Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych."

Transkrypt

1 Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy

2 MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące poz progrm nuczni (W). Wymienione poziomy wymgń odpowidją w przybliżeniu ocenom szkolnym. Nuczyciel, określjąc te poziomy, powinien ztem sprecyzowć, czy opnowni pewnych czynności lub wiedzy będzie wymgł n ocenę dopuszczjącą (2), dostteczną (3), dobrą (4), brdzo dobrą (5) lub celującą (6). Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez kżdego uczni. Wymgni podstwowe (P) zwierją wymgni z poziomu (K) wzbogcone o typowe problemy o niewielkim stopniu trudności. Wymgni rozszerzjące (R), zwierjące wymgni z poziomów (K) i (P), dotyczą zgdnień brdziej złożonych i nieco trudniejszych. Wymgni dopełnijące (D), zwierjące wymgni z poziomów (K), (P) i (R), dotyczą zgdnień problemowych, trudniejszych, wymgjących umiejętności przetwrzni przyswojonych informcji. Wymgni wykrczjące (W) dotyczą zgdnień trudnych, oryginlnych, wykrczjących poz obowiązkowy progrm nuczni. Poniżej przedstwiony zostł podził wymgń n poszczególne oceny szkolne: ocen dopuszczjąc wymgni n poziomie (K) ocen dostteczn wymgni n poziomie (K) i (P) ocen dobr wymgni n poziomie (K), (P) i (R) ocen brdzo dobr wymgni n poziomie (K), (P), (R) i (D) ocen celując wymgni n poziomie (K), (P), (R), (D) i (W) Podził ten nleży trktowć jedynie jko propozycję. Poniżej przedstwimy wymgni dl zkresu podstwowego. Połączenie wymgń koniecznych i podstwowych tkże rozszerzjących i dopełnijących pozwoli nuczycielowi dostosowć wymgni do specyfiki klsy. 2

3 MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy podobne w sumie lgebricznej dodje, odejmuje i mnoży sumy lgebriczne przeksztłc wyrżeni lgebriczne, uwzględnijąc kolejność wykonywni dziłń przeksztłc wyrżenie lgebriczne z zstosowniem wzorów skróconego mnożeni stosuje wzory skróconego mnożeni do wykonywni dziłń n liczbch postci b c rozwiązuje równni kwdrtowe niepełne metodą rozkłdu n czynniki orz stosując wzory skróconego mnożeni rozwiązuje równni kwdrtowe, stosując wzory n pierwistki przedstwi trójmin kwdrtowy w postci iloczynowej rozwiązuje równni wyższych stopni, korzystjąc z definicji pierwistk i włsności iloczynu Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: rozwiązuje zdni tekstowe prowdzące do równń kwdrtowych rozwiązuje równni wyższych stopni, stosując zsdę wyłączni wspólnego czynnik przed nwis Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące rozwiązywni równń wyższego stopni korzystjąc z wykresu wielominu, podje miejsc zerowe, zbiór rgumentów, dl których wielomin przyjmuje wrtości dodtnie/ujemne/niedodtnie/nieujemne rozwiązuje zdni tekstowe z zstosowniem wykresu lub wzoru wielominu 2. FUNKCJE WYMIERNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: wskzuje wielkości odwrotnie proporcjonlne stosuje zleżność między wielkościmi odwrotnie proporcjonlnymi do rozwiązywni prostych zdń wyzncz współczynnik proporcjonlności podje wzór proporcjonlności odwrotnej, znjąc współrzędne punktu nleżącego do wykresu szkicuje wykres funkcji f ( ), gdzie 0 i podje jej włsności (dziedzinę, zbiór wrtości, przedziły monotoniczności) szkicuje wykresy funkcji f ( ) q orz f ( ) i odczytuje jej włsności p wyzncz symptoty wykresu powyższych funkcji dobier wzór funkcji do jej wykresu wyzncz dziedzinę prostego wyrżeni wymiernego oblicz wrtość wyrżeni wymiernego dl dnej wrtości zmiennej skrc i rozszerz proste wyrżeni wymierne wykonuje dziłni n wyrżenich wymiernych (proste przypdki) i podje odpowiednie złożeni rozwiązuje proste równni wymierne wykorzystuje wyrżeni wymierne do rozwiązywni prostych zdń tekstowych Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: rozwiązuje zdni tekstowe, stosując proporcjonlność odwrotną 3

4 MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP szkicuje wykres funkcji f ( ) w podnych przedziłch wyzncz współczynnik tk, by funkcj f ( ) spełnił podne wrunki wyzncz wzory funkcji f ( ) q orz f ( ) spełnijących podne wrunki p wyzncz dziedzinę wyrżeni wymiernego, korzystjąc z prostych równń kwdrtowych wykonuje dziłni n wyrżenich wymiernych i podje odpowiednie złożeni przeksztłc wzory, stosując dziłni n wyrżenich wymiernych rozwiązuje równni wymierne wykorzystuje wyrżeni wymierne do rozwiązywni trudniejszych zdń tekstowych wykorzystuje wielkości odwrotnie proporcjonlne do rozwiązywni zdń tekstowych dotyczących prędkości Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji i wyrżeń wymiernych przeksztłc wzór funkcji homogrficznej do postci knonicznej i szkicuje wykres funkcji f ( ) q orz podje jej włsności p 3. FUNKCJE WYKŁADNICZE I LOGARYTMY Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: oblicz potęgi o wykłdnikch wymiernych zpisuje dną liczbę w postci potęgi o wykłdniku wymiernym zpisuje dną liczbę w postci potęgi o dnej podstwie uprszcz wyrżeni, stosując prw dziłń n potęgch (proste przypdki) porównuje liczby przedstwione w postci potęg (proste przypdki) wyzncz wrtości funkcji wykłdniczej dl podnych rgumentów sprwdz, czy punkt nleży do wykresu funkcji wykłdniczej wyzncz wzór funkcji wykłdniczej i szkicuje jej wykres, znjąc współrzędne punktu nleżącego do jej wykresu szkicuje wykres funkcji wykłdniczej, stosując przesunięcie o wektor i określ jej włsności szkicuje wykres funkcji, będący efektem jednego przeksztłceni wykresu funkcji wykłdniczej i określ jej włsności oblicz logrytm dnej liczby stosuje równości wynikjące z definicji logrytmu do prostych obliczeń wyzncz podstwę logrytmu lub liczbę logrytmowną, gdy dn jest jego wrtość rozwiązuje równni wykłdnicze, stosując logrytm oblicz logrytm iloczynu, ilorzu i potęgi, stosując odpowiednie twierdzeni o logrytmch Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: uprszcz wyrżeni, stosując prw dziłń n potęgch porównuje liczby przedstwione w postci potęg odczytuje rozwiązni nierówności n postwie wykresów funkcji wykłdniczych podje odpowiednie złożeni dl podstwy logrytmu lub liczby logrytmownej podje przybliżoną wrtość logrytmów dziesiętnych z wykorzystniem tblic stosuje twierdzenie o logrytmie iloczynu, ilorzu i potęgi do uzsdnieni równości wyrżeń wykorzystuje włsności funkcji wykłdniczej i logrytmu do rozwiązywni zdń o kontekście prktycznym 4

5 MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: dowodzi twierdzeni o logrytmch wykorzystuje twierdzenie o zminie podstwy logrytmu w zdnich rozwiązuje zdni o zncznym stopniu trudności dotyczące funkcji wykłdniczej i logrytmicznej 4. CIĄGI Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: wyzncz kolejne wyrzy ciągu, gdy dnych jest kilk jego początkowych wyrzów szkicuje wykres ciągu wyzncz wzór ogólny ciągu, mjąc dnych kilk jego początkowych wyrzów wyzncz początkowe wyrzy ciągu określonego wzorem ogólnym lub słownie wyzncz, które wyrzy ciągu przyjmują dną wrtość podje przykłdy ciągów monotonicznych, których wyrzy spełniją dne wrunki uzsdni, że dny ciąg nie jest monotoniczny, mjąc dne jego kolejne wyrzy wyzncz wyrz n 1 ciągu określonego wzorem ogólnym podje przykłdy ciągów rytmetycznych wyzncz wyrzy ciągu rytmetycznego, mjąc dny pierwszy wyrz i różnicę wyzncz wzór ogólny ciągu rytmetycznego, mjąc dne dowolne dw jego wyrzy sprwdz, czy dny ciąg jest rytmetyczny (proste przypdki) wyzncz wzór ogólny ciągu geometrycznego, mjąc dne dowolne dw jego wyrzy sprwdz, czy dny ciąg jest geometryczny (proste przypdki) stosuje średnią rytmetyczną do wyznczni wyrzów ciągu rytmetycznego (proste przypdki) określ monotoniczność ciągu rytmetycznego i geometrycznego oblicz sumę n początkowych wyrzów ciągu rytmetycznego i geometrycznego podje przykłdy ciągów geometrycznych wyzncz wyrzy ciągu geometrycznego, mjąc dny pierwszy wyrz i ilorz stosuje monotoniczność ciągu geometrycznego do rozwiązywni prostych zdń stosuje włsności ciągu rytmetycznego lub geometrycznego do rozwiązywni prostych zdń oblicz wysokość kpitłu przy różnym okresie kpitlizcji oblicz oprocentownie lokty (proste przypdki) Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: wyzncz wzór ogólny ciągu spełnijącego podne wrunki bd monotoniczność ciągów rozwiązuje zdni z prmetrem dotyczące monotoniczności ciągu wyzncz wrtości zmiennych tk, by wrz z podnymi wrtościmi tworzyły ciąg rytmetyczny lub geometryczny sprwdz, czy dny ciąg jest rytmetyczny sprwdz, czy dny ciąg jest geometryczny rozwiązuje równni z zstosowniem wzoru n sumę wyrzów ciągu rytmetycznego rozwiązuje równni z zstosowniem wzoru n sumę wyrzów ciągu geometrycznego określ monotoniczność ciągu rytmetycznego i geometrycznego stosuje włsności ciągu rytmetycznego i geometrycznego w zdnich rozwiązuje zdni związne z kredytmi dotyczące okresu oszczędzni i wysokości oprocentowni Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o podwyższonym stopniu trudności dotyczące monotoniczności ciągu wyzncz wyrzy ciągu określonego rekurencyjnie dowodzi wzór n sumę n początkowych wyrzów ciągu rytmetycznego 5

6 MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP stosuje średnią geometryczną do rozwiązywni zdń rozwiązuje zdni o zncznym stopniu trudności dotyczące ciągów 5. TRYGONOMETRIA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: podje definicje funkcji trygonometrycznych kąt ostrego w trójkącie prostokątnym podje wrtości funkcji trygonometrycznych kątów 30, 45, 60 oblicz wrtości funkcji trygonometrycznych kątów ostrych w trójkącie prostokątnym odczytuje z tblic wrtości funkcji trygonometrycznych dnego kąt ostrego znjduje w tblicch kąt ostry, gdy dn jest wrtość jego funkcji trygonometrycznej rozwiązuje trójkąty prostokątne w prostych zdnich oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny sinus, cosinus kąt podje związki między funkcjmi trygonometrycznymi tego smego kąt stosuje zleżności między funkcjmi trygonometrycznymi do uprszczni wyrżeń zwierjących funkcje trygonometryczne stosuje funkcje trygonometryczne do rozwiązywni prostych zdń osdzonych w kontekście prktycznym zzncz kąt w ukłdzie współrzędnych wyzncz wrtości funkcji trygonometrycznych kąt, gdy dne są współrzędne punktu leżącego n jego końcowym rmieniu określ znki funkcji trygonometrycznych dnego kąt oblicz wrtości funkcji trygonometrycznych szczególnych kątów, np.: 90, 120, 135 Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: oblicz wrtości funkcji trygonometrycznych kątów ostrych w brdziej złożonych sytucjch stosuje funkcje trygonometryczne do rozwiązywni zdń prktycznych o podwyższonym stopniu trudności rozwiązuje trójkąty prostokątne oblicz wrtości pozostłych funkcji trygonometrycznych, mjąc dny tngens kąt uzsdni związki między funkcjmi trygonometrycznymi Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: rozwiązuje zdni o podwyższonym stopniu trudności dotyczące funkcji trygonometrycznych stosuje związek między współczynnikiem kierunkowym kątem nchyleni prostej do osi OX 6. PLANIMETRIA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: podje i stosuje wzory n długość okręgu, długość łuku, pole koł i pole wycink koł określ wzjemne położenie okręgów, mjąc dne promienie tych okręgów orz odległość ich środków oblicz pol figur, stosując zleżności między okręgmi (proste przypdki) określ liczbę punktów wspólnych prostej i okręgu przy dnych wrunkch stosuje włsności stycznej do okręgu do rozwiązywni prostych zdń rozpoznje kąty wpisne i środkowe w okręgu orz wskzuje łuki, n których są one oprte stosuje twierdzenie o kącie środkowym i kącie wpisnym, oprtych n tym smym łuku (proste przypdki) podje różne wzory n pole trójkąt oblicz pole trójkąt, dobierjąc odpowiedni wzór (proste przypdki) rozwiązuje zdni dotyczące okręgu wpisnego w trójkąt prostokątny lub równoboczny rozwiązuje zdni związne z okręgiem opisnym n trójkącie 6

7 MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP podje wzory n pole równoległoboku, rombu i trpezu wykorzystuje funkcje trygonometryczne do wyznczni pól czworokątów (proste przypdki) oblicz odległość punktów w ukłdzie współrzędnych oblicz odwód wielokąt, mjąc dne współrzędne jego wierzchołków stosuje wzór n odległość między punktmi do rozwiązywni prostych zdń wyzncz współrzędne środk odcink, mjąc dne współrzędne jego końców rysuje figury symetryczne w dnej symetrii osiowej konstruuje figury symetryczne w dnej symetrii środkowej określ liczbę i wskzuje osi symetrii figury wskzuje środek symetrii figury znjduje obrzy figur geometrycznych w symetrii osiowej względem osi ukłdu współrzędnych znjduje obrzy figur geometrycznych w symetrii środkowej względem środk ukłdu współrzędnych stosuje włsności symetrii osiowej i środkowej do rozwiązywni prostych zdń Uczeń otrzymuje ocenę dobrą lub brdzo dobrą, jeśli opnowł poziomy (K) i (P) orz dodtkowo: stosuje wzory n długość okręgu, długość łuku okręgu, pole koł i pole wycink koł do obliczni pól i obwodów figur oblicz pole figury, stosując zleżności między okręgmi stosuje włsności stycznej do okręgu do rozwiązywni trudniejszych zdń stosuje twierdzenie o kącie środkowym i kącie wpisnym, oprtych n tym smym łuku orz wnioski z tego twierdzeni do rozwiązywni zdń o większym stopniu trudności stosuje różne wzory n pole trójkąt i przeksztłc je wykorzystuje umiejętność wyznczni pól trójkątów do obliczni pól innych wielokątów rozwiązuje zdni związne z okręgiem wpisnym w dowolny trójkąt i opisnym n dowolnym trójkącie stosuje włsności środk okręgu opisnego n trójkącie w zdnich z geometrii nlitycznej wykorzystuje funkcje trygonometryczne do wyznczni pól czworokątów stosuje wzór n odległość między punktmi orz środek odcink do rozwiązywni trudniejszych zdń stosuje włsności symetrii osiowej i środkowej do rozwiązywni trudniejszych zdń Uczeń otrzymuje ocenę celującą, jeśli opnowł wiedzę i umiejętności z poziomów (K) (D) orz: dowodzi twierdzeni dotyczące kątów w okręgu dowodzi wzoru n pole trójkąt rozwiązuje zdni z plnimetrii o zncznym stopniu trudności stosuje przesunięcie figury o wektor do rozwiązywni zdń podje środek obrotu i kąt obrotu w prostych sytucjch opisuje równniem okrąg o dnym środku i przechodzący przez dny punkt wyzncz środek i promień okręgu, mjąc jego równnie 7

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Szczegółowe wymagania edukacyjne z matematyki w klasie drugiej Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk 2 Szczegółowe wymgni edukcyjne z mtemtyki w klsie drugiej Zkres podstwowy Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące,

Bardziej szczegółowo

Plan wynikowy klasa 2. Zakres podstawowy

Plan wynikowy klasa 2. Zakres podstawowy Pln wynikowy kls Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY ALGEBRAICZNE 0. Sumy

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2016/17

PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2016/17 Przedmiot: Mtemtyk Kls: 2 Nuczyciel: Justyn Pwlikowsk Tygodniowy wymir godzin: 4 Progrm nuczni: 378/2/2013/2015 Poziom: podstwowy Zkres mteriłu wrz z przybliżonym rozkłdem terminów prc klsowych, sprwdzinów

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II 1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2

Wymagania egzaminacyjne z matematyki. Klasa 2C. MATeMATyka. Nowa Era. Klasa 2 Wymgni egzmincyjne z mtemtyki. ls C. MATeMATyk. Now Er. y są ze sobą ściśle powiązne ( + + R + D + W), stnowiąc ocenę szkolną, i tk: ocenę dopuszczjącą () otrzymuje uczeń, który spełnił wymgni konieczne;

Bardziej szczegółowo

MATeMAtyka 1-3 zakres podstawowy

MATeMAtyka 1-3 zakres podstawowy MATeMAtyk 1-3 zkres podstwowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych ( N podstwie przedmiotowego systemy ocenini wrz z określeniem wymgń edukcyjnych oprcownego przez Dorotę Ponczek

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 2 58-400 Kmienn Gór tel.: (+48) 75-645-01-82 f: (+48) 75-645-01-83 E-mil: zso@kmienn-gor.pl WWW: http://www.zso.kmienn-gor.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 2 58-400 Kmienn Gór tel.: (+48) 75-645-01-82 fx: (+48) 75-645-01-83 E-mil: zso@kmienn-gor.pl WWW: http://www.zso.kmienn-gor.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO

WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO WYMAGANIA DLA UCZNIÓW KLAS DRUGICH LICEUM OGÓLNOKSZTAŁCĄCEGO Pln wynikowy dostosowny jest do progrmu nuczni mtemtyki w szkole pondgimnzjlnej z zkresu ksztłceni podstwowego PROSTO DO MATURY (progrm nuczni

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIIa ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III ZAKRES PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA prowdzi proste rozumownie skłdjące się z niewielkiej liczby kroków prowdzi rozumownie z wykorzystniem wzorów

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy

Wymagania edukacyjne zakres podstawowy Złącznik nr 3 do PSO z mtemtyki, ZSP Nr 1 w Krośnie. Wymgni edukcyjne zkres podstwowy Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących swego

Bardziej szczegółowo

szkicuje wykresy funkcji: f ( x)

szkicuje wykresy funkcji: f ( x) Wymgni edukcyjne z mtemtyki ls tps Zkres podstwowy Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące oziom Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik

Bardziej szczegółowo

Wymagania na poszczególne oceny dla Technikum

Wymagania na poszczególne oceny dla Technikum Wymgni n poszczególne oceny dl Technikum Cły cykl ksztłceni: od I do IV ocen dopuszczjąc: Przedmiot: MATEMATYKA podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki. Klasa IIC. Rok szkolny 2013/2014. Poziom rozszerzony

Wymagania edukacyjne z matematyki. Klasa IIC. Rok szkolny 2013/2014. Poziom rozszerzony Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące (D) i wykrczjące poz

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy. 1.Liczby rzeczywiste

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy. 1.Liczby rzeczywiste Wymgni edukcyjne mtemtyk kls 1 zkres podstwowy 1.Liczby rzeczywiste 1. Podwnie przykłdów liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz rozpoznwnie liczb wymiernych

Bardziej szczegółowo

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu

Załącznik_3.14_matematyka II C zakres rozszerzony Statut I Liceum Ogólnokształcącego im. Adama Asnyka w Kaliszu Wymgni edukcyjne n poszczególne oceny Kls II - poziom rozszerzony I okres Plnimetri uzupełnienie z klsy I klsyfikuje trójkąty ze względu n miry ich kątów, stosuje twierdzenie o sumie mir kątów wewnętrznych

Bardziej szczegółowo

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY

Bardziej szczegółowo

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw.

f(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw. FUNKCJA KWADRATOWA Moduł - dził - Lp Lp temt z.p. z.r. Zkres treści Wykres f() = 1 1 wykres i włsności f() =, gdzie 0 Przesunięcie wykresu f() = wzdłuż osi OX i OY /o wektor/ Postć knoniczn i postć ogóln

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2012/13

Zakres na egzaminy poprawkowe w r. szk. 2012/13 Zkres n egzminy poprwkowe w r. szk. 2012/13 /nuczyciel M.Ttr/ MATEMATYKA Kls II ZAKRES PODSTAWOWY Dził progrmu I. Plnimetri, cz. 1 Temt 1. Podstwowe pojęci geometryczne 2. Współliniowość punktów. Nierówność

Bardziej szczegółowo

Dział programowy: LICZBY RZECZYWISTE

Dział programowy: LICZBY RZECZYWISTE Ksztłcenie ogólne w zkresie podstwowym Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć edukcyjnych oprcowne n podstwie przedmiotowego

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki klasa 2c- poziom rozszerzony

Szczegółowe wymagania edukacyjne z matematyki klasa 2c- poziom rozszerzony Szczegółowe wymgni edukcyjne z mtemtyki kls 2c- poziom rozszerzony Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2017/2018. Kryteria oceny

Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2017/2018. Kryteria oceny Wymgni progrmowe n poszczególne oceny w klsie I A LP, I B LP 07/08 Przygotowne w oprciu o propozycję Wydwnictw Now Er Kryteri oceny Znjomość pojęć, definicji, włsności orz wzorów objętych progrmem nuczni.

Bardziej szczegółowo

Plan wynikowy z matematyki

Plan wynikowy z matematyki ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (135 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA II informtyk ZARES ROZSZERZONY (135 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry); D wymgni dopełnijące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (135 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (135 godz.) WYMAGANIA EDUACYJNE Z MATEMATYI LASA II informtyk ZARES ROZSZERZONY (135 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry); D wymgni dopełnijące

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (90 godz.)

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II informatyka ZAKRES ROZSZERZONY (90 godz.) l. ib WYMAGANIA EDUACYJNE Z MATEMATYI LASA II informtyk ZARES ROZSZERZONY (90 godz.) Oznczeni: wymgni konieczne (dopuszczjący); wymgni podstwowe (dostteczny); R wymgni rozszerzjące (dobry); D wymgni dopełnijące

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b,

PRZEGLĄD FUNKCJI ELEMENTARNYCH. (powtórzenie) y=f(x)=ax+b, WYKŁAD 0 PRZEGLĄD FUNKCJI ELEMENTARNYCH (powtórzenie) 1. Funkcje liniowe Funkcją liniową nzywmy funkcję postci y=f()=+b, gdzie, b są dnymi liczbmi zwnymi odpowiednio: - współczynnik kierunkowy, b - wyrz

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej

MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej MATeMAtyka wymagania edukacyjne Zakres podstawowy i rozszerzony Autorzy Dorota Ponczek, Karolina Wej Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru

Bardziej szczegółowo

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony

MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Marian Łuniewski MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo