1 Podobieństwo macierzy

Podobne dokumenty
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wektory i wartości własne

Wektory i wartości własne

R k v = 0}. k N. V 0 = ker R k 0

Zadania z Algebry liniowej 4 Semestr letni 2009

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

Endomorfizmy liniowe

Układy równań liniowych

1 Macierze i wyznaczniki

Postać Jordana macierzy

Diagonalizacja macierzy i jej zastosowania

1 Zbiory i działania na zbiorach.

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

Zestaw zadań 14: Wektory i wartości własne. ) =

Kombinacje liniowe wektorów.

Baza w jądrze i baza obrazu ( )

Praca domowa - seria 6

Diagonalizacja macierzy i jej zastosowania

Algebra liniowa. 1. Macierze.

φ(x 1,..., x n ) = a i x 2 i +

Układy równań i równania wyższych rzędów

9 Przekształcenia liniowe

Zadania przygotowawcze, 3 kolokwium

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

Zadania egzaminacyjne

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

13 Układy równań liniowych

3 Przestrzenie liniowe

Diagonalizacja macierzy i jej zastosowania

Przestrzenie wektorowe

Własności wyznacznika

Wartości i wektory własne

Macierze. Rozdział Działania na macierzach

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Zaawansowane metody numeryczne

Rozwiązania, seria 5.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

1 Elementy logiki i teorii mnogości

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

GAL II. zestawy do prac domowych z rozwiązaniami semestr letni 2011/2012. Wydział MIM UW

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

4 Przekształcenia liniowe

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

Geometria Lista 0 Zadanie 1

Algebra liniowa z geometrią

1 Macierz odwrotna metoda operacji elementarnych

Przestrzenie liniowe

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Zaawansowane metody numeryczne

Wyk lad 11 Przekszta lcenia liniowe a macierze

Układy równań i nierówności liniowych

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Przestrzeń liniowa i przekształcenie liniowe

Metoda eliminacji Gaussa. Autorzy: Michał Góra

DB Algebra liniowa 1 semestr letni 2018

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

Wyk lad 11 1 Wektory i wartości w lasne

1 Działania na zbiorach

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

14. Przestrzenie liniowe

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

Rozdzia l 1. Przestrzenie wektorowe

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

O MACIERZACH I UKŁADACH RÓWNAŃ

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Macierz o wymiarach m n. a 21. a 22. A =

Wstęp do komputerów kwantowych

3. Wykład Układy równań liniowych.

Wykład 14. Elementy algebry macierzy

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Informacja o przestrzeniach Hilberta

2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9

5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017

Analiza funkcjonalna 1.

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3

VI. Równania różniczkowe liniowe wyższych rzędów

Transkrypt:

GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa C K n,n taka, że B = C 1 AC Uwaga 1 Podobieństwo macierzy jest relacją równoważności w zbiorze K n,n, a więc relacja ta wyznacza podział K n,n na klasy abstrakcji (rozłączne podzbiory) macierzy wzajemnie podobnych Uwaga 2 Macierz C powyżej można traktować jako macierz zmiany bazy w przestrzeni K n, więc macierze A i B są podobne wtedy i tylko wtedy, gdy są macierzami pewnego przekształcenie liniowego F L(K n ) w różnych bazach (przy czym rozumiemy, że w dziedzinie i przeciwdziedzinie F mamy jedną bazę) Stwierdzenie 1 (Niezmienniki podobieństwa) Jeżeli macierze A, B K n,n są podobne, to (i) det A = det B, (ii) tra = trb, (iii) ranka = rankb Dowód Teza (i) jest wnioskiem z tw Cauchy ego o wyznaczniku iloczynu macierzy, (ii) i (iii) zostawiamy jako ćwiczenie 2 Wartości, wektory i podprzestrzenie własne Definicja 2 Niech A K n,n (i) Powiemy, że liczba λ K jest wartością własną macierzy A, jeżeli istnieje wektor v K n, v 0, taki, że A v = λ v 1

(ii) Taki wektor v nazywamy wektorem własnym odpowiadającym wartości własnej λ (iii) Jeżeli λ jest wartością własną macierzy A, to zbiór V λ = { v K n : A v = λ v} nazywamy podprzestrzenią własną odpowiadającą wartości własnej λ Uwaga 3 Jak łatwo zauważyć, V λ = ker(a λi n ), więc V λ jest podprzestrzenią liniową w K n, a jej elementy to wszystkie wektory własne macierzy A odpowiadające wartości własnej λ oraz wektor zerowy Definicja 3 Widmem macierzy A K n,n nazywamy zbiór jej wszystkich wartości własnych Zbiór ten oznaczamy symbolem σ(a) 5 4 Przykład 1 Niech A = Można policzyć, że 8 7 A 1 1 =, A 1 1 1 = 3 2 1 2 Zatem A[ ma ] wartości własne 1, 3, a odpowiadające im wektory własne to 1 1 i 1 2 Przykład 2 Jeżeli A K n,n jest macierzą diagonalną, a 1 a 2 A =, an to liczby a 1, a 2,, a n są wartościami własnymi macierzy A, a odpowiadające im wektory własne to e 1, e 2,, e n Przykład 3 Jeżeli A K n,n, x 0 i x ker A, to x jest wektorem własnym dla wartości własnej 0 Jeżeli macierz A jest osobliwa, to ker A jest podprzestrzenią własną odpowiadającą wartości własnej 0 Definicja 4 Niech A K n,n Wielomian charakterystyczny macierzy A jest zdefiniowany jako p A (λ) = det n (A λi n ) Można pokazać, że p A K[λ] n 5 4 Przykład 4 Jeżeli A =, to 8 7 p A (λ) = det 5 λ 4 = ( 5 λ)(7 λ) + 32 8 7 λ = λ 2 2λ 3 = (λ + 1)(λ 3) 2

Stwierdzenie 2 Liczba λ K jest wartością własną macierzy A K n,n wtedy i tylko wtedy, gdy λ jest pierwiastkiem wielomianu charakterystycznego p A Dowód λ jest wartością własną A wtw gdy A v = λ v dla pewnego niezerowego wektora v, wtw gdy v ker(a λi n ), wtw gdy macierz A λi n jest osobliwa, wtw gdy det(a λi n ) = 0 Stwierdzenie 3 Jeżeli λ K jest wartością własną macierzy A K n,n, to wektor v K n \{0} jest wektorem własnym odpowiadającym wartości własnej λ wtedy i tylko wtedy, gdy v ker(a λi n ) Dowód A v = λ v wtw gdy (A λi n ) v = 0 wtw gdy v ker(a λi n ) 5 4 Przykład 5 Macierz A = z poprzedniego przykładu ma dokładnie dwie wartości własne 1 i 8 7-3 Przykład 6 Jeżeli A = diag(a 1, a 2,, a n ) (macierz diagonalna), to oraz σ(a) = {a 1, a 2,, a n } p A (λ) = (a 1 λ)(a 2 λ) (a n λ) Stwierdzenie 4 Wielomian charakterystyczny macierzy jest niezmiennikiem relacji podobieństwa, tzn jeżeli macierze A, B K n,n są podobne, to p A = p B Dowód B = C 1 AC dla pewnej nieosobliwej macierzy C Dla dowolnej liczby λ K: C 1 (A λi n )C = C 1 AC C 1 λi n C = B λi n, co oznacza, że macierze A λi n i B λi n też są podobne, więc ich wyznaczniki są równe, czyli p A (λ) = det(a λi n ) = det(b λi n ) = p B (λ) Stwierdzenie 5 Jeżeli λ 1, λ 2,, λ k są różnymi wartościami własnymi macierzy A K n,n i v j oznacza wektor własny odpowiadający wartości własnej λ j, to wektory v 1, v 2,, v k są liniowo niezależne Dowód Stosujemy indukcję po k Dla k = 1 teza jest oczywista Załóżmy, że teza zachodzi dla k 1 i niech Zatem α 1 v 1 + + α k v k = 0 (*) A(α 1 v 1 + + α k v k ) = α 1 λ 1 v 1 + α 2 λ 2 v 2 + + α k λ k v k = 0 3

Mnożąc (*) stronami przez λ 1 dostajemy α 1 λ 1 v 1 + α 2 λ 1 v 2 + + α k λ 1 v k = 0, więc po odjęciu ostatnich dwóch równości stronami, otrzymujemy α 2 (λ 2 λ 1 ) v 1 + + α k (λ k λ 1 ) v k = 0 Wobec założenia indkucyjnego α 2 = = α k = 0, więc także α 1 = 0 i pokazaliśmy liniową niezależność wektorów v 1,, v k 3 Endomorfizmy Definicja 5 Niech X oznacza przestrzeń liniową Endomorfizm przestrzeni X jest to dowolne przekształcenie liniowe f L(X) Jeżeli w przestrzeni X ustalimy bazę (x 1,, x n ), to możemy rozważać macierz A przekształcenia liniowego f L(X) w tej bazie Jeżeli (y 1,, y n ) to inna baza w X, B to macierz f w tej bazie, to B = U 1 AU, gdzie U to macierz miany bazy z (y 1,, y n ) na (x 1,, x n ) Na odwrót, każda macierz nieosobliwa z K n,n jest macierzą zmiany bazy, więc każda macierz podobna do A jest macierzą przekształcenia liniowego f w pewnej bazie Definicja 6 Jak wcześniej pokazaliśmy, wyznacznik i wielomian charakterystyczny są niezmiennnikami relacji podobieństwa macierzy Wobec powyższych spostrzeżeń, możemy określić wyznacznik i wielomian charakterystyczny endomorfizmu f L(X): niech A będzie macierzą f w pewnej bazie Wtedy det f = det A, p f (λ) = p A (λ) Definicja 7 Wartość własną, wektor własny i podprzestrzeń własną endomorfizmu f L(X) definiujemy analogicznie jak w dla macierzy: (i) λ jest wartością własną f, jeżeli istnieje v X \ {0} taki, że f(v) = λv; (ii) każdy taki wektor v nazywamy wektorem własnym endomorfizmu f, odpowiadającym wartości własnej λ; (iii) podprzestrzeń własną odpowiadającą wartości wasnej λ definiujemy jako V λ = {v X : f(v) = λv} 4

Tak samo, jak w przypadku macierzy, prawdziwe jest Stwierdzenie 6 Jeżeli f L(X), to (i) λ jest wartością własną f wtedy i tylko wtedy, gdy p f (λ) = 0; (ii) V λ = ker(f λid X ); (iii) wektory własne f odpowiadające różnym wartościom własnym f są liniowo niezależne Definicja 8 Podprzestrzeń U X nazywamy podprzestrzenią niezmienniczą endomorfizmu f L(X), jeżeli f(u) U Przykład 7 Jeżeli f L(K[t] n ), f(p) = p, to f ma podprzestrzenie niezmiennicze span(1,, t k ) dla k = 0, 1,, n Uwaga 4 Niech f L(X): Jeżeli λ jest wartością własną endomorifzmu f, to podprzestrzeń własna V λ jest podprzestrzenią niezmienniczą dla f Podprzestrzenie imf i ker f są niezmiennicze dla f Stwierdzenie 7 Jeżeli U X jest podprzestrzenią niezmienniczą endomorfizmu f L(X), to wielomian charakterystyczny endomorfizmu f U L(U) jest dzielnikiem wielomianu charakterystycznego endomorfizmu f W dowodzie wykorzystamy następujący wniosek z tw Cauchy ego: Stwierdzenie 8 Niech A K n,n będzie macierzą postaci A = B C, 0 D gdzie B K k,k, C K k,n k, D K n k,n k Wtedy det A = det B det D Dowód Jeżeli macierz D jest osobliwa, to macierz A również i teza jest prawdziwa W przeciwnym przypadku możemuy napisać: A = B C = 0 D [ Ik CD 1 ] B 0 0 I n k 0 I n k Ik 0 0 C Wyznaczniki kolejnych macierzy w iloczynie po prawej stronie są równe 1, det A (rozwijamy rekurencyjnie n k razy względem ostatniej kolumny), det C (rozwijamy rekurencyjnie k razy względem pierwszej kolumny) Wystarczy skorzystać z twierdzenia Cauchy ego 5

Dowód stw 7 Niech u 1,, u k to baza podprzestrzeni U, u k+1,, u n to jej dopełnienie do bazy całej przestrzeni X W tej bazie macierz f ma postać B C A = 0 D wobec czego p f (λ) = det(a λi n ) = [ B λik C 0 D λi n k = det(b λi k ) det(d λi n k ) ] = p f U (λ) det(d λi n k ) 4 Baza i macierz Jordana endomorfizmu Definicja 9 Klatka Jordana jest to macierz postaci λ 1 λ 1 λ J k,λ = 1 λ 1 λ W szczególności J 1,λ = [λ] Macierz Jordana jest to macierz postaci J = J k1,λ 1 J k2,λ2 Jkr,λr K n,n, gdzie k 1 + + k r = n Powiemy, że baza w 1, w n przestrzeni X jest bazą Jordana dla endomorfizmu f L(X), jeżeli macierz f w tej bazie jest macierzą Jordana Załóżmy, że endomorfizm f L(X) ma w bazie w 1,, w n macierz Jordana J Niech l 1 = 0, l 2 = k 1, l 3 = k 1 + k 2, l r = k 1 + + k r 1, l r+1 = k 1 + + k r = n Wówczas: 1 span(w ls+1,, w ls+k s ) to podprzestrzeń niezmiennicza f, odpowiadająca blokowi J λs,k s macierzy J 2 w ls+1 to wektor własny odpowiadający wartości własnej λ s, w szczególności w ls+1 imf 6

3 Jeżeli λ s = 0, to w ls+1 ker f Ponadto ker f = span{w ls+1 : λ s = 0} 4 f(w ls+j) = w ls+j 1 + λ s w ls+j dla j = 2, 3,, k s (wynika to z postaci klatki Jordana J λs,k s ) 5 Podprzestrzeń imf jest rozpięta przez kombinacje liniowe wektorów w j, a współczynniki każdej takiej kombinacji to wyrazy pewnej niezerowej kolumny macierzy J Dla λ s = 0 wektory w ls+ks (czyli ostatnie elementy ciągu wektorów bazowych (w ls+1, w ls+ks ) odpowiadającego klatce Jordana J λs,ks ) jako jedyne nie występują w tych kombinacjach liniowych Jest ich n dim imf = dim ker f i są one liniowo niezależne, więc X = imf span{w ls+k s : λ s = 0} Twierdzenie 9 (Twierdzenie Jordana) Jeżeli wielomian charakterystyczny endomorfizmu f L(X) jest iloczynem czynników liniowych, to w X istnieje baza Jordana dla endomorfizmu f i macierz f w tej bazie jest macierzą Jordana Dowód Stosujemy indukcję po n = dim X Jeżeli n = 1 to twierdzenie jest oczywiste, gdyż każda macierz 1 1 jest macierzą Jordana Załóżmy, że twierdzenie zachodzi dla dowolnej przestrzeni wymiaru mniejszego niż n I Rozważmy sytuację, gdy dim imf < n Niech g = f imf L(imf) Wielomian charakterystyczny p g jest dzielnikiem wielomianu p f, na mocy stwierdzenia 7 Wobec tego p g jest iloczynem czynników liniowych i możemy stosować założenie indukcyjne do endomorfizmu g W podprzestrzeni imf istnieje baza Jordana dla g: w 1,, w m, m = dim imf Jeżeli imf ker f = X, to bazę w 1, w m rozszerzamy o dowolną bazę ker f, otrzymując bazę Jordana dla f W przeciwnym przypadku imf ker f {0} Mamy też ker g = ker f imf Niech t = dim ker g Możemy przyjąć, że pierwsze t klatek Jordana dla g odpowiada wartości własnej 0, czyli λ 1 = = λ t = 0 Wtedy ker g = span(w l1 +1,, w lt+1) Ponadto, w l1 +k 1,, w lt+k t imf, więc istnieją wektory v 1,, v t X takie, że f(v 1 ) = w l1 +k 1,, f(v t ) = w lt+k t Układ w l1 +1,, w lt+1 (bazę ker g) uzupełniamy wektorami u 1,, u n m t do bazy ker f 7

Pokażemy, że układ wektorów w 1,, w m, v 1,, v t, u 1,, u n m t (#) jest liniowo niezależny, czyli jest bazą X Załóżmy, że α 1 w 1 + α m w m + β 1 v 1 + + β m v t + γ 1 u 1 + + γ n m t u n m t = 0 Na obie strony tej równości działamy endomorfizmem f, pamiętając, że f imf = g, f(v s ) = w ls+k s, f(u i ) = 0 Dostajemy α 1 g(w 1 ) + + α m g(w m ) = β 1 w l1 +k 1 β t w lt+k t Lewa strona tej równości to wektor z img, co, wobec spostrzeżenia 5 powyżej, oznacza, że jest ona równa 0 Zatem β 1 = = β s = 0 Mamy więc α 1 w 1 + α m w m + γ 1 u 1 + + γ n m t u n m t = 0, więc u = γ 1 u 1 + + γ n m t u n m t imf ker f Wobec wyboru wektorów u i jako uzupełnienia bazy imf ker f do bazy ker f oznacza to, że u = 0, więc γ 1 = = γ n m t = 0 Teraz z liniowej niezależności w 1,, w m dostajemy α 1 = = α m = 0 Układ (#) ustawiamy w następującej kolejności: u 1,, u n m t, w l1 +1,, w l1 +k 1, v 1, w l2 +1, w l2 +k 2, v 2,, w lt+1,, w lt+k t, v t, w lt+1 +1,, w m Wobec sposobu określenia wektorów v s i u j, jest to baza Jordana dla endomorfizmu f II Jeżeli dim imf = n postępujemy następująco: niech λ będzie dowoloną wartością własną f (jest λ 0) i niech F = f λid X Do F stosujemy część I dowodu Otrzymana baza Jordana dla F jest też bazą Jordana dla f = F + λid X Macierz Jordana dla f otrzymujemy z macierzy Jordana dla F dodając do niej λi n Wniosek 10 Jeżeli X jest przestrzenią liniową nad C i f L(X), to dla f istnieje baza Jordana Wniosek 11 Jeżeli A K n,n i wielomian charakterystyczny p A (λ) jest iloczynem czynników liniowych, to macierz A jest podobna do pewnej macierzy Jordana Dowód Należy wyznaczyć bazę Jordana ( u 1,, u n ) i odpowiadającą jej macierz Jordana J dla endomorfizmu f L(K n ) danego wzorem f( x) = A x Wtedy, dla U = [ u 1,, u n ] A = U 1 JU 8