Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817"

Transkrypt

1 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf Zadanie 1: wiek , ,5 19 wzrost Wykres rozrzutu z dodaną linią trendu: wiek wzrost y = 4,1475x + 87,723 R 2 =,

2 PODSUMOWANIE WYJŚCIE Statystyki regresji Wielokrotność R, R kwadrat, Dopasowany R kwadrat 1, Błąd standardowy 12,72451 Obserwacje 1 ANALIZA WARIANCJI df SS MS F Istotność F Regresja ,156 23,98 22,729 #LICZBA! Resztkowy , ,9129 Razem ,938 Przecięcie wiek Współczynniki Błąd standardowy t Stat Wartośćp Górne 95,% 4E36 4E ,3E37 8 9,6E ,2E ,781 11,5 368,156 12,843756, ,3343, ,6534, ,8E , E ,25E ,7E , ,124 7,3459 4E6 61, ,48 61, ,5 4, , ,767518,3 2, ,134 2,28166 Równanie regresji: y = 4, x + 87, Wyznaczone błędy standardowe można przyjąć jako dopuszczalne (nie są porównywalne z obliczonymi współczynnikami równania). Test istotności parametrów modelu H współczynniki jest równy zero (nieistotny) H 1 współczynnik różny od zera (istotny) Poziom istotności: α =,5 2

3 Prawdopodobieństwo, że współczynnik przy wyrazie x jest równe wynosi,3, a prawdopodobieństwo, że wyraz wolny jest równy wynosi 4 * 1 6. Ponieważ,3 < α i 4 * 1 6 < α, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Należy zatem odrzucić hipotezę H i przyjąć hipotezę alternatywną. Uzyskane współczynniki są istotne. Globalny test istotności: H model nieistotny statystycznie H 1 model istotny statystycznie Poziom istotności: α =,5 Wartość Istotność F, zatem < α. Przy założeniu prawdziwości hipotezy H zaszło zdarzenie mało prawdopodobne, więc należy odrzucić hipotezę H i przyjąć hipotezę alternatywną. Model jest istotny statystycznie. Przy tak założonym modelu wysokość człowieka w wieku 14,5 roku wynosiłaby 147,86269 cm. Współczynnik korelacji wynosi (zaledwie), , a wartość współczynnika determinacji R 2 jedynie, Współczynniki te mogłyby zostać poprawione, gdyby z danych usunięto wartości odstające (outliers). W powyższych danych jest to wpis (14, 1). Wyniki po usunięciu samotnika : y = 4,349x + 88,689 R 2 =,

4 Statystyki regresji Wielokrotność R, R kwadrat, Dopasowany R kwadrat 1, Błąd standardowy 1, Obserwacje 1 ANALIZA WARIANCJI df SS MS F Istotność F Regresja , , ,7837 ####### Resztkowy 13 25, ,93561 Razem ,4 Współczynniki Błąd standardowy t Stat Wartośćp Górne 95,% Przecięcie x,954195,24, , ,96 7 2,9E , , ,327 11,5,93757, , ,188,29628, ,9E , ,3E ,69E ,5E , , ,6167 6,2E18 85,855 91, , ,5 4,348571, , ,86E15 4,9939 4,5132 4, Jak widać wartość współczynnika korelacji liniowej Pearsona uległa znacznej poprawie i wynosi, Prawdopodobieństwo popełnienia błędu pierwszego rodzaju podczas weryfikacji współczynników również zostało zredukowane i wynosi odpowiednio: 6,2*1 18 dla wyrazu wolnego i 1,86*1 15 dla współczynnika przy zmiennej x (wiek). Model naturalnie jest istotny statystycznie. Równanie regresji przyjmuje postać: y = 4,348571x + 88, Warto zauważyć, iż przy stosowaniu równania regresji należy przyjąć sensowny zakres jego stosowalności. Powyższy wzór na pewno nie może być zastosowany do oszacowania wzrostu sześćdziesięciolatka (ok. 347 cm) Proponuję więc zakres od do 21 lat (czyli mniej więcej do zakończenia procesu wzrostu kośćca człowieka). 4

5 Zadanie 2: x y,2 1,69,3 1,24,5, ,99 5 1,69 6 1, , , , , , ,91 3 3, , , , , ,6 62 4, y = 1,6Ln(x) +,6 R 2 =, Wykres jednoznacznie wskazuje, iż w danych występuje bardzo silna zależność. Nie jest ona jednak liniowa. W celu przeprowadzenia analizy korelacji liniowej postanowiłem logarytmować wartości zmiennych x w celu uzyskania zależności liniowej. 5

6 y ln(x) 1,69 1, ,24 1,239728,693, ,99 1, ,69 1, ,792 1, ,946 1, ,197 2, ,394 2, ,693 2, ,89 2, ,91 3, ,41 3, ,638 3, ,87 3, ,892 3, ,989 3, ,6 4, ,127 4, y =,9992x,56 R 2 =, Między zmiennymi y i ln(x) istnieje bardzo silna zależność liniowa. 6

7 Statystyki regresji Wielokrotność R, R kwadrat, Dopasowany R kwadrat, Błąd standardowy, Obserwacje 2 ANALIZA WARIANCJI df SS MS F Istotność F Regresja 1 61, , ,48 1,63E35 Resztkowy 18,116835,565 Razem 19 61, Współczynniki Błąd standardowy t Stat Wartośćp Górne 95,% Przecięcie,564754,84467,666862, ,23262,1253,2326 Zmienna X 1, ,321 33,8663 1,627E35, ,5565, Zarówno współczynnik korelacji Pearsona jak i wartość R 2 są bardzo bliskie wartości 1. Równanie: y =, * ln(x), Test istotności parametrów modelu: H współczynnik jest zerowy (jest zatem nieistotny) H 1 współczynnik jest niezerowy (jest zatem istotny) poziom istotności: α =,5 Ponieważ 1,627 * 1 35 (prawdopodobieństwo zdarzenia, że współczynnik przy zmiennej x będzie równy ) < α, zatem odrzucam hipotezę H i przyjmuję hipotezę alternatywną. W przypadku testowania istotności wyrazu wolnego, nie ma podstaw do odrzucenia hipotezy H. Nie można więc uznać, że wyraz wolny jest istotny. Z uwagi na wielkości błędu standardowego, który jest porównywalny z wyrazem wolnym, oraz na prawdopodobieństwo osiągnięcia przez wyraz wolny wartości, można przyjąć, że równanie regresji liniowej przyjmie postać: y = ln(x). Globalny test istotności modelu: H model jest nieistotny statystycznie H 1 model jest istotny statystycznie poziom istotności: α =,5 Ponieważ 1,63*1 35 < α zatem odrzucam hipotezę H model jest istotny statystycznie. 7

8 Zadanie 3: lp amino amoniak y =,698x,185 R 2 =,

9 Statystyki regresji Wielokrotność R,99127 R kwadrat,98263 Dopasowany R kwadrat,9845 Błąd standardowy 1,34139 Obserwacje 1 ANALIZA WARIANCJI df SS MS F Istotność F Regresja 1 814,15 814, ,451 2,5E8 Resztkowy 8 14,3946 1, Razem 9 828,5 Współczynniki Błąd standardowy t Stat Wartośćp Górne 95,% Przecięcie,1853 2,14316,8634, ,1272 4, ,12717 amino,6982,328 21,2787 2,51E8,6225,7739,6225 Zarówno współczynnik korelacji Pearsona jak i współczynnik determinacji są bardzo bliskie 1, zatem istnieje niemalże liniowa zależność pomiędzy zmiennymi. Test istotności parametrów modelu: H współczynnik jest zerowy (nieistotny) H 1 współczynnik jest niezerowy (istotny) Poziom istotności α =,5. Dla zmiennej amino: Ponieważ 2,51*1 8 < α, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Należy odrzucić hipotezę H i przyjąć hipotezę alternatywną (współczynnik przy zmiennej amino jest zatem istotny) Dla zmiennej Przecięcie (wyraz wolny):,933 > α nie ma zatem podstaw do odrzucenia hipotezy H współczynnik jest nieistotny. Globalny test istotności modelu: H model nieistotny statystycznie H 1 model istotny statystycznie Poziom ufności α =,5. Ponieważ F = 2,5*1 8 < α, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Należy odrzucić hipotezę H i przyjąć hipotezę alternatywną (model jest istotny statystycznie) Amoniak =,6982 * amino 9

10 Zadanie 4: BUDŻET CENA SPRZEDAŻ BUDZETCENA BUDZETCENA CENASPRZEDAZ Serie BUDZET SPRZEDAZ Serie

11 Z wykresów jednoznacznie wynika, iż w danych nie ma prostej zależności między pojedynczymi zmiennymi. Należy zatem szukać zależności między kombinacjami dwie zmienne jedna zmienna. Statystyki regresji Wielokrotność R, ! R kwadrat,865487! Dopasowany R kwadrat, Błąd standardowy 14348,6222 Obserwacje 18 ANALIZA WARIANCJI df SS MS F Istotność F Regresja ,44E+9 31, ,469E6 Resztkowy ,6E+8 Razem Współczynniki Błąd standardowy t Stat Wartośćp Górne 95,% Przecięcie 36779, , ,793618, , ,2 8717,8 BUDŻET, , ,9723,952, ,5824,1837 CENA 358, , ,762217, , , ,5 Uzyskane wartości współczynnika korelacji Pearsona oraz współczynnika determinacji należy w tym przypadku (regresja wielowymiarowa) uznać za znaczące. Można zatem wnioskować o istnieniu związku pomiędzy zmiennymi. Test istotności parametrów modelu: H współczynnik jest równy (nieistotny) H 1 współczynnik nie jest równy (jest zatem istotny) Poziom istotności: α =,5 Ponieważ dla każdego parametru (BUDŻET, CENA, WYRAZ WOLNY) prawdopodobieństwo zajścia zdarzenia jest mniejsze niż α, dlatego za każdym razem należy odrzucić hipotezę H (jako bardzo mało prawdopodobną) i przyjąć hipotezę alternatywną H 1. Wszystkie współczynniki są istotne. Uzyskane błędy standardowe są znaczące, ale mogą zostać zaakceptowane (+/ ok. 3%). Globalny test istotności: H model jest nieistotny statystycznie H 1 model jest istotny statystycznie Poziom istotności: α =,5 11

12 Ponieważ 4,469*1 6 < α, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Należy odrzucić hipotezę H i przyjąć hipotezę alternatywną (model jest istotny statystycznie). SPRZEDAŻ = 358,1413 * CENA +, * BUDŻET ,4926 Zadanie 5: Osoba WIEK WZROST WAGA Wykresy rozrzutu: y = 2,259x + 33,265 R 2 =,3768 wiek wzrost

13 y = 3,6429x + 3,571 R 2 =, w iek w aga y = 1,722x + 6,1898 R 2 =,663 wzrost w aga Przyglądając się wykresom, można od razu zauważyć, iż wartości współczynników determinacji są względnie niskie. Wynika to najprawdopodobniej z wystąpienia znacznego szumu w danych. 13

14 Analiza regresji wielowymiarowej: Statystyki regresji Wielokrotność R,88317 R kwadrat,77999 Dopasowany R kwadrat,7319,5 Błąd standardowy 4,65984 Obserwacje 12 ANALIZA WARIANCJI df SS MS F Istotność F Regresja 2 692, ,411 15,95325,199 Resztkowy 9 195, ,7142 Razem ,25 Błąd standardowy Wartośćp Górne 95,% Współczynniki t Stat Przecięcie 6,5535 1,944827,59873, , , ,2589 WIEK 2,513, ,18744,56485,727 4,172796,7269 WZROST,7224, ,7685,2187, ,31224, Test istotności parametrów modelu: H współczynnik jest równy (nieistotny) H 1 współczynnik nie jest równy (jest zatem istotny) Poziom istotności: α =,5 Dla atrybutu WZROST prawdopodobieństwo zajścia zdarzenia przy założeniu prawdziwości hipotezy H jest mniejsze niż poziom istotności. Odrzucam zatem hipotezę H i przyjmuję hipotezę alternatywną H 1. Dla atrybutu WIEK oraz dla wyrazu wolnego nie ma podstaw do odrzucenia hipotezy H (,56 >,5 oraz,598 >,5). Nie można zatem metodami statystycznymi uzasadnić wpływu zmiennej WIEK na zmienną WZROST. Globalny test istotności: H model jest nieistotny statystycznie H 1 model jest istotny statystycznie Poziom istotności: α =,5 Ponieważ,1 <,5, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Odrzucam zatem hipotezę H i jako prawdziwą przyjmuję hipotezę alternatywną H 1. Wyznaczony model jest zatem istotny statystycznie. Zarówno współczynnik korelacji jak i współczynnik determinacji są dość wysokie. 14

15 Statystyki regresji Wielokrotność R,7714 R kwadrat,59312 Dopasowany R kwadrat,527 Błąd standardowy 1,33914 Obserwacje 12 ANALIZA WARIANCJI df SS MS F Istotność F Regresja 2 23, ,7635 6,559735,17483 Resztkowy 9 16, ,79329 Razem 11 39, Współczynniki Błąd standardowy Przecięcie 1, , Wartośćp t Stat,38513,7987 WAGA,16931,7742 2,18744,56485 WZROST,173,119246,1524, Górne 8, , ,5783,34448,241296, ,% 8, ,57833, Test istotności parametrów modelu: H współczynnik jest równy (nieistotny) H 1 współczynnik nie jest równy (jest zatem istotny) Poziom istotności: α =,5 Przy założonym poziomie istotności nie ma podstaw do odrzucenia hipotezy zerowej dla żadnej ze zmiennych. Nie można więc metodami statystycznymi uzasadnić wpływu zmiennych WAGA i WZROST na zmienną wiek (co jest zgodne z intuicją). Globalny test istotności: H model jest nieistotny statystycznie H 1 model jest istotny statystycznie Poziom istotności: α =,5 Ponieważ,17 <,5, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Odrzucam zatem hipotezę H i jako prawdziwą przyjmuję hipotezę alternatywną H 1. Wyznaczony model jest zatem istotny statystycznie. Wartości współczynnika korelacji jak i współczynnika determinacji wskazują iż nie istnieje silna zależność liniowa w danych. 15

16 Statystyki regresji Wielokrotność R,81451 R kwadrat,66343 Dopasowany R kwadrat,58863 Błąd standardowy 4,37682 Obserwacje 12 ANALIZA WARIANCJI df SS MS F Istotność F Regresja 2 339, ,921 8,8712,7445 Resztkowy 9 172, ,1565 Razem ,25 Błąd standardowy Wartośćp Górne 95,% Współczynniki t Stat Przecięcie 13,791 9, ,46384, , ,1294 7,52126 WIEK, ,88791,1524, , , ,57766 WAGA,63699, ,7685,2187, ,157482,11651 G 9 Test istotności parametrów modelu: H współczynnik jest równy (nieistotny) H 1 współczynnik nie jest równy (jest zatem istotny) Poziom istotności: α =,5 Ponieważ,2 <,5 zatem dla zmiennej WAGA odrzucam hipotezę H jako mało prawdopodobną i przyjmuję hipotezę alternatywną H 1. Dla zmiennej WIEK oraz dla wyrazu wolnego nie ma podstaw do odrzucenia hipotezy H. Globalny test istotności: H model jest nieistotny statystycznie H 1 model jest istotny statystycznie Poziom istotności: α =,5 Ponieważ,7 <,5, zatem przy założeniu prawdziwości hipotezy H zaszło zdarzenie bardzo mało prawdopodobne. Odrzucam zatem hipotezę H i jako prawdziwą przyjmuję hipotezę alternatywną H 1. Wyznaczony model jest zatem istotny statystycznie. Jako znaczące należy uznać uzyskane wartości błędów standardowych. Uzyskany model sprawia wrażenie nieczystego. 16

17 Trudności w analizie uzyskanych modeli wynikają ze specyfiki badanych danych. Mimo iż widoczne (zarówno na wykresach jak i we współczynnikach: korelacji liniowej Pearsona i determinacji) są zależności w danych, to szum w nich występujący (duża odległość niektórych pomiarów od linii trendu) zaburzają czystości budowanych modeli regresji liniowej. Wynika to z faktu, iż metoda najmniejszych kwadratów (wykorzystywana do budowania modelu regresji przez środowisko Microsoft Excel) jest wrażliwa na wartości odstające i przesuwa prostą regresji (interpretowaną jako linia trendu na wykresie rozrzutu) w kierunku samotników (outliers). Na zbiorze danych należałoby przeprowadzić procedurę usuwania osobliwości (outlier treatment) i powtórnie zbudować modele. Uzyskane rezultaty byłyby na pewno znacznie bardziej jednoznaczne. 17

Prognoza sprawozdania finansowego Bilans

Prognoza sprawozdania finansowego Bilans Prognoza sprawozdania go Bilans 31.12.24 31.12.25 31.12.26 Wartości niematerialne i prawne Rzeczowe aktywa trwałe Długoterminowe Zapasy Należności Inwestycje 594 3474 3528 954 52119 54 12 759 693 2259

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto Ekonometria jak dorać funkcję? Przykłady użyte w materiałach opracowano w większości na azie danych ze skryptu B.Guzik, W.Jurek Podstawowe metody ekonometrii (wyd. AE Poznań 3) W doorze postaci funkcji

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007 Weryfikacja modelu Paweł Cibis pawel@cibis.pl 12 maja 2007 1 Badanie normalności rozkładu elementu losowego Test Hellwiga dla małej próby Test Kołmogorowa dla dużej próby 2 Testy Pakiet Analiza Danych

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część III Program szkolenia część III Model regresji liniowej Współczynnik korelacji

Bardziej szczegółowo

Analiza korelacyjna i regresyjna

Analiza korelacyjna i regresyjna Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

Analiza regresji wielokrotnej - hierarchiczna

Analiza regresji wielokrotnej - hierarchiczna Analiza regresji wielokrotnej - hierarchiczna Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi analizy regresji wielokrotnej wykonanej metodą hierarchiczną. Wszystkie rozwiązania są

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogolna

Egzamin z ekonometrii wersja ogolna Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Michał Kusy, StatSoft Polska Sp. z o.o.

Michał Kusy, StatSoft Polska Sp. z o.o. CZY MÓJ PROCES JEST TRENDY, CZYLI ANALIZA TRENDÓW Michał Kusy, StatSoft Polska Sp. z o.o. Wprowadzenie Analiza danych w kontroli środowiska produkcji i magazynowania opiera się między innymi na szeregu

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo