Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A"

Transkrypt

1 Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp B D C A B B A B A C D A Nr zad Odp C C B A C D C B D A D SCHEMAT OCENIANIA ZADAŃ OTWARTYCH Zadanie 24. (0-2) W trójkącie równobocznym ABC punkt D dzieli bok AC w stosunku AD : DC = 2: 3. Oblicz tangens kąta ABD. Wyznaczenie długości jednego z odcinków DE albo BE : DE = x 3, BE = 4x Rozwiązanie pełne... 2 p. Obliczenie tangensa kąta ABD: tg ABD = 3 4 1

2 Zadanie 25. (0-2) Rozwiąż nierówność(x 2)(x 4) 4(x + 4) + 3. Doprowadzenie nierówności do postaci x 2 10x 11 0 i obliczenie miejsc zerowych: x 1 = 1, x 2 = 11 Podanie zbioru rozwiązań nierówności x (, 1 > < 11, ). Zadanie 26. (0-2) Dane są trzy okręgi o 1, o 2 i o 3. Okręgi o 1, o 2 są styczne zewnętrznie, jednocześnie są styczne wewnętrznie do okręgu o 3 (patrz rysunek). Wiedząc, że promienie okręgówo 1 i o 2 są odpowiednio równe r 1 i r 2, a środki wszystkich trzech okręgów leżą na jednej prostej, uzasadnij, że długość odcinka EF jest równa4 r 1 r 2,gdzie odcinek EF jest cięciwą okręgu o 3 i zawiera się w wspólnej stycznej okręgów o 1 i o 2. Oznaczmy: A-punkt styczności okręgu o 1 z okręgiemo 3, B-punkt styczności okręgu o 2 z okręgiem o 3, S-punkt styczności okręgu o 1 z okręgiemo 2 2

3 albo Zauważenie, że ES jest wysokością trójkąta prostokątnego ABE i zapisanie: ES 2 = AS SB Zauważenie, że trójkąty ASE i ESB są podobne i zapisanie: AS SE = SE SB Obliczenie długości odcinka EF i stwierdzenie końca dowodu. Zadanie 27. (0-2) Różnica ciągu arytmetycznego jest równa (-3), a szósty wyraz jest równy Oblicz S Zastosowanie wzoru na n-ty wyraz ciągu arytmetycznego i obliczeniea 1 : a 1 = 3027 Zastosowanie wzoru na sumę n początkowych wyrazów ciągu arytmetycznego i obliczenies 2017 : S 2017 = 6051 Zadanie 28. (0-2) Wykaż, że suma trzech kolejnych potęg liczby 2 o wykładnikach całkowitych dodatnich jest podzielna przez 14. Zapisanie sumy w postaci 2 n + 2 n n+2 = 2 n ( ) Stwierdzenie, że dana suma jest podzielna przez 14, bo jest iloczynem liczby parzystej 2 n i liczby 7 Zadanie 29. (0-2) Przekątna ACczworokąta ABCDzawiera się w prostej o równaniu x 2y 7 = 0. Wierzchołki B, D tego czworokąta mają współrzędne B = (8; 6), D = ( 3; 5). Oblicz współrzędne punktu przecięcia się przekątnych czworokąta ABCD. 3

4 Wyznaczenie równania prostej BD: y = x + 2 Rozwiązanie pełne... 2 p. Obliczenie współrzędnych punktu przecięcia prostych: ( 11 3 ; 5 3 ) Zadanie 30. (0-2) Ze zbioru liczb {1,2,3,4,5,6,7,8,9,10}losujemy kolejno dwie liczby bez zwracania i od pierwszej wylosowanej liczby odejmujemy drugą. Jakie jest prawdopodobieństwo tego, że różnica tych liczb jest większa od 2? Rozwiązanie, w którym jest postęp... 1 p. Obliczenie liczby zdarzeń sprzyjających zdarzeniu losowemu (lub wypisanie zdarzeń elementarnych sprzyjających zdarzeniu losowemu ): A =28 Rozwiązanie pełne p. Obliczenie prawdopodobieństwa zdarzenia: P(A) = 28 = Zadanie 31. (0-4) Oblicz pole i obwód trapezu prostokątnego, w którym podstawy mają długości 13 cm i 22 cm, a tangens kąta ostrego jest równy Obliczenie długości wysokości trapezu: h = 12 cm Rozwiązanie, w którym jest istotny postęp... 2 p. Obliczenie długości ramienia trapezu: c = 15 cm Pokonanie zasadniczych trudności zadania... 3 p. albo Obliczenie obwodu trapezu O = 62 cm Obliczenie pola trapezu P = 210 cm 2. Rozwiązanie pełne.4 p. Obliczenie obwodu trapezu O = 62 cm i obliczenie pola trapezu P = 210 cm 2. 4

5 Zadanie 32. (0-5) W ciągu geometrycznym (a n ) dane są iloraz q = 1 oraz suma 2 a 12 + a a 24 = 7 (213 +1). Oblicz x, dla którego ciąg (a , x a 6, a 8 ) jest ciągiem arytmetycznym. albo Zauważenie, że podana suma jest równa: S 24 S 11 Zauważenie, że podana suma jest sumą 13 wyrazów ciągu geometrycznego o pierwszym wyrazie równym a 12 Rozwiązanie, w którym jest istotny postęp... 2 p. Obliczenie a 1 : a 1 = 7 Pokonanie zasadniczych trudności zadania... 3 p. Obliczeniea 4, a 6, a 8 : a 4 = 7 8, a 6 = 7 32 ; a 8 = Rozwiązanie zadania prawie do końca, albo rozwiązanie do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe).. 4 p. Zastosowanie definicji ciągu arytmetycznego i zapisanie: x a 6 a 4 = a 8 x + a 6 Rozwiązanie pełne. 5 p. Obliczenie x: x = Zadanie 33. (0-4) Suma długości wszystkich krawędzi ostrosłupa prawidłowego trójkątnego jest równa 96, a krawędź boczna tworzy z płaszczyzną podstawy kąt, którego cosinus jest równy 3 9. Oblicz pole powierzchni bocznej tego ostrosłupa. x Zapisanie zależności wynikających z treści zadania: 3a + 3b = 96 oraz = 3, b 9 gdzie a długość krawędzi podstawy, b długość krawędzi bocznej,x długość odcinka stanowiącego 2 wysokości podstawy ostrosłupa. 3 5

6 Rozwiązanie, w którym jest istotny postęp... 2 p. Zapisanie układu równań liniowych z dwiema niewiadomymi: a + b = 32 { b = 3a Pokonanie zasadniczych trudności zadania... 3 p. Obliczenie długości krawędzi ostrosłupa: a = 8 i b = 24. Rozwiązanie pełne.4 p. Obliczenie pola powierzchni bocznej ostrosłupa: P =

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 3 4 6 7 8 9 0 3 4 6 7 8 9 0 D C D A A B D C C D B C A B B D B C A A Zadanie. (pkt) Rozwiąż

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach

Bardziej szczegółowo

KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D

KLUCZ ODPOWIEDZI POPRAWNA ODPOWIEDŹ 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH NR ZADANIA POPRAWNA ODPOWIEDŹ D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) Okręgowa

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 B D D B A C A A B A D D C D C B D B C C Zadanie (pkt) Schemat oceniania

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 03 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron (zadania 30).. Arkusz zawiera 0 zadań zamkniętych i 0 zadań

Bardziej szczegółowo

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 } Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 011 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM ROZSZERZONY Katalog zadań poziom rozszerzony

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ...

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ... MATEMATYKA Przed próbną maturą Sprawdzian. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 6 Imię i nazwisko... Liczba punktów Procent Przed próbną maturą. Sprawdzian. Zadanie 1. (0

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem

Bardziej szczegółowo

Stowarzyszenie Nauczycieli Matematyki

Stowarzyszenie Nauczycieli Matematyki WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy arkusz zawiera 13 stron (zadania 1-32). STYCZEŃ 2015

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Uzasadnienie tezy. AB + CD = BC + AD 2

Uzasadnienie tezy. AB + CD = BC + AD 2 LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE

Bardziej szczegółowo

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA POZIOM PODSTAWOWY Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 00 MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 00 Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) III... Uczeń posługuje się w obliczeniach pierwiastkami i stosuje prawa działań na pierwiastkach. 7 6 6 =

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ Egzamin maturalny z matematyki Za prawidłowe rozwiązanie każdego z zadań inną

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja

Egzamin maturalny z matematyki Poziom rozszzerzony. Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja Zadanie ( pkt) Wyznacz wszystkie rozwiązania równania, π sin 7cos = należące do przedziału Rozwiązanie Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja cos 7 cos = trygonometryczna

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut LUBELSKA PRÓBA PRZED MATURĄ 07 poziom podstawowy Kod ucznia Nazwisko i imię M A T E M A T Y K A 8 LUTEGO 07 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron (zadania -34).

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 05 Klucz punktowania zadań zamkniętych Nr zad. 3

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 86 7 5 56 5 jest

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V = Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Materiały diagnostyczne z matematyki poziom podstawowy czerwiec 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiały diagnostyczne przygotowała Agata Siwik we współpracy z nauczycielami

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie naleŝy powielać ani udostępniać w Ŝadnej formie

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Zadanie. ( pkt) Rozwiąż nierówność + 5 + 6

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut LUBELSKA PRÓBA PRZED MATURĄ 016 poziom podstawowy M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki 2010

Próbny egzamin maturalny z matematyki 2010 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki 00 Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,

Bardziej szczegółowo