Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności.
|
|
- Agata Dąbrowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności. Ćwiczenia (środa) Osoby, które uzyskały łacznie mniej niż 80 punktów (50%) na sprawdzianie nr i kolokwium nr, powinny przyjść na ćwiczenia. Pozostali mogą ogranić się do rozwiązania zadań we własnym zakresie. Zanamy od omówienia kolokwium nr. 0. Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (x ) (x 2) (x 3) > 0,... ; b) (x ) 2 (x 2) (x 3) > 0,... ; c) (x ) (x 2) 2 (x 3) > 0,... ; d) (x ) (x 2) (x 3) 2 > 0,..... Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (x ) 203 (x 2) 203 > 0,... ; b) (x ) 203 (x 2) 204 > 0,... ; c) (x ) 204 (x 2) 203 > 0,... ; d) (x ) 204 (x 2) 204 > 0, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) ( x ) 203 ( x 2) 203 > 0,... ; b) ( x ) 203 ( x 2) 204 > 0,... ; c) ( x ) 204 ( x 2) 203 > 0,... ; d) ( x ) 204 ( x 2) 204 > 0, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) x 3 <,... ; b) x 4 > 2,... ; c) x 5 > 6,... ; d) x 6 < 5, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) x 2 7 < 8,... ; b) x 3 4 < 3,... ; c) x 4 40 < 4,... ; d) x 5 6 < 6,.... Lista Strony 7-24
2 5. Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (x )(x 2) < 0,... ; b) (x 2)(x 4) 2 < 0,... ; c) (x 4) 2 (x 7) < 0,... ; d) (x 7) 2 (x 9) 2 > 0, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (x 2 )(x 2) < 0,... ; b) (x 2)(x 2 4) < 0,... ; c) (x 2 4)(x 7) 2 < 0,... ; d) (x 7)(x 2 9) 2 < 0, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (x 4)(x 9) > 0,... ; b) (x 4)(x 2 9) > 0,... ; c) (x 2 4)(x 9) > 0,... ; d) (x 2 4)(x 2 9) > 0, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (x 2 25) (x 3 27) > 0,... ; b) (x 5 32) (x 3 27) > 0,... ; c) (x 5 32) (x 4 6) > 0,... ; d) (x 2 25) (x 4 6) > 0, Rozwiązać nierówności a) x+2 x 2 < x 2 b) x > 2x c) x 2 x Ćwiczenia (czwartek) d) x 3 x e) x ( x 2 +8x 8) x ( x 2 +x 8) f) 4x 4 x 2 x g) x x h) x 2 i) x 2 2x++ x 2 4x+4 < x 2 +2x++ x 2 8x+6 j) x 2 25 < 24 Lista Strony 7-24
3 k) (x+5) (x+5) 3 < (3x+) (3x+) 3 l) (x 2 +) x+2 (x 2 +) x2 Szacowanie wyrażeń. Ćwiczenia (środa) Osoby, które uzyskały łacznie mniej niż 80 punktów (50%) na sprawdzianie nr i kolokwium nr, powinny przyjść na ćwiczenia. Pozostali mogą ogranić się do rozwiązania zadań we własnym zakresie. 20. Która z liczb jest większa a) b) 000! c) 000! d) 000! (500!) 2 ( ) 2007 ( ) e) f) ( ) 2007 ( ) 666 g) ( ) 2007 ( ) 666 h) ( ) 2007 ( ) 666 i) ( ) 2007 ( ) 667 j) 2 00! 9 99! k) l) m) 7 20 n) o) p) ( ) ( ) q) ( ) ( ) r) ( ) ( ) s) Lista Strony 7-24
4 ( ) 2007 t) 666 u) v) w) ( ) x) y) ( 37 6 ) 666 ( ) 9 27/8 z) 4 ( ) 9/4 Uprościć wyrażenia log log 3 2 log log 6 2+log 36 9 log 24. m (mn) log n (mn) log m (mn)+log n (mn) 25. log ( 2 ) ( 2+) log 35 5 log 3 2 Logarytmy Ćwiczenia 3, (czwartek, wtorek) dla liczb naturalnych m i n większych od. 27. Dla ilu trójek liczb rzewistych dodatnich a, b, c różnych od spełniona jest podana równość? Dla wszystkich? Dla żadnej? Dla niektórych (podać 3 przykłady, a jeśli przykładów jest mniej niż 3, podać wszystkie)? a) log a (bc) = (log a b)+log a c b) log a (bc) = (log a b) log a c c) log a (b+c) = (log a b) log a c d) log a (b+c) = (log a b)+log a c e) (log a b) log b c = log a c f) log a (b c ) = c log a b 28. Bez użycia kalkulatora rozstrzygnąć, która liczba jest większa: a) log 2 7 log 3 7 b) log 0,2 7 log 0,3 7 c) log 2 7 log 0,3 7 d) log 0,2 7 log 3 7 e) log 2 0,7 log 3 0,7 f) log 0,2 0,7 log 0,3 0,7 g) log 2 0,7 log 0,3 0,7 Lista Strony 7-24
5 h) log 0,2 0,7 log 3 0,7 i) log 9 27 log 4 8 j) log 3 8 log 2 5 k) log 5 27 log l) log 3 00 log 2 0 m) (log 2 3) log 5 7 (log 2 7) log 5 3 n) (log 2 3) log 7 5 (log 7 9) log 6 25 o) log 2 3 log 3 5 p) log 3 7 log 5 9 q) log 2 3 log 5 3 r) log 3 5 log 5 56 Wskazówka do kilku ostatnich pytań: Wiadomo, że wartość ułamka nie zmieni się, jeżeli licznik i mianownik pomnożymy przez tę samą liczbę różna od zera. Podobnie, wartość logarytmu nie zmieni się, jeżeli podstawę i liczbę logarytmowaną Czy jest prawdą, że log 2 (a+b) = log 2 a+log 2 b, jeżeli a) a = 2, b = 2 b) a = 3/2, b = 3 c) a = 2, b = 3 d) a = 3/2, b = 2 e) a = 5, b = 5/4 30. Czy jest prawdą, że a log 7 b = b log 7 a, jezeli a) a = 2, b = 3 b) a = 2, b = 4 c) a = 2, b = 5 d) a = 3, b = 4 e) a = 64/27, b = 256/8 3. Rozwiązać nierówności a) log 2x (x 2 +) log 2x (x 2 +3x) b) (x 2 +x+) 3x > (x 2 +x+) x+ c) x 4 5x 2 +4 < 0 d) log 2 x+log x 4 < Na potrzeby tego zadania, dla liczby rzewistej a > zdefiniujemy średnią liczb rzewistych x, y większych od, następującym wzorem S a (x, y) = a log a x log a y. Podać wartości następujących liczb w postaci liczby całkowitej lub ułamka nieskracalnego w przypadku liczb wymiernych. Wpisać literkę N w przypadku liczb niewymiernych. a) S 8 (2, 6) =... ; b) S 9 (2, 6) =... ; c) S 8 (3, 8) =... ; d) S 9 (3, 8) =.... Lista Strony 7-24
6 Ćwiczenia 7, (poniedziałek, środa) Osoby, które uzyskały łacznie mniej niż 80 punktów (50%) na sprawdzianie nr i kolokwium nr, powinny przyjść na ćwiczenia. Pozostali mogą ogranić się do rozwiązania zadań we własnym zakresie. 33. Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) ( log 5 x ) 2 <,... ; b) ( log 5 x ) 3 <,... ; c) ( log 5 x 2) 4 >,... ; d) ( log 5 x 2) 5 >, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) (log 2 x 2) (log 3 x 3) > 0,... ; b) (log 2 x 3) (log 3 x 2) > 0,... ; c) (log 2 x 3) 3 (log 3 x 2) 2 > 0,... ; d) (log 2 x 3) 2 (log 3 x 2) 3 > 0, Zapisać zbiór rozwiązań podanej nierówności w postaci przedziału lub uporządkowanej a) log x 4 < 2,... ; b) log x 4 < 2,... ; c) log x 2 > 2,... ; d) log x 2 >, Podać taką liczbę x, że a) log 2 3 = 2 log 2 x, x =... ; b) log 2 3 = 2+log 2 x, x =... ; c) 3 log 3 2 = log 3 x, x =... ; d) 3+log 3 2 = log 3 x, x = Niech A(n) = 4 4n, B(n) = 256 6n, C(n) = log 2 A(n), D(n) = log 2 B(n), E(n) = log C(n) D(n). Podać w postaci liczby całkowitej lub ułamka nieskracalnego: a) E(00) =... ; b) E(200) =... ; c) E(300) =... ; d) E(400) = Niech A(n) = 4 4n, B(n) = n, C(n) = log 2 A(n), D(n) = log 2 B(n), E(n) = log C(n) D(n). Podać w postaci liczby całkowitej lub ułamka nieskracalnego: a) E(00) =... ; b) E(200) =... ; c) E(300) =... ; d) E(400) =.... Lista Strony 7-24
7 39. Dla podanej liczby n przyjąć za podstawę logarytmu a = n n, a następnie zapisać liczbę log a 2 w postaci liczby całkowitej lub ułamka nieskracalnego a) n = 2, log a 2 =... ; b) n = 4, log a 2 =... ; c) n = 8, log a 2 =... ; d) n = 6, log a 2 = Podać wartość podanej liczby w postaci liczby całkowitej lub ułamka nieskracalnego, gdy podana liczba jest wymierna. Napisać N, jeśli podana liczba jest niewymierna. a) log 2 log =... ; b) log 2 log =... ; c) log 2 log =... ; d) log 2 log = Dla podanej liczby a wskazać taką liczbę rzewistą dodatnią b, aby spełniona była równość +(log 5 a)+log 5 b = log 5 (2a 2 +2b 2 ). a) a = 2, b =... ; b) a = 3, b =... ; c) a = 4, b =... ; d) a = 6, b = Dla podanych liczb rzewistych x i y wskazać taką liczbę rzewistą dodatnią a, aby prawdziwa była równość log a x = y. a) x = 6, y = 2, a =... ; b) x = 6, y = 4, a =... ; c) x = 2, y = 4, a =... ; d) x = 2, y = /4, a = Dla podanych liczb a, b podać taką liczbę rzewistą c, aby zachodziła równość log a b = log b c. a) a = 3, b = 9, c =... ; b) a = 9, b = 3, c =... ; c) a = 5 4, b = 5 6, c =... ; d) a = 7 54, b = 7 56, c = Dla podanych liczb a, b zapisać w postaci liczby całkowitej lub ułamka nieskracalnego wartość liczby log x y, gdzie x = log a b oraz y = log b a. Napisać literkę N, jeżeli liczba ta jest niewymierna. a) a = 2 224, b = 2 226, log x y =... ; b) a = 2 227, b = 2 224, log x y =... ; c) a = 2 229, b = 2 222, log x y =... ; d) a = 2 226, b = , log x y =.... Lista Strony 7-24
8 n 45. Niech a i = a m a m+ a m+2 a m+3... a n a n. i=m Zapisać wartość podanego ilonu w postaci liczby całkowitej lub ułamka nieskracalnego, jeśli liczba jest wymierna. Napisać literkę N, jeżeli liczba jest niewymierna. 4 a) log (3i+) (3i+4) =... ; i= 4 b) log (3i+) (3i+4) =... ; i=2 5 c) log (3i+) (3i+4) =... ; i=2 6 d) log (3i+) (3i+4) =.... i=2 46. Podać zbiór rozwiązań nierówności zapisując go w postaci przedziału lub sumy przedziałów. a) 2 < log 4x < 3 2 b) 3 < log 64x < 2 c) 3 5 < log 32x < 4 5 d) 3 2 < log 9x < 4... ;... ;... ; Podać zbiór rozwiązań nierówności zapisując go w postaci przedziału lub sumy przedziałów. a) 2 < log x8 < 3... ; b) 2 < log x9 < 2... ; c) 2 < log x 4 < 3... ; d) 3 < log x 64 < Czy jest prawdą, że a) 2 log 3 5 = log 3 0 b) 2 log 3 5 = log 3 25 c) 2+log 3 5 = log 3 0 d) 2+log 3 5 = log 3 45 e) (2 log 3 7) 2 = 2 log 3 7 f) (2 log 2 7) 2 = 2 log 2 7 g) (2 log 5 23) 2 = 2 log 5 23 h) (2 log 4 7) 2 = 2 log 4 7 Lista Strony 7-24
Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14
Wzory skróconego mnożenia, procenty, postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie - rozwiązywanie równań i nierówności. Szacowanie wyrażeń. W dniu 23/24 października
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
Bardziej szczegółowoCzęść całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji
Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji
Bardziej szczegółowo1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004
ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Bardziej szczegółowo5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane
Bardziej szczegółowo6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2014/15
Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40
Bardziej szczegółowoSkrypt 31. Powtórzenie do matury Liczby rzeczywiste
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoW każdym zadaniu za 0, 1, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0, 1, 3, 6, 10 punktów.
Kolokwium 5 Wersja testu E 9 maja 205 r. W każdym zadaniu za 0,, 2, 3, 4 poprawne odpowiedzi otrzymuje się odpowiednio 0,, 3, 6, 0 punktów.. Liczbę naturalną q nazwiemy fajniutką, jeżeli istnieje taka
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bardziej szczegółowoArytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoW planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
Bardziej szczegółowoTematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.
W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas
Bardziej szczegółowo1 Wersja testu A 18 września 2014 r.
1 Wersja testu A 18 września 2014 r. 1. Zapisać w postaci przedziału lub uporządkowanej sumy przedziałów zbiór liczb rzeczywstych x, dla których podana implikacja jest prawdziwa. a) x 2 < 4 x < 3, (, +
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowoPowtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2010/11
Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Dane są liczby naturalne m, n. Wówczas dla dowolnej liczby naturalnej k, liczba k jest podzielna
Bardziej szczegółowo7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100
ZADANIE 1 (1 PKT) Dane sa zbiory A = ( 6 7, 6) i B = N liczb naturalnych dodatnich. Wówczas iloczyn zbiorów A B jest równy A) {1, 2,, 4, 5} B) (, 5 C) {1, 2,, 4, 5, 6} D) (, 6) ZADANIE 2 (1 PKT) Jeśli
Bardziej szczegółowoPodzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest
Bardziej szczegółowoS n = a 1 1 qn,gdyq 1
Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze
Bardziej szczegółowoLogarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ
Czas pracy 170 minut Klasa 1 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 19 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od 1. do 20. są podane
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Bardziej szczegółowoLICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
Bardziej szczegółowoZbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Bardziej szczegółowoBukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Bardziej szczegółowoKlasówka 20 kwietnia 2018 treści zadań łatwiejszych
Klasówka 20 kwietnia 2018 treści zadań łatwiejszych 1. Udowodnij że dla każdych liczb rzeczywistych dodatnich a b c zachodzi nierówność 42+90bc 18a 2 +65b 2 +50c 2. 2. Udowodnij że dla każdych liczb rzeczywistych
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowoMATURA Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część III: Równania i nierówności ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej.
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoLista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015
Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoEGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Bardziej szczegółowo3.2. RÓWNANIA I NIERÓWNOŚCI LINIOWE.
.. RÓWNANIA I NIERÓWNOŚCI LINIOWE. m równania (pierwiastkiem równania) z jedną niewiadomą nazywamy liczbę, która spełnia dane równanie, tzn. jeśli w miejsce niewiadomej podstawimy tę liczbę, to otrzymamy
Bardziej szczegółowoKURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
Bardziej szczegółowoIndukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Bardziej szczegółowoTemat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Bardziej szczegółowoMatematyka. dla. Egzamin. Czas pracy będzie
Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom podstawowy Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,
Bardziej szczegółowoI) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
Bardziej szczegółowoMatematyka podstawowa I. Liczby rzeczywiste, zbiory
Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego
Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Temat (rozumiany jako lekcja) Lekcja organizacyjna I. Działania na liczbach
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Bardziej szczegółowoRozwiązaniem jest zbiór (, ] (5, )
FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Bardziej szczegółowoWSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
Bardziej szczegółowoWIELOMIANY I FUNKCJE WYMIERNE
WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru
Bardziej szczegółowoRozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane
Bardziej szczegółowoLiczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowoARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 14 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z
Bardziej szczegółowo1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Bardziej szczegółowo2. Wyrażenia algebraiczne
2. Wyrażenia algebraiczne Jeśli liczby r, s są liczbami całkowitymi, to równości od 1) do 5) są prawdziwe dla wszystkich liczb rzeczywistych a, b różnych od zera. Logarytm Logarytmem 10gab liczby dodatniej
Bardziej szczegółowoPendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Bardziej szczegółowoFunkcje. Granica i ciągłość.
Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica
Bardziej szczegółowoKod ucznia: Wodzisław Śl., 11 kwietnia 2018r.
Kod ucznia: Wodzisław Śl., 11 kwietnia 018r. XVI POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH POD PATRONATEM STAROSTY POWIATU WODZISŁAWSKIEGO ORGANIZOWANY PRZEZ POWIATOWY OŚRODEK
Bardziej szczegółowoMETODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Bardziej szczegółowoRozkład zajęć klas od
Poniedziałek I LO 1A I LO 1B I LO 1 C II LO 2 A II LO 2 B 3 9:45 10:30 Rozkład zajęć klas od 1.02.2016 Wtorek I LO 1A I LO 1B I LO 1 C II LO 2 A II LO 2 B 3 9:45 10:30 Środa I LO 1A I LO 1B I LO 1 C II
Bardziej szczegółowoEGZAMIN MATURALNY OD ROKU SZKOLNEGO
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) W czasie trwania egzaminu zdający może korzystać z
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ
Czas pracy 170 minut Klasa 1 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 19 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od 1. do 20. są podane
Bardziej szczegółowoFUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
Bardziej szczegółowoLogarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Bardziej szczegółowoAlgebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Bardziej szczegółowo1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
Bardziej szczegółowoTeoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
Bardziej szczegółowoEGZAMIN, ANALIZA 1A, , ROZWIĄZANIA
Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N
Bardziej szczegółowo3 Potęgi i pierwiastki
Potęgi i pierwiastki W tej lekcji przypomnimy sobie podstawowe własności działań na potęgach i pierwiastkach. Prosimy o zapoznanie się z regulaminem na ostatniej stronie..1 Potęga o wykładniku całkowitym
Bardziej szczegółowoInternetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
Bardziej szczegółowoPRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
Bardziej szczegółowoLiczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Bardziej szczegółowo1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Bardziej szczegółowoTrening czyni mistrza zdaj maturę na piątkę
Trening czyni mistrza zdaj maturę na piątkę ZESTAW I Liczby rzeczywiste Zdający demonstruje poziom opanowania powyższych umiejętności, rozwiązując zadania, w których: a) planuje i wykonuje obliczenia na
Bardziej szczegółowoPlan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
Bardziej szczegółowoEGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0
EGZAMIN, ANALIZA A, 5.0.04 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 4=4.0, 48=4.5, 54=5.0 Zadanie. W każdym z zadań.-.5 podaj w postaci uproszczonej) kresy zbioru oraz napisz, czy kresy należą do zbioru
Bardziej szczegółowoZadanie 9. ( 5 pkt. ) Niech r i R oznaczają odpowiednio długości promieni okręgów wpisanego i opisanego na ośmiokącie foremnym.
Międzyszkolne Zawody Matematyczne Klasa I z rozszerzonym programem nauczania matematyki Etap rejonowy 3..005 Czas rozwiązywania zadań - 50 minut. Zadanie. ( pkt. ) Ustal zbiór tych liczb naturalnych dodatnich,
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Bardziej szczegółowoSprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum. Kartoteka
Sprawdzian diagnozujący umiejętności matematyczne z zakresu gimnazjum Kartoteka Nr zad. 1. 2. 3. 4. 5. 6. 7. 8. 9. Sprawdzana umiejętność Uczeń: Oblicza potęgi liczb wymiernych o wykładnikach naturalnych
Bardziej szczegółowoPrzypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
Bardziej szczegółowoSkrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
Bardziej szczegółowoPLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001
Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,
Bardziej szczegółowoWymagania programowe w porządku związanym z realizacją programu
Wymagania programowe w porządku związanym z realizacją programu Nazwa umiejętności UCZEŃ POTRAFI: Poziom wymagań Kategoria celu 1. Porównać dwie liczby całkowite. K C 2. Uporządkować liczby całkowite.
Bardziej szczegółowoMATURA Przygotowanie do matury z matematyki
MATURA 2012 Przygotowanie do matury z matematyki Część I: Liczby rzeczywiste ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej.
Bardziej szczegółowoZadanie 1. Algorytmika ćwiczenia
Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby
Bardziej szczegółowoWykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Bardziej szczegółowo