MATEMATYCZNY I NUMERYCZNY MODEL CZYSZCZENIA STOPU METODĄ PRZETAPIANIA STREFOWEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYCZNY I NUMERYCZNY MODEL CZYSZCZENIA STOPU METODĄ PRZETAPIANIA STREFOWEGO"

Transkrypt

1 5/4 oldfcaton of Mtals and Alloys Yar 999 Volum Book No. 4 Krpnęc Mtal topów Rok 999 Rocnk Nr 4 PAN Katowc P IN MATEMATYZNY I NUMERYZNY MOE ZYZZENIA TOPU METOĄ PRZETAPIANIA TREFOWEGO BOKOTA Adam Instytut Mchank Podstaw Konstrukcj Masyn Poltchnka ęstochowska 4- ęstochowa ul. ąbrowskgo 7 POKA IKIERKA ławomr Katdra Elktrotchnk Elktrotchnolog Poltchnka ęstochowska 4- ęstochowa ul. ąbrowskgo 69 POKA PIEKARKA Wsława OWA sk Instytut Mchank Podstaw Konstrukcj Masyn Poltchnka ęstochowska 4- ęstochowa ul. ąbrowskgo 7 POKA TREZZENIE W pracy prdstawono modl matmatycny numrycny cyscna mtal mtodą prtapana strfowgo. Ops matmatycny jawsk prpływu cpła masy ostał wykonany w współrędnych Eulra. Pola tmpratury dyfuj masy opsano równanam dyfuj cłonam konwkcyjnym. W modlu prpływu masy ałożono gładką powrchnę rodału faa ckła faa stała. Warunk cągłośc dla tj powrchn okrślono na podstaw modlu tfana. Równana opsując pol tmpratury rowąano mtodą lmntów skońconych Ptrova-Galrkna natomast rokład składnka domsk wynacono mtodą lmntów brgowych. ymulacja numrycna prtapana strfowgo cyscna domsk ostała prprowadona dla stopu md krmm. okonano ocny wpływu prędkośc prtapana wlkośc strfy prtapanj na fkty cyscna md krmu.. Wstęp trfow prtapan wan krystalacją krunkową jst tchnologą otrymywana matrałów o wymaganych własnoścach o wysokm stopnu ch cystośc. Mtoda ta jst stosowana mędy nnym w produkcj matrałów półprwodnkowych. Mtoda topna strfowgo polga na klkakrotnym prtapanu odpowdnj strfy próbk w postac. topń ocyscna

2 6 npożądango prwastka alży od długośc próbk wlkośc strfy prtoponj prędkośc jj prsuwana ora od wlkośc współcynnka rodału domsk na fronc krystalacj [7]. Mtoda prtapana strfowgo opracowana pr Pfanna jst powschn stosowana do ocyscana matrałów a scgóln matrałów półprwodnkowych pry cym doboru paramtrów do tj tchnolog dokonuj sę na podstaw danych dośwadcalnych uprosconych rowąań analtycnych. Wydaj sę węc clow opracowan modlu numrycngo który uwględnałby komplksowo jawska towarysąc procsow strfowgo prtapana a manowc: topn krystalację sgrgację dyfuję domsk [478]. W proponowanym modlu do matmatycngo opsu jawsk towarysących procsow prtapana strfowgo astosowano współrędn Eulra. Możlw jst atm śldn prpływu cpła masy w wybranym obsar kontrolnym n mnając gomtr w koljnych krokach casu. W pochodnych matralnych występujących w równanach prpływu cpła dyfuj domsk n nkają cłony konwkcyjn stwarając pwn utrudnna w algorytmach numrycnych [68]. Numrycn rowąywan równań dyfuj masy mtodą lmntów skońconych napotyka na dodatkow trudnośc wąan występowanm ncągłośc posukwanych funkcj na grancach podobsarów. Zjawsko to wan sgrgacją występuj na powrchn rodału faa ckła faa stała [478]. latgo do rowąana równana prwodnctwa cłonm konwkcyjnym astosowano mtodę lmntów skońconych Ptrova-Galrkna [] natomast do rowąywana równana różnckowgo opsującgo prpływ masy astosowano mtodę lmntów brgowych [4589]. Mtoda ta apwna stablność rowąana w prypadku stnna cłonu konwkcyjngo dla dużj gamy prędkośc ora daj nacn mnj równań do rowąywana numrycngo. Ta ostatna alta ma bardo duż nacn w procsach tracyjnych. Ponadto mtoda ta daj bardo dobr wynk pommo stnna ncągłośc posukwanych funkcj na powrchnach brgowych roważanych podobsarów.. Modl matmatycny Ops jawsk prpływu cpła masy dotycy wybrango obsaru kontrolngo prtapango pręta ΩT Ω Ω Ω o długośc T ustalongo współrędnym Eulra {r}. Pocątk tych współrędnych pryjęto na powrchn krystalacj Układ współrędnych agrang a {RZ} wąany jst prmscającym sę prędkoścą v prętm (Rys.). Równana opsując pola tmpratury w podobsarach ( Ω Ω ) mają postać [49]: Θ t Θ ( λ( ) Θ ) f + v dla Ω ( ) Ω Ω ()

3 6 gd: λ są współcynnkam prwodna cpła jst fktywnym cpłm ( ) f właścwym któr w prdal lkwdus-soldus awra cpło prmany faowj aproksymowan w modlu funkcją lnową [9]. R r M v t T T ( Ω ) ( Ω ) ( ) Ω Z v δ T δ T Rys.. Podobsary roważango układu prmscna powrchn rodału fa Fg.. ubrgons of th nvstgatd systm and dsplacmnts of th phas dvdng surfac Nagrwan strfy prtapanj ora chłodn poostałj cęśc pobocncy ralowano warunkm brgowym III rodaju pryjmując: Θ n q R λ( ) α ( Θ )( Θ Θ ) ( Θ ) α Θ Θ α () gd α α( Θ ) jst współcynnkm prjmowana cpła. Na powrchnach ograncających obsar kontrolny ( Ω T ) pryjęto warunk trcgo rodaju akładając ż gradnty tmpratury aproksymowanj funkcją kwadratową w odlgłoścach δ δ od brgów tgo obsaru są równ ru. Jst atm: T q λ δ λ ( Θ Θ ) q ( Θ Θ ). T T δ T T () W modlowanu sgrgacj dyfuj składnka domsk ałożono ż prpływ masy występuj tylko w krunku os wobc tgo równana różnckow opsując dyfuję składnka w fa stałj w fa ckłj pryjęto w postac [8]:

4 6 ( ) ( ) ( ) ( ) v dla ( ) Ω Ω Ω (4) t gd: są współcynnkam dyfuj są stężnam domsk w osnow. ( ) ( ) Ponważ współcynnk dyfuj w fa stałj jst nacn mnjsy od współcynnka dyfuj w fa ckłj to w praktyc można pomnąć dyfuję w fa stałj modlować tylko sgrgację na fronc narastana dyfuję w fa ckłj [478]. Mając powyżs na uwad w ralacj numrycnj wykorystano następujący modl makrosgrgacj: J n t v ( k) M v ( ) k gd: kk(t) jst współcynnkm rodału składnka na fronc narastana strumń masy.. Modl numrycny J (5) jst tosując mtodę rst ważonych do równana () wykorystanm prsunętych funkcj wagowych ( φ φ( ϕ )) [] ora wykorystując twrdn Gaussa- Ostrogradskgo otrymuj sę po podstawnu warunków brgowych wykonanu całkowana po lmntach cas układ równań do numrycngo rowąywana: gd: ( ( K + V + B) + M ) T ( M ( β )( K + V + B) ) T + BT β (6) K K M M B B ( K ) ( M ) K M λ ψ j ϕ + Ω f ψ jϕdω t ( B ) B α ψ jϕd. Ω f ψ j Wϕ dω

5 6 Współcynnk β wynkający całkowana po cas pryjmowano w algorytm numrycnym równy ¾. W równanu dyfuj masy (4) pochodną po cas astąpono loram różncowym sprowadając to równan do postac [8]: gd: ( t ) ( t ) ( t ) ( t ) + + Q( t ) v ( ) ( t ) t Q t t Q rprntuj stucn źródło uwględnając cłon konwkcyjny [89] t jst krokm casu ( t t t ).. Równan (4) rowąano mtodą lmntów brgowych. tosując mtodę rst ważonych do równana () wykorystanm funkcj wag ( ξ ) dokonując dwukrotngo całkowana pr cęśc prwsgo cłonu tgo równana otrymano: (7) ( ξ t ) ( J ( ξ ) ( t ) + ( ( ξ ) J ( t ) ( t ) ( ξ ) Q d + ( t ) t ( ξ ) d. (8) Funkcja wag występująca w równanu (8) jst rowąanm fundamntalnym równana podstawowgo omawango agadnna natomast J J są strumnam substancj ξ jst punktm na os ( ξ ( )) położna skuponj masy (źródła masy). Rowąan podstawow ora strumn masy okrślają w tym adanu funkcj: ( ξ ) t xp ξ t (9) J ( ξ ) sgn( ) ξ ξ ( t ) xp J. Wynacając w (8) wartośc funkcj ( ξ ) J ( ) + ξ ( ξ ξ ) t ξ dla grancnych położń źródła otrymano układ równań do numrycngo rowąywana:

6 64 H j + G J j Q + M. () Elmnty macry H G ora wktory prawych stron wynkają (8): H G Q 5 xp H H H t t t G G G xp ( ) ( ) ( ) t Q t ξ d M t ( ξ ) d. t () Rowąan układu równań () daj wartośc dyskrtn na brgach roważango obsaru ( Wartośc funkcj w punktach podobsaru M ). Ω oblca sę korystając (8): + ( ξ t ) ( ξ ) J ( t ) + ( ξ) J ( t ) J s ( ξ) ( t ) J ( ξ ) ( t ) + Q ( ξ ) + M ( ξ ). + () Występujący w równanach () cłon onacony jako ( ξ ) Q awra stucn źródło na poom casu oblcń. W procs oblcnowym stosowano atm procdurę tracyjną wynacając w każdym kroku tracj wartośc całk w () okrślających t źródła. Równocśn omówoną powyżj tracją sprawdano prawo achowana lośc substancj wryfkując równość całkową (rys.):

7 65 (t) M v t v t () Rys.. Rokład stężna prsuwającym sę powrchnam brgowym Fg.. olut dstrbuton wth movng boundary surfacs vt ( t ) d + k( t ) ( t ) vt + ( t ) d. () W pracy wprowadono fktywny współcynnk rodału domsk który w warunkach nrównowagowj krystalacj alżny jst od prędkośc narastana ora wlkośc strfy prtapanj [478]. 4. Oblcna numrycn Oblcna numrycn symulując prtapan strfow cyscn osnowy domsk prprowadono dla stopu md krmm. Pryjęto ż prtapany pręt wykonany stopu u umscony jst w rurc kwarcowj o śrdncy [mm] grubośc ścank [mm]. Obsar kontrolny w krunku os wynosł T.5 [m]. Nagrwan symulowano w cęśc środkowj obsaru kontrolngo na długośc [m]. tał trmofycn odpowdn tmpratury prtapango stopu acrpnęto dostępnj ltratury. Po uyskanu płngo prtopna dobrano prędkość prsuwu pręta apwnającą utrymywan sę srokośc strfy prtoponj dla adanj mocy nagrwana. la ustalonj prędkośc prsuwu srokośc strfy prtoponj prowadono symulacj cyscna strfowgo. Na podstaw uyskanych wynków dokonano ocny wpływu prędkośc prtapana wlkośc strfy prtapanj na fkty cyscna md krmu. Wynk symulacj prntują rysunk -7.

8 Tmpratura [K] Tmpratura [K] [m] Rys.. Rokłady tmpratury (oś symtr) w strf prtoponj jj poblżu po cas mn. odpowdno dla prędkośc: ) v -5 ) v -4 ) v - 4) v x - m/s. Fg.. Tmpratur dstrbuton at th pont placd on th symmtry axs aftr [mn] tm at th rmltng on and ts nghbourhood for vlocty ) v -5 ) v -4 ) v - 4) v x - m/s rspctvly 6 cas [s] Rys.4. Zmany tmpratury w cas na ln symtr źródła (kryw ) punkc prsunętym o cm w krunku prędkośc (kryw 45 6) odpowdno dla prędkośc: ) v -5 ) v -4 ) v - m/s. Fg.4. Tmpratur chang vs. tm along a symmtrcal ln of th sourc locaton (curv ) and at th pont placd [cm] forward (curv 4 5 6) for vlocty 4) v -5 5) v -4 6) v - m/s rspctvly r.8 r.8 r Rys.5. Ioln tmpratury w strf prtoponj jj otocnu odpowdno dla prędkośc koljno: v -5 v -4 v - m/s. Fg.5. Tmpratur solns n rmltng on and hr narby for vlocty v -5 v -4 v - m/s rspctvly

9 tężn [%] tężn [%] 67 Na podstaw prprowadonych symulacj numrycnych stwrdć można ż dla dango stopu maksymalna prędkość prtapana n moż prkrocyć v -5 [m/s] (Rys.7). la węksych bowm prędkośc współcynnk rodału (k) wrasta a tym samym uyskuj sę cora mnjsą sgrgację [m] Rys.6. tężna krmu w md uyskan po prsunęcu strfy prtoponj o.5 m uyskan dla prędkośc: ) v -5 m/s k.5 ) v.5x -5 m/s k.6 ) v x -5 m/s k.7 Fg.6. lcon concntraton n th coopr alloy obtand aftr translaton of th rmltng on for.5[m] for vlocty ) v -5 m/s k.5 ) v.5x -5 m/s k.6 ) v x -5 m/s k.7 rspctvly [m] Rys.7. tężna krmu w md po prsunęcu strfy prtoponj o.5 m uyskan dla prędkośc prsuwu v -5 m/s ) po jdnym ) dwóch ) trch prtopnach Fg.7. lcon concntraton n th coopr alloy aftr translaton of th rmltng on for.5[m] for vlocty v -5 m/s of movng w aftr: ) frst ) scond ) thrd rmltng rspctvly ITERATURA [] Bokota A.: Applcaton Of Boundary Elmnts For olvng oldfcaton Problms. Bulltn d l'académ Polonas ds cncs vol 7 No pp [] Bokota A. Iskrka.: Fnt lmnt mthod for solvng dffuson-convcton problms n th prsnc of a movng hat pont sourc. Fnt Elmnts n Analyss and sgn Vol pp [] Bokota A. Iskrka : An analyss of dffuson-convcton problm by th boundary lmnt mthod. J. Eng. Anal. wth Boundary Elmnts. 5 (995) pp

10 68 [4] Bokota A. Parktny R.: Mtoda lmntów brgowych w astosowanu do agadnń dotycących cął krpnących Prac Naukow Instytutu Tchnolog Budowy Masyn Poltchnk Wrocławskj Nr 55 Konfrncj Nr 6 s [5] Brbba.A. Nowak A.J. olvng hat transfr problms by th ual Rcprocty BEM In.. Wrobl and.a. Brba dtors. Boundary Elmnts Mthod for Hat Transfr chaptr pags -. omp. Mch. Publcatons and Elsvr Appld cnc. Intrnatonal rs on omputatonal Engnrng. 99. [6] Ikguch M.: Transnt soluton of convctv dffuson problm by boundary lmnt mthod. Trans. IEE Japan E-68 (985) [7] Kur W. Fshr.J.: Fundamntals Of oldfcaton. Trans Tch Publcatons wdrland - Grmany - UK - UA 989. [8] Majchrak E. Mochnack B. uchy J.: Modlowan makrosgrgacj w procs krpnęca krunkowgo wykorystanm MEB. Mędyuclnan smnarum astosowań mtody lmntów brgowych ęstochowa 996 pp [9] Majchrak E. Mochnack B.: Applcaton of th BEM n th thrmal thory of foundry. Engnrng Analyss wth Boundary Elmnts pp.99-. [] Prybyłowc K.: Mtalonawstwo. WNT Warsawa 994. [] Wat R. and Mtchll A. R.: Fnt lmnt analyss and applcatons J. Wly and ons hchstr 985. Praca fnansowana pr KBN MATHEMATIA AN NUMERIA MOE OF META IMPURITY EANING BY ZONE REMETING METHO ABTRAT Th mathmatcal and numrcal modls of mtal mpurty clanng by on rmltng mthod hav bn prsntd n th papr. Th mathmatcal dscrpton of hat and mass flow has bn mad n Eulr s co-ordnat. Th tmpratur fld and mass dffuson fld hav bn dscrbd by th dffuson quatons wth convcton trms. Th smooth surfac dvdng th sold-lqud phas has bn assumd n th modl. Th contnuty condtons on ths surfac hav bn dtrmnd on th bass of tfan s modl. Th quaton dscrbng tmpratur fld has bn solvd by Ptrov- Galrkn fnt lmnt mthod whl th mpurty componnt dstrbuton has bn dtrmnd by boundary lmnt mthod. Th numrcal smulaton of on rmltng and mtal mpurty clanng has bn don for coppr slcon alloy. Th nflunc of rmltng vlocty and th rmltng on s on clanng of coppr from slcon has bn nvstgatd n th papr Rcnował Prof. dr hab. nż. tansław Jura

MODELOWANIE ODKSZTAŁCEŃ STRUKTURALNYCH ELEMENTÓW STALOWYCH Z PRZETOPIENIEM WARSTWY WIERZCHNIEJ

MODELOWANIE ODKSZTAŁCEŃ STRUKTURALNYCH ELEMENTÓW STALOWYCH Z PRZETOPIENIEM WARSTWY WIERZCHNIEJ ODELOWANIE INŻYNIERKIE IN 1896-771X 43, s. 131-136, Glwc 01 ODELOWANIE ODKZTAŁCEŃ TRUKTURALNYCH ELEENTÓW TALOWYCH Z PRZETOPIENIE WARTWY WIERZCHNIEJ ADA KULAWIK Instytut Informatyk Tortyczn tosowan, Poltchnka

Bardziej szczegółowo

Rozwiązanie jednokierunkowego przepływu w przewodach prostoosiowych o dowolnym kształcie przekroju poprzecznego metodą elementów skończonych

Rozwiązanie jednokierunkowego przepływu w przewodach prostoosiowych o dowolnym kształcie przekroju poprzecznego metodą elementów skończonych Symulacja w Badanach Rozwoju Vol. 3, No. 1/2012 Tomasz Janusz TELESZEWSKI, Sławomr Adam SORKO Poltchnka Bałostocka, WBIŚ, ul.wjska 45E, 15-351 Bałystok E-mal: t.tlszwsk@pb.du.pl, s.sorko@pb.du.pl Rozwązan

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

1 n 0,1, exp n

1 n 0,1, exp n 8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m

Bardziej szczegółowo

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter Scntfc ournal Martm Unvrt of Szczcn Zzt Naukow Akadma Morka w Szczcn 8, 13(85) pp. 5 9 8, 13(85). 5 9 ozcjonowan bazując na wlonorowm fltrz Kalmana otonng bad on th mult-nor Kalman fltr otr Borkowk, anuz

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj

Bardziej szczegółowo

SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA TEMPERATUROWEGO

SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA TEMPERATUROWEGO 49/14 Archves of Foundry, Year 2004, Volume 4, 14 Archwum O dlewnctwa, Rok 2004, Rocznk 4, Nr 14 PAN Katowce PL ISSN 1642-5308 SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA

Bardziej szczegółowo

Mechanika kwantowa I. Opracowanie: Barbara Pac, Piotr Petelenz

Mechanika kwantowa I. Opracowanie: Barbara Pac, Piotr Petelenz Mchanka kwantowa I Opracowan: Barbara Pac, Potr Ptln Zwycajowo, podstawy mchank kwantowj formułowan są w postac klku postulatów, których numracja konkrtna postać są różn w różnych ujęcach. W nnjsym bor

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

ćwiczenie 211 Hardware'owa realizacja automatu z parametrem wewnętrznym 1. Synteza strukturalna automatu z parametrem wewnętrznym

ćwiczenie 211 Hardware'owa realizacja automatu z parametrem wewnętrznym 1. Synteza strukturalna automatu z parametrem wewnętrznym ATEDA INFOMATYI TEHNIZNE Ćwicnia laoratoryjn Logiki Układów yfrowych ćwicni Tmat: Hardwarowa raliacja automatu paramtrm wwnętrnym. ynta strukturalna automatu paramtrm wwnętrnym Punktm wyjścia synty strukturalnj

Bardziej szczegółowo

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje

Bardziej szczegółowo

WPŁYW PRĘDKOŚCI ZANURZANIA DO CHŁODZIWA NA STAN NAPRĘŻENIA W HARTOWANYCH ELEMENTACH STALOWYCH

WPŁYW PRĘDKOŚCI ZANURZANIA DO CHŁODZIWA NA STAN NAPRĘŻENIA W HARTOWANYCH ELEMENTACH STALOWYCH ODELOWAIE IŻYIERSKIE ISS 896-77X 43,. 37-44, Glwc 202 WPŁYW PRĘDKOŚCI ZAURZAIA DO CHŁODZIWA A SA APRĘŻEIA W HAROWAYCH ELEEACH SALOWYCH ADA KULAWIK, JOAA WRÓEL Intytut Informatyk ortyczn Stoowan, Poltchnka

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

MES dla stacjonarnego przepływu ciepła

MES dla stacjonarnego przepływu ciepła ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Symulacja czasu wychładzania powietrza w przewodzie wentylacyjnym

Symulacja czasu wychładzania powietrza w przewodzie wentylacyjnym Por Prybycn Symulacja casu ychłaana pora pro nylacyjnym Symulacja casu ychłaana pora pro nylacyjnym ) Do cgo służy program: Program służy o okrślna sybkośc ychłaana, lub ograna pora nąr prou nylacyjngo

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Dr inż. Stanisław Walczak, Instytut Inżynierii Cieplnej i Procesowej, Wydział Mechaniczny, Politechnika. Streszczenie

Dr inż. Stanisław Walczak, Instytut Inżynierii Cieplnej i Procesowej, Wydział Mechaniczny, Politechnika. Streszczenie tanisław Walcak * WPŁYW WŁAŚCIWOŚCI YNAMICZNYCH Modlu OGUMIENIA NA YNAMIKĘ POPRZECZNĄ AMOCHOU THE Influnc of dnamc proprts of tr Modl on th latral dnamcs of road vhcl trscn Abstract W artkul prdstawono

Bardziej szczegółowo

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor

Bardziej szczegółowo

PL B HUTNICZA BUP 16/ WUP 10/15. rzecz. pat. Andrzej Kacperski RZECZPOSPOLITA POLSKA

PL B HUTNICZA BUP 16/ WUP 10/15. rzecz. pat. Andrzej Kacperski RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220448 (13) B1 Recypospoltej Polskej 397952 31.01.2012 (51) Int.Cl. H03M 1/00 (2006.01) H03M 1/38 (2006.01) H03M 1/14 (2006.01) (54) (73) Upranony

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałośc Matrałów Mtod Komutrowych Mchank Rozrawa doktorska Tytuł: Analza wrażlwośc otymalzacja wolucyjna układów mchancznych

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Analiza porównawcza parametrów fizykalnych mostków cieplnych przy zastosowaniu analiz numerycznych

Analiza porównawcza parametrów fizykalnych mostków cieplnych przy zastosowaniu analiz numerycznych PAWŁOWSKI Krzysztof 1 DYBOWSKA Monka 2 Analza porównawcza paramtrów fzykalnych mostków cplnych przy zastosowanu analz numrycznych WSTĘP Nowoczsn rozwązana konstrukcyjno-matrałow stosowan w budownctw nrozrwaln

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

elektrostatyka ver

elektrostatyka ver elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

OSZACOWANIE BŁĘDÓW A POSTERIORI I GĘSTOŚCI PUNKTÓW DANYCH EKSPERYMENTALNO-NUMERYCZNYCH

OSZACOWANIE BŁĘDÓW A POSTERIORI I GĘSTOŚCI PUNKTÓW DANYCH EKSPERYMENTALNO-NUMERYCZNYCH JÓZEF KROK, JAN WOJAS OSZACOWANIE BŁĘDÓW A POSERIORI I GĘSOŚCI PUNKÓW DANYCH EKSPERYMENALNO-NUMERYCZNYCH ESIMAION OF A POSERIORI ERROR AND MESH DENSIY OF EXPERIMENAL-NUMERICAL DAA Strszczn Abstract W nnjszym

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

WYBRANE STANY NIEUSTALONE TRANSFORMATORA

WYBRANE STANY NIEUSTALONE TRANSFORMATORA WYBRANE STANY NIEUSTAONE TRANSFORMATORA Analę pracy ransformaora w sanach prejścowych można preprowadć w oparcu o równana dynamk. Rys. Schema deowy ransformaora jednofaowego. Onacmy kerunk prądów napęć

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

ANALIZA PROCESU ZAPEŁNIENIA WNĘKI CIEKŁYM STOPEM W METODZIE PEŁNEJ FORMY.

ANALIZA PROCESU ZAPEŁNIENIA WNĘKI CIEKŁYM STOPEM W METODZIE PEŁNEJ FORMY. 0/40 Solidification of Metals and Alloys, Year 999, Volume, Book No. 40 Krzepnięcie Metali i Stopów, Rok 999, Rocznik, Nr 40 AN Katowice L ISSN 008-9386 ANALIZA ROCESU ZAEŁNIENIA WNĘKI CIEKŁYM STOEM W

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa

Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 23, 2006 Zastosowane metod grupowana sekwencj casowych w roponawanu mowy na podstawe ukrytych model Markowa Tomas PAŁYS Zakład Automatyk, Instytut Telenformatyk

Bardziej szczegółowo

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne)

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne) Naprężena wywołane cężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwonego: h γ h γ h jednorodne podłoże gruntowe o cężare objętoścowym γ γ h n m γ Wpływ wody gruntowej na naprężena

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność

Bardziej szczegółowo

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1 1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej:

H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej: Pojedyncy rekord obserwacyjny: SS,PG,.,,3.746,357.774,9:39:8, OZNCZENIE REKORDU NZW ODLEGŁOŚĆ KĄ POZIOY KĄ PIONOWY CZS Schema opracowana jednej ser obserwacyjnej: Ką poomy H L H P H P H P H P3 H L H L

Bardziej szczegółowo

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła,

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła, Struktury drewaste rogrywające parametrycne od każdego werchołka pocątkowego różną sę medy sobą kstałtem własnoścam. Stopeń łożonośc struktury może być okreśony pre współcynnk łożonośc L G ++ ) ++ L G

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

WPŁYW ZMIAN REAKTANCJI MAGNESUJĄCEJ NA PRACĘ BEZCZUJNIKOWEGO UKŁADU STEROWANIA SILNIKIEM INDUKCYJNYM Z ESTYMATOREM MRAS CC

WPŁYW ZMIAN REAKTANCJI MAGNESUJĄCEJ NA PRACĘ BEZCZUJNIKOWEGO UKŁADU STEROWANIA SILNIKIEM INDUKCYJNYM Z ESTYMATOREM MRAS CC Prac Naukow Instytutu Maszyn, Napędów Pomarów Elktrycznych Nr 63 Poltchnk Wrocławskj Nr 63 Studa Matrały Nr 29 2009 Matusz DYBKOWSKI*, Trsa ORŁOWSKA-KOWALSKA* slnk ndukcyjny, strowan wktorow, napęd bzczujnkowy,

Bardziej szczegółowo

Całka nieoznaczona wykład 7 ( ) Motywacja

Całka nieoznaczona wykład 7 ( ) Motywacja Całka nieoznaczona wykład 7 (12.11.07) Motywacja Problem 1 Kropla wody o średnicy 0,07 mm porusza się z prędkościa v(t) = g c (1 e ct ), gdzie g oznacza przyśpieszenie ziemskie, a stałac c = 52,6 1 s została

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski)

PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski) PRZEKŁADNIE FALOWE (W. Ostapsk). Wstęp Perwsy patent na prekładnę harmoncną waną w Polsce falową otrymał w 959 roku w USA C.W. Musser, [04, 05]. Rok późnej była ona preentowana na wystawe w Nowym Yorku

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Precesja koła rowerowego

Precesja koła rowerowego Precesja koła rowerowego L L L L g L t M M F L t F O y [( x ( x s r S y s Twerene Stenera y r s s ] x Z efncj ukłau śroka asy: y s s - oent bewłanośc wgęe os równoegłej o os prechoącej pre śroek cężkośc

Bardziej szczegółowo

NIEZAWODNOŚĆ KONSTRUKCJI O PARAMETRACH PRZEDZIAŁOWYCH I LOSOWYCH

NIEZAWODNOŚĆ KONSTRUKCJI O PARAMETRACH PRZEDZIAŁOWYCH I LOSOWYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2 Sra: BUDOWNICTWO z. Nr kol. Andrzj POWNUK NIEZAWODNOŚĆ KONSTRUKCJI O PARAETRACH PRZEDZIAŁOWYCH I LOSOWYCH Strszczn. W pracy wykazano, ż mtoda projktowana konstrukcj

Bardziej szczegółowo

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 187-192, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI ZBIGNIEW KOSMA, BOGDAN NOGA Instytut Mechank Stosowane,

Bardziej szczegółowo

Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)

Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego) Zadania z mechaniki dla nanostudentów Seria 3 (wykład prof J Majewskiego) Zadanie 1 Po równi pochyłej o kącie nachylenia do poziomu równym α zsuwa się klocek o masie m, na który działa siła oporu F = m

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta.

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta. Ćwicenie 1 Wynacanie współcynnika roprasania wrotnego promieniowania beta. Płytki roprasające Ustawienie licnika Geigera-Műllera w ołowianym domku Student winien wykaać się najomością następujących agadnień:

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Sekantooptyki owali i ich własności

Sekantooptyki owali i ich własności Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

PORÓWNANIE TEMPERATUR W HALI ZWIERZĄT WYZNACZONYCH NA PODSTAWIE BILANSU CIEPŁA OBLICZONEGO RÓśNYMI METODAMI

PORÓWNANIE TEMPERATUR W HALI ZWIERZĄT WYZNACZONYCH NA PODSTAWIE BILANSU CIEPŁA OBLICZONEGO RÓśNYMI METODAMI InŜynra Rolncza 6/005 Tadusz Głusk Katdra Mloracj Budownctwa Rolnczgo Akadma Rolncza w Lubln PORÓWNANIE TEMPERATUR W HALI ZWIERZĄT WYZNACZONYCH NA PODSTAWIE BILANSU CIEPŁA OBLICZONEGO RÓśNYMI METODAMI

Bardziej szczegółowo

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Półprzewodniki (ang. semiconductors).

Półprzewodniki (ang. semiconductors). Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn

Bardziej szczegółowo

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PARACH ZĘBATYCH PRZEKŁADNI POWER SHIFT

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PARACH ZĘBATYCH PRZEKŁADNI POWER SHIFT Jan ZWOLAK Marek MARTYNA ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PARACH ZĘBATYCH PRZEKŁADNI POWER SHIFT ANALYSIS OF CONTACT STRESS AND BENDING STRESS OCCURING IN LOADED TOOTHED

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Planowanie trajektorii ruchu chwytaka z punktem pośrednim

Planowanie trajektorii ruchu chwytaka z punktem pośrednim Dr nŝ. Andrzj Graboś Dr nŝ. ark Boryga Katdra InŜynr chancznj Automatyk, Wydzał InŜynr Produkcj, Unwrsytt Przyrodnczy w ubln, ul. Dośwadczalna 50A, 0-80 ubln, Polska -mal: andrzj.grabos@up.lubln.pl -mal:

Bardziej szczegółowo

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT -0 T R I B O L O G I A 55 Jan ZWOLAK *, Marek MARTYNA ** ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT ANALYSIS OF CONTACT STRESS AND BENDING STRESS

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA

KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA Andrej WEREMCZUK, Rafał RUSINEK, Jery WARMIŃSKI 3. WSTĘP Obróbka skrawaniem jest jedną najbardiej ropowsechnionych metod kstałtowania cęści masyn.

Bardziej szczegółowo

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,

Bardziej szczegółowo

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I P O Z N AŃSKIEJ Nr Budowa Maszyn Zarządzane Produkcją 005 PIOTR GORZELAŃCZYK, JAN ADAM KOŁODZIEJ OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo