Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?"

Transkrypt

1 Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej

2 Klasyczny dylemat więźnia Tabela wypłat dylematu więźnia Bartek Alicja W O W (, ) (, ) O (, ) (, ) W - współpraca O - odmowa > > > >

3 Klasyczny dylemat więźnia Tabela wypłat dylematu więźnia Bartek Alicja W O W (3,3) (0,5) O (5,0) (,) W - współpraca O - odmowa > > > >

4 Wypłata Bartka Diagram użyteczności klasycznego DW Jeśli gracze grają strategiami mieszanymi: (!,") = (",") = 0 = (!,!) Wypłata Alicji Alicja = 0, [0,] W cos O sin W cos (,), Bartek O sin (,) (,) Równowaga Nasha jest daleka od rozwiązań Pareto-optymalnych (",!) = 5, = 3, = i = 0

5 Gry kwantowe sfera Blocha Strategie mieszane są podobne do kubitów: $% = cos!% + e i' sin "% [0,] ' [,]

6 Kolaps funkcji falowej Jeśli układ kwantowy (kubit) pozostaje w superpozycji stanów to jest to wyrazem braku naszej wiedzy o nim. $% = cos!% + e i' sin "% [0,] ' [,] Mierząc stan powyższego kubitu dostaniemy albo!% albo "%, z prawdopodobieństwami cos lub sin odpowiednio. W interpretacji Kopenhaskiej MK, superpozycja stanów kolapsuje do stanu mierzonego, a nieobserwowany składnik bezpowrotnie znika. Ten proces nazywa się kolapsem funkcji falowej. Nieobserwowany składnik znika z pola widzenia jak przegrany los na loterii. Podobnie jak w znanym przykładzie kota Schrödingera Ψ ( kota) = żywy + martwy

7 Gry kwantowe sformułowanie procesu Proces gry kwantowej przebiega według schematu: Alicja +,.!!% )* $ 0 % ), $ % +, - Bartek gdzie!!% jest odpowiednio przygotowanym stanem początkowym, )* = 0 ( * ), jest operatorem splatającym a +, = +,,',6 oraz +, = +,,',6, gdzie +,,',6 = 7 89: cos 7 89; sin 79: cos 7 9; sin, są kwantowymi strategiami Alicji i Bartka odpowiednio. ) <, nazywamy operatorem rozplatającym a $ = % stanem końcowym procesu.

8 0 in W O W Ψ = + = + + = = φ φ φ φ φ φ i i i i i e e e e e H P H 0 0 W ( ) ( ) ( ) i i out H P H W e W e O ϕ ϕ ϕ Ψ = = + + ( ) + iφ e ( ) iφ e obrót o kąt ' wokół osi > Gry kwantowe realizacja fizyczna O W O

9 Gry kwantowe wynik gry Stan końcowy gry jest na ogół stanem splątanym $ = % =? +? "!% +? AA ""% gdzie? AA są prawdopodobieństwami? = cos cos cos ' + ' sin sin sin 6 + = sin cos cos(6 ' ) cos sin sin ' 6,? = sin cos sin(6 ' ) + cos sin cos(' 6 ),? AA = cos cos sin ' + ' + sin sin cos 6 + 6, że w wyniku pomiaru (kolapsu) $ = % przejdzie w jeden z 4 stanów. Wartość oczekiwana wypłaty Alicji wynosi: $ =? +? +? AA

10 Wynik gry jako stan splątany Jeśli w wyniku gry otrzymujemy np. stan splątany $ = % =!!% ""% to oznacza, że niezależnie od losowego charakteru pomiaru stanu końcowego pewnym pozostaje, że obaj gracze zagrają tak samo. Jeśli zaś $ = %!"% "!% to wiadomo, że gracze zagrają przeciwnie. Tego typu splątany wynik gry jest charakterystyczny dla gier kwantowych i nie występuje w grach klasycznych. Podobne stany splątane występują w słynnym paradoksie EPR

11 Granica klasyczna gry kwantowej Jeśli strategie graczy nie zawierają zespolonych faz +D +,,0,0 oraz+d +,,0,0, to dla przypomnienia $ = %) <, +, +, )*!!%+D +D!!% +,,0,0 789E cos (7 89E sin 7 9E sin 7 9E cos. W tym przypadku wynik Alicji (Bartka) będzie $ cos cos cos sin sin cos sin sin - identyczny z wynikiem gry klasycznej. Splątanie nie jest możliwe!

12 Strategie kwantowego DW Wybierzmy (dowolną) strategię kwantową Alicji.*+,,',6 oraz oznaczmy., = +,,' G,6 G. Niech -H i -, będą strategiami Bartka (zależnymi od,',6 ): -H = +, +,6,' G, -, = +, +,6 G,' Wypłaty graczy stosujących te strategie kwantowe są: Bartek -H -, Alicja.* (,) (,)., (,) (,) więc są równoważne grze o sumie zerowej (matching pennies).

13 Równowagi Nasha kwantowego DW Jeśli teraz przeciwnicy grają strategiami mieszanymi cos I. * + sin I., i cos I - H + sin I -,, gdzie J, J 0, to gra ma jedyną (dla danych,',6 ) RN w punkcie siodłowym γ = γ = G = 5, = 3, = i =

14 Diagram użyteczności kwantowego DW Jeśli gracze zastosują swoje strategie siodłowe γ γ G to w.o. ich wypłat wyniosą LMN,5 = 5, = 3, = i =

15 Podsumowanie. Równowaga Nasha kwantowego DW jest bardziej korzystna od równowagi klasycznego DW. Osiągniecie korzystniejszej RN dla gier kwantowych jest możliwe dzięki zjawisku splątania stanów końcowych gry 3. Gry kwantowe można rozgrywać wykorzystując komputer kwantowy 4. Możliwe są klasycznie symulacje rozgrywki kwantowej 5. Niektóre procesy rynkowe, zachowania partnerów negocjacji, naśladują RN kwantowego DW Pytania:. Czy kolaps funkcji falowej jest obserwowany w grach klasycznych?. Czy splatanie kwantowe ma swój odpowiednik w grach klasycznych?

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

DLACZEGO W DYLEMAT WIĘŹNIA WARTO GRAĆ KWANTOWO? *

DLACZEGO W DYLEMAT WIĘŹNIA WARTO GRAĆ KWANTOWO? * Marek Szopa Uniwersytet Śląski w Katowicach DLACZEGO W DYLEMAT WIĘŹNIA WARTO GRAĆ KWANTOWO? * 1. Klasyczny dylemat więźnia Dylemat Więźnia [DW] jest bardzo znanym przykładem zastosowania teorii gier do

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Teoria gier w ekonomii - opis przedmiotu

Teoria gier w ekonomii - opis przedmiotu Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

Gry kwantowe na łańcuchach spinowych

Gry kwantowe na łańcuchach spinowych Gry kwantowe na łańcuchach spinowych Jarosław Miszczak we współpracy z Piotrem Gawronem i Zbigniewem Puchałą Instytut Informatyki Teoretycznej i Stosowanej PAN w Gliwicach J.A.M., Z. Puchała, P. Gawron

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3 LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

Gry wieloosobowe. Zdzisław Dzedzej

Gry wieloosobowe. Zdzisław Dzedzej Gry wieloosobowe Zdzisław Dzedzej 2012 2013-01-16 1 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,-1 2013-01-16 2 Diagram przesunięć 2013-01-16

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Czym jest użyteczność?

Czym jest użyteczność? Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne

Bardziej szczegółowo

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:

Bardziej szczegółowo

Kwantowa implementacja paradoksu Parrondo

Kwantowa implementacja paradoksu Parrondo Kwantowa implementacja paradoksu Parrondo Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN, Gliwice oraz Zakład Fizyki Teoretycznej, Uniwersytet Śląski, Katowice 7 Czerwca 2005 Plan

Bardziej szczegółowo

Jak wygrywać w brydża znając mechanikę kwantową?

Jak wygrywać w brydża znając mechanikę kwantową? Jak wygrywać w brydża znając mechanikę kwantową? Tomasz Kisielewski 15 grudnia 2014 Podstawowe zasady brydża Brydż jest grą karcianą dla czterech osób grających w drużynach po dwie osoby. Gra składa się

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą

Bardziej szczegółowo

Paradoksy mechaniki kwantowej

Paradoksy mechaniki kwantowej Wykład XX Paradoksy mechaniki kwantowej Chociaż przewidywania mechaniki kwantowej są w doskonałej zgodności z eksperymentem, interpretacyjna strona teorii budzi poważne spory. Przebieg zjawisk w świecie

Bardziej szczegółowo

interpretacje mechaniki kwantowej fotony i splątanie

interpretacje mechaniki kwantowej fotony i splątanie mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Gry w postaci normalnej

Gry w postaci normalnej Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:

Bardziej szczegółowo

Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań

Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem

Bardziej szczegółowo

Pojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki?

Pojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki? Pojęcia podstawowe Teoria zbiorów przybliżonych i teoria gier Decision Support Systems Mateusz Lango 5 listopada 16 problem decyzyjny decydent analityk model preferencji (3 rodzaje) zbiór wariantów/alternatyw

Bardziej szczegółowo

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj

Bardziej szczegółowo

VI. KORELACJE KWANTOWE Janusz Adamowski

VI. KORELACJE KWANTOWE Janusz Adamowski VI. KORELACJE KWANTOWE Janusz Adamowski 1 1 Korelacje klasyczne i kwantowe Zgodnie z teorią statystyki matematycznej współczynnik korelacji definiujemy jako cov(x, y) corr(x, y) =, (1) σ x σ y gdzie x

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

TEORIA GIER WPROWADZENIE. Czesław Mesjasz

TEORIA GIER WPROWADZENIE. Czesław Mesjasz TEORIA GIER WPROWADZENIE Czesław Mesjasz 2010 1 GENEZA TEORII GIER Próby budowy matematycznych modeli konfliktów i negocjacji podejmowane były już przez A. Cournota, F. Edgewortha i F. Zeuthena. Koncepcje

Bardziej szczegółowo

Protokół teleportacji kwantowej

Protokół teleportacji kwantowej Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji

Bardziej szczegółowo

Komputery Kwantowe. Sprawy organizacyjne Literatura Plan. Komputery Kwantowe. Ravindra W. Chhajlany. 27 listopada 2006

Komputery Kwantowe. Sprawy organizacyjne Literatura Plan. Komputery Kwantowe. Ravindra W. Chhajlany. 27 listopada 2006 Sprawy organizacyjne Literatura Plan Ravindra W. Chhajlany 27 listopada 2006 Ogólne Sprawy organizacyjne Literatura Plan Współrzędne: Pokój 207, Zakład Elektroniki Kwantowej. Telefon: (0-61)-8295005 Email:

Bardziej szczegółowo

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w

Bardziej szczegółowo

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer

Bardziej szczegółowo

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą

Bardziej szczegółowo

Lista zadań. Równowaga w strategiach czystych

Lista zadań. Równowaga w strategiach czystych Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

13. Teoriogrowe Modele Konkurencji Gospodarczej

13. Teoriogrowe Modele Konkurencji Gospodarczej 13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Druga

1. Matematyka Fizyki Kwantowej: Cześć Druga . Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej

Bardziej szczegółowo

Elementy teorii gier. Badania operacyjne

Elementy teorii gier. Badania operacyjne 2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie

Bardziej szczegółowo

o pomiarze i o dekoherencji

o pomiarze i o dekoherencji o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy

Bardziej szczegółowo

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2

1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Aukcje groszowe. Podejście teoriogrowe

Aukcje groszowe. Podejście teoriogrowe Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].

Bardziej szczegółowo

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

ZADANIE 1/GRY. Modele i narzędzia optymalizacji w systemach informatycznych zarządzania ZADANIE 1/GRY Zadanie: Dwaj producenci pewnego wyrobu sprzedają swe wyroby na rynku, którego wielkość jest stała. Aby zwiększyć swój udział w rynku (przejąć część klientów konkurencyjnego przedsiębiorstwa),

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy...

1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy... Spis treœci Streszczenie... 11 Summary... 13 1. S³owo wstêpne... 15 1.1. Geologia gospodarcza g³ówne aspekty problematyki badawczej... 16 1.2. Zakres, treœæ i cel rozprawy... 17 2. Zarys teorii decyzji...

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Plan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha

Plan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha Plan Przypomnienie: Dominacja oraz równowaga Nasha Model konkurencji ilościowej Cournot Model konkurencji cenowej Bertranda jednakowe produkty produkty zróżnicowane Prosty model aukcji: Aukcja drugiej

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Miary splątania kwantowego

Miary splątania kwantowego kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny

Bardziej szczegółowo

Rozdział 8 Paradoksy i zastosowania Mechaniki Kwantowej

Rozdział 8 Paradoksy i zastosowania Mechaniki Kwantowej Rozdział 8 Paradoksy i zastosowania Mechaniki Kwantowej 8.1: Interpretacja Kopenhaska 8.2: Paradoks Einsteina- Podolskiego-Rosena 8.3: Stany splątane 8.4: Konsekwencje EPR 8.5: Ukryte założenia: lokalność

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

O spl ataniu kwantowym s lów kilka

O spl ataniu kwantowym s lów kilka O spl ataniu kwantowym s lów kilka Krzysztof Byczuk Instytut Fizyki Teoretycznej, Uniwersytet Warszawski http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html 30 styczeń 2006 Rozważania Einsteina,

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja

TEORIA GIER W NAUKACH SPOŁECZNYCH. Drzewka gry, indukcja wsteczna, informacja TEORIA GIER W NAUKACH SPOŁECZNYCH Drzewka gry, indukcja wsteczna, informacja Czym się dzisiaj zajmiemy? Rozwiązywaniem gier w postaci ekstensywnej (drzewka) Historią najnowszą Indukcją wsteczną Preferencjami

Bardziej szczegółowo

Teoria gier. Łukasz Balbus Anna Jaśkiewicz

Teoria gier. Łukasz Balbus Anna Jaśkiewicz Teoria gier Łukasz Balbus Anna Jaśkiewicz Teoria gier opisuje sytuacje w których zachodzi konflikt interesów. Znajduje zastosowanie w takich dziedzinach jak: Ekonomia Socjologia Politologia Psychologia

Bardziej szczegółowo

Przedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 1

Przedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 1 Przedsiębiorczość i Podejmowanie Ryzyka Zajęcia 1 Zaliczenie Obecność Reguły gry: - Obecność obowiązkowa - kartkówki tylko w nagłych wypadkach (w wypadku niepożądanej aktywności) - Prace domowe (oddawane

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna

Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1 1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje

Bardziej szczegółowo

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników). TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry

Bardziej szczegółowo

Propedeutyka teorii gier

Propedeutyka teorii gier Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII

Bardziej szczegółowo

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy

Bardziej szczegółowo