Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów"

Transkrypt

1 Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14 listopada 2013 Proseminarium licencjackie

2 Dlaczego opóźnienie czasowe może powodować powstawanie cykli Przykład t=0,1, dynamika strzałkowa -m 0 m wprowadźmy opóźnienie warunki początkowe Pojawia się cykl stabilny o amplitudzie i okresie

3 Wprowadźmy stochastyczne zaburzenie z prawdopodobieństwem 1 - ε = z prawdopodobieństwem ε Otrzymaliśmy prosty przykład dynamiki stochastycznej z opóźnieniem czasowym

4 m = 20 = 9 ε = 0.1

5 jeżeli przez stan naszego układu w czasie t będziemy uważaćτ+ 1 położeń (x(t), x(t-1), x(t-2), x(t-τ)) to otrzymamy ergodyczny łańcuch Markowa z rozkładem stacjonarnym µ ε i przestrzenią stanówω Definicja jest stochastycznie stabilny jeśli lim ε 0 µ ε (x) > 0 (=1) Twierdzenie lim ε 0 µ ε (cykl) = 1

6 Dynamika populacji czas A i B - dwa możliwe zachowania, fenotypy, strategie osobników

7 GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J Z

8 Równowaga Nasha Jak grać? Przypisanie graczom strategii, tak iż żadnemu z graczy, przy ustalonych strategiach wszystkich innych graczy, nie opłaca się zmienić swojej strategii

9 Formalnie gra w jelenia i zająca (St,St) równowaga efektywna (H,H) równowaga bezpieczna średnia St - 5/2 średnia H - 3 problem wyboru równowagi

10 Prosty model ewolucji Selekcja osobnicy oddziałują w parach grają w gry uzyskują wypłaty = liczba potomstwa Fenotypy są dziedziczone Potomstwo może mutować

11 Dobór osobników do gry każdy gra z każdym losowe spotkania graczy gry na grafach, populacje ze strukturą przestrzenną

12 Stochastyczna dynamika skończonych populacji n - liczba osobników z t - liczba osobników grających A w czasie t Ω ={0,,n} - przestrzeń stanów z t+1 > z t selekcja jeśli średnia z A > średnia z B mutacje Każdy osobnik może zmienić swoją strategię z prawdopodobieństwem ε

13 Łańcuch Markowa z jedyną miarą stacjonarną µ ε n

14 Klasyczne wyniki Każdy gra z każdym, Kandori-Mailath-Rob 1993 A B A a b B c d a>c i d>b, (A,A) i (B,B) równowagi Nasha A jest stategią efektywną, a>d B jest strategią dominującą ze względu na ryzyko c+d>a+b

15 Lemat drzewny (Freidlin and Wentzell) ergodyczny łańcuch Markowa ze skończona przestrzenią Ω, macierzą przejścia P ε, i jedyną miarą stacjonarną µ ε z 1 z 2 z 3 P ε (z 4 z 1 ) z 4 z 5 x

16 Gry przestrzenne z lokalnymi oddziaływaniami

17 Dynamika deterministyczna reguła najlepszej odpowiedzi i Br(St,St)=St Br(H,H)=H Br(H,St)=Br(St,H)=H

18 Dynamika stochastyczna a) zaburzona najlepsza odpowiedź z prawdopodobieństwem, 1-ε gracz wybiera najlepszą odpowiedź z prawdopodobieństwem ε gracz myli się b) reguła log-linear

19 Jeleń i Zając na Z, z oddziaływaniem najbliższych sąsiadów i zaburzoną najlepszą odpowiedzią liczenie błedów

20 Deterministyczna dynamika replikatorowa A B U = A a b B c d p A (t) liczba osobników grających strategią A w czasie t p B (t) liczba osobników grających strategią B w czasie t U A = ax + b(1-x) U B = cx + d(1-x) Proponujemy p A (t+ε)=(1-ε)p A (t) + εp A (t)u A (t) U av = xu A +(1-x)U B

21 p A (t+ε) = (1-ε)p A (t) + εp A (t)u A (t) p B (t+ε) = (1-ε)p B (t) + εp B (t)u B (t) p(t+ε) = (1-ε)p(t) + εp(t)u av (t)

22 dx/dt = x(1-x)(u A U B ) Polowanie na jelenia J Z J 5 0 Z 3 3 Gołąb - Jastrząb 0 3/ 5 1 wewnętrzny stan stacjonarny jest niestabilny J G J -1 2 G /2 1 wewnętrzny stan stacjonarny jest stabilny

23 Opóźnienie czasowe Opóźnienie typu społecznego Zakładamy, że gracze w czasie t replikują się proporcjonalnie do średniej wypłaty w czasie t-τ Proponujemy x *

24 Odpowiednie równanie replikatorowe w czasie ciągłym ma następująca postać może być też zapisane jako Twierdzenie (Jan Alboszta i JM, J. Theor. Biol. 231: , 2004) x * jest asymptotycznie stabilny dla odpowiednio małego τ x * jest asymptotycznie niestabilny dla odpowiednio dużego τ

25 Opóźnienie czasowe typu biologicznego Zakładamy, że dzieci rodzą sięτjednostek czasu po tym jak ich rodzice grali i otrzymali wypłaty. Proponujemy Twierdzenie (JA i JM, JTB 2004) x * jest asymptotycznie stabilny dla każdego opóźnienia τ

26 Komórka matematyczna DNA mrna Ø białko Ø

27 Poziom makroskopowy DNA mrna Ø białko Ø

28 Poziom mikroskopowy r - liczba cząsteczek mrna p - liczba cząsteczek białka prawdopodobieństwo zajścia w czasie (t,t+h) proces urodzin i śmierci

29 Symulacje numeryczne algorytm Gillespiego rozkład wykładniczy czasu oczekiwania na zajście reakcji biochemicznej krok 1 - czekamy na zajście jakiejkolwiek reakcji krok 2 - wybór reakcji prawdopodobieństwo, że powstanie jedna cząsteczka białka

30 Opóźnienia czasowe Reakcje biochemiczne są rozciągnięte w czasie Przykłady: średnia prędkość transkrypcji - 20 nucleotydów/s średnia prędkość translacji - 2 kodony/s średnia długość ludzkiego genu nukleotydów, transkrypcja trwa 2750 sekund średnia długość kodującego regionu nukleotydów, translacja trwa 450 sekund

31 Opóźnienia czasowe 1 opóźniona degradacja DNA białko Ø 2 DNA mrna Ø białko opóźniona degradacja Ø Cel: wariancja (p)

32 Model 1 opóźniona degradacja DNA białko Ø Zakłada się niejawnie, że cząsteczka która zaczęła degradować może znowu zostać wylosowana do następnej reakcji degradacji. Powyższy model był badany w Bratsun et al. PNAS 102: (2005). Problem: ujemne rozwiązania

33 Nasze podejście JM, J. Poleszczuk, M. Bodnar, U. Foryś Bulletin of Mathematical Biology 2011 reakcje konsumujące reakcje niekonsumujące Załóżmy, że degradacja jest konsumująca x cząstki aktywne y wszystkie cząstki Rozwiązujemy układ równań różniczkowych i dostajemy brak oscylacji

34 Dziękuję za uwagę

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

Tematy prac magisterskich i doktorskich

Tematy prac magisterskich i doktorskich Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik

Bardziej szczegółowo

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych

Bardziej szczegółowo

Zasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki

Zasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki Zasada średniego potencjału w grach ewolucyjnych Paweł Nałęcz-Jawecki O czym będzie ten komunikat O czym będzie ten komunikat Jak powiązać procesy błądzenia losowego na dyskretnym grafie ze (stochastycznymi

Bardziej szczegółowo

Równania różniczkowe z opóźnieniem w opisie zjawisk biologicznych

Równania różniczkowe z opóźnieniem w opisie zjawisk biologicznych Równania różniczkowe z opóźnieniem w opisie zjawisk biologicznych Marek Bodnar Zakład Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki,

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1 Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w

Bardziej szczegółowo

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

Propedeutyka teorii gier

Propedeutyka teorii gier Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Autorzy: Anna Gambin, Urszula Foryś, Jacek Miękisz, Bartosz Wilczyński

Autorzy: Anna Gambin, Urszula Foryś, Jacek Miękisz, Bartosz Wilczyński Nowoczesne metody, leki i terapie w ochronie zdrowia i gospodarce Europy XXI wieku interdyscyplinarne kształcenie w obszarze nauk biomedycznych na studiach II i III stopnia, POKL.04.03.00-00-060/12 Zadanie

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Podręcznik. Wzór Shannona

Podręcznik. Wzór Shannona MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są

Bardziej szczegółowo

Druga zasada termodynamiki a modelowanie sieci.

Druga zasada termodynamiki a modelowanie sieci. 13 października 2009 O czym będzie mowa? Eksperyment biologiczny eksperyment biologiczny: mikromacierze modelowanie sieci interakcji: II zasada termodynamiki cel: weryfikacja metody metoda symulowania

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Matematyczny model gry w mafię - dalsze wyniki

Matematyczny model gry w mafię - dalsze wyniki pmigdal@gmail.com MISMaP UW: FUW + MIMUW Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego Proseminarium licencjackie Teoria gier 5 czerwca 2009 1 Gra w mafię Cel i metodologia 2 Niektóre

Bardziej szczegółowo

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański BIOINFORMATYKA edycja 2016 / 2017 wykład 11 RNA dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Rola i rodzaje RNA 2. Oddziaływania wewnątrzcząsteczkowe i struktury

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Zmienność. środa, 23 listopada 11

Zmienność.  środa, 23 listopada 11 Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

Kurs z NetLogo - część 4.

Kurs z NetLogo - część 4. Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15

Bardziej szczegółowo

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo? Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny

Bardziej szczegółowo

PROGRAM. XVIII Krajowej Konferencji Zastosowań Matematyki w Biologii i Medycynie

PROGRAM. XVIII Krajowej Konferencji Zastosowań Matematyki w Biologii i Medycynie Niedziela 23 września 2012 16 00 18 00 Rejestracja uczestników 18 00 Kolacja 19 30 22 00 Rejestracja uczestników Poniedziałek 24 września 2012 9 15 Otwarcie konferencji Sesja I, przewodniczący: Mariusz

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15 Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Estymacja gęstości prawdopodobieństwa metodą selekcji modelu

Estymacja gęstości prawdopodobieństwa metodą selekcji modelu Estymacja gęstości prawdopodobieństwa metodą selekcji modelu M. Wojtyś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Wisła, 7 grudnia 2009 Wstęp Próba losowa z rozkładu prawdopodobieństwa

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Gry w postaci normalnej

Gry w postaci normalnej Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

TEORIA ERGODYCZNA. Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej

TEORIA ERGODYCZNA. Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej TEORIA ERGODYCZNA Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej Przedmiot zainteresowania Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych

Bardziej szczegółowo

Optymalizacja optymalizacji

Optymalizacja optymalizacji 7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja

Bardziej szczegółowo

Co ma piekarz do matematyki?

Co ma piekarz do matematyki? Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW

Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW Wprowadzenie do modelowania matematycznego w biologii Na podstawie wykładów dr Urszuli Foryś, MIM UW Model matematyczny Jest to teoretyczny opis danego zjawiska na podstawie bieżącej wiedzy (często zwany

Bardziej szczegółowo

Wybrane techniki badania białek -proteomika funkcjonalna

Wybrane techniki badania białek -proteomika funkcjonalna Wybrane techniki badania białek -proteomika funkcjonalna Proteomika: umożliwia badanie zestawu wszystkich (lub prawie wszystkich) białek komórkowych Zalety analizy proteomu w porównaniu z analizą trankryptomu:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Problemy i rozwiązania

Problemy i rozwiązania Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają

Bardziej szczegółowo

Michał Startek BIOFIZMAT, 12.XII.2014

Michał Startek BIOFIZMAT, 12.XII.2014 Ewolucja ewolucji, czyli matematyczne modelowanie zmian mutowalności w warunkach stresu środowiskowego BIOFIZMAT, 12.XII.2014 Model geometryczny Fisher a Model nieskończony ze stresem Rozwiązanie w klasie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Stochastyczne równania różniczkowe, model Blacka-Scholesa

Stochastyczne równania różniczkowe, model Blacka-Scholesa Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Punkty równowagi w grach koordynacyjnych

Punkty równowagi w grach koordynacyjnych Uniwersytet Śląski w Katowicach, Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec 9 grudnia 2014, Chorzów 1 Motywacja 2 3 4 5 6 Wnioski i dalsze badania Motywacja 1 są klasą gier, w których istnieje

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje

Egzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Rozkład materiału z biologii dla klasy III AD. 7 godz / tyg rok szkolny 2016/17

Rozkład materiału z biologii dla klasy III AD. 7 godz / tyg rok szkolny 2016/17 Rozkład materiału z biologii dla klasy III AD zakres rozszerzony LO 7 godz / tyg rok szkolny 2016/17 Biologia na czasie 2 zakres rozszerzony nr dopuszczenia 564/2/2012 Biologia na czasie 3 zakres rozszerzony

Bardziej szczegółowo