4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że"

Transkrypt

1 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy wtedy c = f (a = df(z. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pocodnej jest istnienie liczby c C, takiej że f(z f(a c( r(z = 0, z a. Stąd natycmiast wynika, że funkcja olomorficzna w punkcie a jest w tym punkcie ciągła, bo spełnia f(z f(a = (r(z + c (. Przykład. Niec f(z = z, z C. Wtedy czyli f (z =. f(z f(a Przykład. Niec g(z = z, z C. Wówczas więc Weźmy dwa ciągi zbieżne do 0 Mamy n n g(z g(a = = z a, = =, lim z a = lim 0. n = n 0, k n = i n 0. n = = n k n, = i n i = n, n k n n a więc funkcja g(z = z nie jest olomorficzna w żadnym punkcie a C. Przykład. Dla z C jest z = x+iy, gdzie (x, y R 2. Zapiszmy funkcję z poprzedniego przykładu we współrzędnyc rzeczywistyc Oczywiście g : R 2 R 2. Wtedy g(x, y = (x, y = (g (x, y, g 2 (x, y. g (x,y g 2 (x,y g (x,y g 2 (x,y = ( 0 0

2 Funkcja g ma ciągłe pocodne cząstkowe, więc jest różniczkowalna w sensie rzeczywistym. Twierdzenie (Caucy Riemann. Niec f : Ω C, gdzie Ω jest otwartym podzbiorem C. Jeżeli f = u + iv jest olomorficzna w punkcie a Ω, to jest różniczkowalna jako odwzorowanie z Ω w R 2, a macierzą jej pocodnej jest ( u (a u (a ( u (a (a = (a (a (a u (a. Zacodzą zatem równania u (a = (a, u (a = (a. Odwrotnie, jeśli f jest w sensie rzeczywistym różniczkowalna w a i spełnia równania C-R, to jest olomorficzna oraz f (a = u (a + i (a = (a i u (a. Dowód. Przypomnijmy, że odwzorowanie f : Ω R 2, gdzie Ω jest otwartym podzbiorem R 2 jest różniczkowalne w sensie rzeczywistym w punkcie a Ω i ma pocodną A : R 2 R 2 (która jest odwzorowaniem liniowym, jeśli Niec f(a + f(a A 0 0 ( α β A =, α, β, γ, δ R. γ δ Z drugiej strony rózniczkowalność zespolona f, jako funkcji f : Ω C oznacza, że gdzie f(a + f(a c lim 0 c = α + iβ C. = 0, Zauważmy, że odwzorowanie c jest też liniowe nad R i więc jego macierzą jest c = (α + iβ( + i 2 = (α β 2 + i(β + α 2 ( ( ( α β = 2 α β =, β + α 2 β α 2 Stąd natycmiast wynika nasza teza. ( α β C =. β α W dalszym ciągu wykładu będziemy korzystać z rozmaityc oznaczeń dotyczącyc pocodnyc zespolonyc i rzeczywistyc. Aby się w nic nie pogubić, sporządzimy teraz ic listę, do której można będzie zawsze w razie wątpliwości powrócić. 2

3 Niec f = u + iv : Ω C będzie olomorficzna w punkcie z = x + iy Ω. Pocodna zespolona f w punkcie z jest liczbą i oznaczamy ją przez f (z = df(z dz = f(z + i f(z. Owzorowanie liniowe f (z możemy też interpretować jako pocodną rzeczywistą odworowania f = (u, v : Ω R 2 o macierzy ( f u(x, y u(x, y (x, y =. v(x, y v(x, y Jak widać liczby zespolone f(z i f(z są kolumnami tej macierzy. Natomiast jej wiersze to gradienty u i v, które będziemy oznaczać przez u(x, y = v(x, y = ( u(x, y, u(x, y ( v(x, y, v(x, y = u(x, y + i u(x, y, = v(x, y + i v(x, y. Jak łatwo zauważyć, powyższa notacja pozwala zapisać równania Caucy ego-riemanna w zwięzłej postaci: v(z = i u(z. Jeszcze inną postacią tyc równań jest Przykład. Niec f(z = z 2. Wtedy czyli Mamy i Otrzymujemy więc oraz f(z = i f(z. f(z = (x + iy 2 = x 2 y 2 + i(2xy, u(x, y = x 2 y 2, u (z + 2 z 2 = 2x =, u = z2 + 2z + 2 z 2 (z 2 = 2z f (z = 2x + i2y = 2z. v(x, y = 2xy. = 2y = = 2z + 0 2z. Niektóre własności różniczkowania zespolonego są analogiczne do własności różniczkowania w R. 3

4 ( Jeśli f, g są olomorficzne, to olomorficzne są również funkcje f + g, fg, f/g (o ile g 0 i (f + g = f + g, (fg = f g + fg, ( f = f g fg. g g 2 (2 Jeśli Ω f Ω2 g C są olomorficzne, to olomorficzne jest g f i (g f (z = g (f(zf (z, z C. (3 Jeśli f : Ω na U (gdzie U, Ω C są otwarte jest olomorficzna, f (z 0 dla z Ω i f jest ciągła, to f jest olomorficzna oraz czyli (f (f(z = f (z, (f (w = Przykład. z =, (z 2 = 2z, (z n = nz n. f (f (w. z Ω z n a n = ((zn + z n 2 a + z n 3 a a n = (z n + z n 2 a + z n 3 a a n z a na n Przykład. Niec f(z =. Dla każdego a 0 z czyli f(a + = a + = a + = a a f(z = ( n n a n = ( n ( n a n+. ( n n a n+ dla < a, Funkcję f na zbiorze otwartym Ω C nazywamy analityczną, jeśli dla każdego a Ω istnieje r > 0, takie że K(a, r Ω i istnieje ciąg współczynników a n, takic że f(a + = a n n dla < r. Funkcja z jest funkcją analityczną, ponieważ w otoczeniu każdego punktu rozwija z się w szereg potęgowy. Twierdzenie 2. Jeśli f jest analityczna na zbiorze otwartym Ω C, to jest na tym zbiorze olomorficzna. 4

5 Dowód. Niec a Ω, f(a + = a n n, < r oraz a 0 = f(a. Wtedy Zatem f(a + f(a = a 0 f(a + n= a n n = a n n 0 a n= a = f (a. 3. Funkcja zadana szeregiem potęgowym f(z = a n z n, z < r, jest analityczna. = a 0 f(a + n= a n n Dowód. Niec z < r będzie ustalone i niec < r z. Wtedy z + < r i n n f(z + = a n (z + n = a n( z n k k. k=0 k Zauważmy, że szereg podwójny występujący po prawej stronie jest bezwzględnie zbieżny, bo ( n n a n z n k k a n ( z + n <, z + < r, k k=0 i wobec tego wolno zmienić kolejność sumowania, co daje f(z + = α k (z k, gdzie α k (z = n=k k=0 ( n a n z n k. k 4. Jeśli funkcja f zadana jest szeregiem potęgowym f(z = a n z n, z < r, to f (z = α (z = na n z n, z < r. n= Podkreślmy, że promień zbieżności szeregu f (z jest taki sam, jak promień f(z. Widać też, że szereg potęgowy różniczkuje się tak, jak wielomian, czyli wyraz po wyrazie. Widać też, że funkcja a n F (z = n + zn+, z < r, 5

6 jest funkcją pierwotną dla f, bo oczywiście F (z = f(z dla z < r. Szereg definiujący F ma ten sam promień zbieżności. Z tego, co już wiemy, przez łatwą indukcję wynika, że funkcja zadana szeregiem potęgowym jest nieskończenie wiele razy różniczkowalna w sensie zespolonym wewnątrz koła zbieżności i f n (z = n!α n (z, a w szczególności f n (0 = n!a n. To, co wiemy o szeregac potęgowyc, bez trudu przenosimy na funkcje analityczne. Twierdzenie 5. Niec f : Ω C będzie funkcją analityczną w zbiorze otwartym Ω C. Wówczas dla każdego z Ω f n (z f(z + = n, z < r. n! Innymi słowy, funkcja analityczna jest nieskończenie wiele razy różniczkowalna w sensie zespolonym i rozwija się w szereg Taylora wokół każdego punktu swojej dziedziny. I jeszcze twierdzenie o wartości średniej. Przypomnijmy najpierw twierdzenie Lagrange a: 6. Jeśli ϕ : [α, β] R jest funkcją ciągłą na [α, β] i rózniczkowalną w (α, β, to istnieje punkt t 0 (α, β, taki że ϕ(β ϕ(α = ϕ (t 0 (β α. Niestety twierdzenie Lagrange a nie przenosi się dosłownie na przypadek zespolony. Powodem tego jest, że punkt pośredni dla części rzeczywistej funkcji nie jest na ogół równy punktowi pośredniemu dla części zespolonej. Tym niemniej prawdziwe jest następujące pożyteczne oszacowanie. Twierdzenie 7 (o wartości średniej. Niec Ω C będzie otwarty i niec f = u + iv : Ω C będzie olomorficzna. Jeśli [a, b] Ω, to istnieje c (a, b, takie że Dowód. Niec f(b f(a f (c b a. ϕ(t = u(a + t(b a, ψ(t = v(a + t(b a, 0 t. Na mocy twierdzenia Lagrange a istnieją 0 < t, t 2 <, takie że oraz u(b u(a = ϕ( ϕ(0 = ϕ (t =< u(a + t (b a, b a >=< u(c, b a > v(b v(a = ψ( ψ(0 = ψ (t 2 gdzie c = a + t (b a, c 2 = a + t 2 (b a. 6 =< v(a + t 2 (b a, b a >=< v(c 2, b a >,

7 Mamy więc f(b f(a = u(b u(a 2 + v(b v(a 2 = u(c 2 + v(c 2 2 b a. Pozostaje zauważyć, że skoro v(z = i u(z, to u(z = v(z i jeśli c jest tym punktem c j, gdzie (c j ma większą wartość, to u(c 2 + v(c 2 2 u(c 2 + v(c 2 = f (c. Wniosek 8. Niec f będzie funkcją olomorficzną na obszarze Ω C. Jeśli f (z = 0 dla z Ω, to f jest funkcją stałą. Dowód. Przypuśćmy nie wprost, że f(a f(b dla pewnyc a, b Ω. Połączmy punkty a i b łamaną Γ = [z 0, z, z 2,..., z n ], a = z 0, b = z n. Istnieje 0 k < n, takie że f(z k f(z k+. Ale na mocy twierdzenia o wartości średniej mamy f(z k+ f(z k f (c z k+ z k, gdzie c (z k, z k+. Skoro jednak f (c = 0, to f(z k+ = f(z k i mamy sprzeczność. 7

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że

Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Definicja Ilorazem różnicowym funkcji f w punkcie a nazywamy

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Analiza I.2*, lato 2018

Analiza I.2*, lato 2018 Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński. Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1). Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach

V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach 1. Niezależność wielomianów, funkcji wykładniczych i trygonometrycznych W paragrafie tym podamy pewien lemat 1 potrzebny w

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ EAIiIB-Inormatyka -Wykład 4- dr Adam Ćmiel cmiel@agedupl RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Niec : R D R Niec D będzie punktem skupienia zboru D Oznaczenia: Ot,δ) K,δ) -δ, +δ) D ; S,δ) Ot,δ)-{

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

Temat: Ciągi i szeregi funkcyjne

Temat: Ciągi i szeregi funkcyjne Emilia Domińczyk Aleksandra Chrzuszcz Temat: Ciągi i szeregi unkcyjne 1.Co to jest ciąg unkcyjny? Co to jest szereg unkcyjny? Podać przykłady. Deinicja ciągu unkcyjnego Niech X c R, X Ø. Funkcję określoną

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

Zagadnienia stacjonarne

Zagadnienia stacjonarne Zagadnienia stacjonarne Karol Hajduk 19 grudnia 2012 Nierówność wariacyjna (u (t), v u(t)) + a(u, v u) + Ψ(v) Ψ(u) (f, v u), v V. Zagadnienie stacjonarne ma postać (u (t) = 0): a(u, v u) + Ψ(v) Ψ(u) (f,

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Analiza Matematyczna 2

Analiza Matematyczna 2 Analiza Matematyczna Wydział Matematyki wykładowca T Downarowicz 6 czerwca 017 Wykład VIII Pocodne cząstkowe pierwszego i wyższyc rzędów, twierdzenie Scwarza, gradient, esjan, ekstrema lokalne Przypomnijmy,

Bardziej szczegółowo

Rachunek różniczkowy funkcji f : R R

Rachunek różniczkowy funkcji f : R R Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

1. Funkcje monotoniczne, wahanie funkcji.

1. Funkcje monotoniczne, wahanie funkcji. 1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.

Bardziej szczegółowo

Funkcje. Granica i ciągłość.

Funkcje. Granica i ciągłość. Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s. Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian 9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji

SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo