długość fali de Broglie a najszybszych elektronów emitowanych z powierzchni metalu w zjawisku fotoelektrycznym wynosi B =, nm. Obliczyć długość fali padającego światła, jeżeli praca wyjścia z tego metalu wynosi W = 1,75 ev. Rozwiązanie: hc mv = W + E k E k = h B = V = mv h m B E k = mh h m = hc = = 600nm B m B h W + m B 9
10 Przykład 3 A. Wiedząc, że natężenie oświetlenia jest odwrotnie proporcjonalne do kwadratu odległości od źródła światła, oszacuj jak zmieni się prędkość fotoelektronów gdy odległość źródła światła od powierzchni metalu zmniejszymy dwukrotnie. B. Jaki będzie efekt dwukrotnego zwiększenia częstotliwości światła padającego na powierzchnię metalu emitującego fotoelektrony? Przykład 4 Korzystając z wykresu przedstawiającego zależność energii kinetycznej fotoelektronów od częstotliwości padającego światła: wyznacz stałą Plancka, oblicz pracę wyjścia elektronu, 6 E k [ev] [10 15 Hz] określ maksymalną długość fali elektromagnetycznej, dla której można zaobserwować zjawisko fotoelektryczne. 10
11 Efekt Comptona Jeżeli światło można traktować jak zbiór fotonów, należy spodziewać się zderzeń pomiędzy fotonami i cząstkami materii (np. elektronami). Compton (193) zaobserwował rozproszone promienie X o zmienionej długości fali. Klasyczna teoria fal elektromagnetycznych zjawisko rozproszenia tłumaczyła jako pobudzenie do drgań elektronów ośrodka rozpraszającego, które stają się wtórnym źródłem fal ale bez zmiany długości! 11
12 Efekt Comptona jest wynikiem rozpraszania fotonu na quasiswobodnym elektronie e w metalicznej próbce (folii): Załóżmy, że początkowo : elektron jest w spoczynku, pęd wynosi 0, ale energia spoczynkowa m e c foton ma: energię h oraz pęd o wartości h /c + Incident photon q e ' + e' Target electron at rest Recoil electron q p Scattered photon 1
13 Po zderzeniu foton ma energię h i pęd o wartości h /c Zasada zachowania energii: hc + Zasada zachowania pędu dla osi OX m 0 c h = = m0 c 1 c ( ) v ' m. elektronu m 0 v hc + ( ) v ' 1 c elektron cos + h cos foton Zasada zachowania pędu dla osi OY -foton v elektron -foton rozproszony 0 = m 0 v ( ) v ' 1 c elektron sin h sin foton 13
14 Przesunięcie Comptona (długości) Δλ=λ`-λ czyli różnica pomiędzy długością fali przed (λ`) i po (λ) rozproszeniu: = ' = h m c 0 (1 cos) = ( 1 cos) = h m0c jest to tzw. comptonowska długość fali równa, m W zjawisku Cmptona zmiana długości fali nie zależy od energii fotonu padającego, a zależy jedynie od kąta jego rozproszenia. Dla = 0 0 = 0; dla = = a dla = 90 0 = (rozproszenie wsteczne); 14
15 Obserwujemy dwa piki: jeden dla elektronów, drugi dla jonów dodatnich Ze wzrostem kąta rozpraszania, intensywność piku od elektronów rośnie 15
16 Przykład 1: Obliczyć kąt, pod jakim został rozproszony w zjawisku Comptona foton o energii początkowej 1, MeV, na elektronie swobodnym, jeżeli długość fali fotonu rozproszonego równa jest comptonowskiej długości fali Przykład : Promieniowanie X o długości fali jest rozpraszane pod kątem prostym na elektronie, który uzyskuje nie relatywistyczną prędkość V i zaczyna się poruszać pod kątem = 30 0 do pierwotnego kierunku wiązki X. Zapisz zasady zachowania energii i pędu dla tego przypadku. 16
17 Zasada komplementarności Nielsa Bohra Modele falowy i korpuskularny wzajemnie się uzupełniają: jeżeli dany pomiar dostarcza dowodu falowego, to w tym samym pomiarze nie da się wykryć cech korpuskularnych i na odwrót. W obrazie falowym natężenie promieniowania: I E czyli średnia wartość wektora Poyntinga jest proporcjonalna do kwadratu amplitudy fali. W obrazie fotonowym korpuskularnym: I = Nhv gdzie N jest średnią liczbą fotonów przechodzących w jednostce czasu przez jednostkowa powierzchnię prostopadłą do kierunku ruchu fotonów. 17
18 Uogólnienie hipotezy de Broglie przez Schrödingera dało początek mechanice kwantowej. Fala de Broglie jest reprezentowana przez funkcje falową, która dla przypadku jednowymiarowego ma postać: x ( x, t) = Asin ( t) = Asin( kx t) Wyrażenie to jest analogiczne do wyrażenia na natężenie pola elektrycznego fali elektromagnetycznej E( x, t) = Eo sin( kx t) podstawiając otrzymujemy k = p = E 1 ( x, t) = Asin ( px Et) 18
19 1 ( x, t) = Asin ( px Et) Czy można, przeprowadzając odpowiedni pomiar, jednocześnie określić zarówno pęd p jak i położenie x cząstki? Albo w danym momencie określić dokładnie jej energię? Nie można ich określić dokładniej niż na to pozwala zasada nieoznaczoności Heisenberga. 19
20 Zasada nieoznaczoności Heisenberga Pomiar w większości przypadków zmienia stan układu. Aby obserwować dany obiekt oświetlamy go fotonami. Im dokładniej chcemy zbadać położenie obiektu, tym krótsza musi być długość fali fotonów używanych do obserwacji. Fotony o krótszej długości fali niosą większą energię i pęd, a przez to bardziej zaburzają badany układ. Dla przypadku jednowymiarowego: p x x Zasada ta nie jest wynikiem niedokładności przyrządów pomiarowych, ale odnosi się do samego procesu pomiaru. Uwzględnia ona oddziaływanie między obserwatorem i mierzonym obiektem 0
21 Przykłady Znając czas otwarcia migawki i przesunięcie obliczymy szybkość ale nie podamy dokładnego położenia bo obraz jest rozmyty. Dla krótszego czasu migawki - ostre zdjęcie znane położenie auta ale nie znana jest jego prędkość. 1
22 Rozpatrzmy dwa obiekty poruszające się z taką samą prędkością v= 300 m/s, wyznaczoną z dokładnością 0,01%. Z jaką dokładnością możemy wyznaczyć ich położenie? Obiekt makroskopowy; kula o masie m=50 g p = 15 kg m/s, p = 0, = 1, kg m/s x p = m = nm Wielkość ta stanowi średnicy jądra atomowego, jest więc wielkością niemierzalną. Dla obiektów makroskopowych istnienie zasady nieoznaczoności Heisenberga nie nakłada na procedurę pomiarową żadnych ograniczeń.
23 Obiekt mikroskopowy; elektron o masie m=9, g p =, kg m/s p = m v=, kg m/s x p = 0,cm = 10 6 nm Wielkość ta stanowi ok. 107 średnicy jądra atomu. Dla obiektów mikroskopowych występują w praktyce zawsze ograniczenia w procedurze pomiarowej. 3
24 Nieoznaczoność czasu i energii Hipoteza de Broglie odnosi się również do pomiaru energii i czasu życia na danym poziomie energetycznym Skoro dp = m dv więc dv dpdx = mdv dx = m dxdt = madxdt = F dxdt dt Stąd px = Et Et = dedt Stan o określonym czasie życia Δt nie może mieć dokładnie określonej energii. 4
25 Jeżeli stan wzbudzony atomu ma czas życia τ, to nieoznaczoność energii ujawnia się gdy podczas przejścia do stanu podstawowego o energii E 0 Częstotliwość promieniowania emitowanego w wyniku tego procesu: E Eo f = 1 h nie jest dokładnie określona f = E h 1 1 Poszerzenie linii spektralnych jest zjawiskiem wynikającym z mechaniki kwantowej 5
26 6
27 Energia stanu podstawowego W pobliżu najniższej energii, gdzie klasycznie p=0 Energia oscylatora p = p ( p) 1 E( x) = + m x m ( ) E( x) E min 1 x E quantum x oraz 1 E( a) = + m a 8ma Najmniejsza energia nie jest zerowa Konsekwencją zasady Heisenberga jest występowanie resztkowego ruchu w każdym systemie fizycznym. E min = E classic x 7
Wykład 17: Elementy fizyki współczesnej
Wykład 17: Elementy fizyki współczesnej Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Promieniowanie ciała doskonale czarnego
Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.
Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Wykład 19: Elementy fizyki współczesnej
Wykład 19: Elementy fizyki współczesnej Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@ag.edu.pl ttp://layer.uci.ag.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
Falowa natura materii
r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Efekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Promieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Zjawiska korpuskularno-falowe
Zjawiska korpuskularno-falowe Gustaw Kircoff (84-887) W 859 rozpoczyna się droga do mecaniki kwantowej od odkrycia linii D w widmie słonecznym Elektron odkryty przez J.J. Tompsona w 897 (neutron w 93).
WFiIS. Wstęp teoretyczny:
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa
Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO
Fizyka współczesna. Pracownia dydaktyki fizyki. Instrukcja dla studentów. Tematy ćwiczeń
Pracownia dydaktyki fizyki Fizyka współczesna Instrukcja dla studentów Tematy ćwiczeń I. Wyznaczanie stałej Plancka z wykorzystaniem zjawiska fotoelektrycznego II. Wyznaczanie stosunku e/m I. Wyznaczanie
Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki
Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne
ZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy
Wykład 18: Elementy fizyki współczesnej -1
Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego
Ładunek elektryczny jest skwantowany
1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek
Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek
Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.
Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy
Wykład 7 Kwantowe własności promieniowania
Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Problemy fizyki początku XX wieku
Mechanika kwantowa Problemy fizyki początku XX wieku Promieniowanie ciała doskonale czarnego Ciałem doskonale czarnym nazywamy ciało całkowicie pochłaniające na nie promieniowanie elektromagnetyczne, niezależnie
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona Fizyka kwantowa - po co? Jeśli chcemy badać zjawiska, które zachodzą w skali mikro -
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Matura z fizyki i astronomii 2012
Matura z fizyki i astronomii 2012 Arkusz A1 poziom podstawowy Odpowiedzi do zadań z serwisu filoma.org fizyka matura i zadania na filoma.org 1 2 3 4 5 6 7 8 9 10 D B C D C D A C C B Zadanie 11 a) 3 b)
Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania
FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak
FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Podstawy fizyki kwantowej
Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego
Podstawy mechaniki kwantowej. Jak opisać świat w małej skali?
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 10-1 10-10 10-8 4 x 10-7
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
INŻYNIERIA BIOMEDYCZNA. Wykład IX
INŻYNIERIA BIOMEDYCZNA Wykład IX 01.12.2018 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają
INŻYNIERIA BIOMEDYCZNA. Wykład IX
INŻYNIERIA BIOMEDYCZNA Wykład IX 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają wątpliwości,
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
Podstawy fizyki sezon Dualizm światła i materii
Podstawy fizyki sezon 2 10. Dualizm światła i materii Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha W poprzednim
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Postulaty szczególnej teorii względności
Teoria Względności Pomiary co, gdzie, kiedy oraz w jakiej odległości w czasie i przestrzeni Transformowanie (przekształcanie) wyników pomiarów między poruszającymi się układami Szczególna teoria względności
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Fizyka klasyczna i kwantowa. Krótka historia fizyki.
Fizyka klasyczna i kwantowa. Krótka historia fizyki. Pod koniec XIX wieku fizycy byli bardzo dumni z rozwoju teorii fizycznych i nic nie wskazywało na przełomowe odkrycia które nastąpiły. Tylko nieliczne
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:
Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn
Falowa natura materii
r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Dualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
Mechanika kwantowa Schrödingera
Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny
Doświadczenie Younga Thomas Young. Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja
Doświadczenie Younga 1801 Thomas Young Dyfrakcja światła na dwóch szczelinach Światło zachowuje się jak fala - interferencja Doświadczenie Younga c.d. fotodetektor + głośnik fala ciągły sygnał o zmiennym
o pomiarze i o dekoherencji
o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy
Ćwiczenie nr 82: Efekt fotoelektryczny
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 3 17 października 2016 A.F.Żarnecki
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa
r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 6 Promieniowanie. Produkcja i oddziaływanie. Potencjały jonizacyjne 3 Podpowłoki Tab. Oznaczenia literowe podpowłok l 0 1 3 4 5 Oznaczenie
Wczesne modele atomu
Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
BADANIE ZEWNĘTRZNEGO ZJAWISKA FOTOELEKTRYCZNEGO
ĆWICZENIE 91 BADANIE ZEWNĘTRZNEGO ZJAWISKA FOTOELEKTRYCZNEGO Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(U) fotokomórki w zależności od wartości strumienia promieniowania padającego;
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne:
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Rozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
Rysunek 3-19 Model ciała doskonale czarnego
3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Rozdział 1. Światło a fizyka kwantowa
Rozdział 1. Światło a fizyka kwantowa 2016 Spis treści Promieniowanie termiczne Ciało doskonale czarne Teoria promieniowania we wnęce, prawo Plancka Zastosowanie prawa Plancka w termometrii Zjawisko fotoelektryczne