Izabela Kurzawa, Aleksandra Łuczak, Feliks Wysocki

Podobne dokumenty
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

Procedura normalizacji

ZASTOSOWANIE METOD WAP DO OCENY POZIOMU PRZESTRZENNEGO ZRÓŻNICOWANIA ROZWOJU ROLNICTWA W POLSCE

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 37 44

ALEKSANDRA ŁUCZAK, FELIKS WYSOCKI

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. Strona 1

TAKSONOMICZNA ANALIZA ROZWOJU TRANSPORTU DROGOWEGO W POLSCE

Natalia Nehrebecka. Zajęcia 4

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW


Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD A

STATYSTYKA REGIONALNA

Natalia Nehrebecka. Zajęcia 3

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Natalia Nehrebecka. Wykład 2

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

Analiza struktury zbiorowości statystycznej

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Weryfikacja hipotez dla wielu populacji

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

Zastosowanie metody TOPSIS do oceny kondycji finansowej gmin w Polsce w 2010 roku

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

Taksonomiczna ocena sytuacji finansowej gospodarstw domowych w Polsce w 2010 roku

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ROLNICTWO W REGIONACH. WIELOWYMIAROWE SPOJRZENIE W UJĘCIU DYNAMICZNYM

Analiza korelacji i regresji

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

ZRÓŻNICOWANIE ROZWOJU EKONOMICZNEGO POWIATÓW POLSKI WSCHODNIEJ

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

SYTUACJA KOBIET NA RYNKU PRACY W POLSCE NA TLE KRAJÓW UNII EUROPEJSKIEJ ANALIZA STATYSTYCZNA

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Statystyka Inżynierska

Analiza danych OGÓLNY SCHEMAT. Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Wstęp. Obliczenia własne na podstawie: Budżety (2015), s. 116.

MIARA ZRÓŻNICOWANIA WYPOSAŻENIA GOSPODARSTW ROLNYCH W TECHNICZNE ŚRODKI PRODUKCJI

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

Rozpoznanie typów strategii rozwojowych gmin z wykorzystaniem wielokryterialnych metod podejmowania decyzji

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Journal of Agribusiness and Rural Development

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

Ocena stopnia zagrożenia bezrobociem województw Polski w latach

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA

Journal of Agribusiness and Rural Development

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

Zjawisko ubóstwa mieszkaniowego w krajach Unii Europejskiej 1

Statystyka. Zmienne losowe

Laboratorium ochrony danych

EKONOMETRIA I Spotkanie 1, dn

Klasyfikacja branż sektora przemysłu spożywczego według ich sytuacji finansowej

METODY ANALIZY RYNKU OFE W UJĘCIU DYNAMICZNYM

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. Strona 1

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

EKONOMETRYCZNA WYCENA NIERUCHOMOŚCI

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

Funkcje i charakterystyki zmiennych losowych

PROBLEMY ROLNICTWA ŚWIATOWEGO

186 Europa Regonum XXIV (2015) 1. Materał statystyczny metodyka Analze poddano wyposażene powatów woewództwa małopolskego w podstawowe elementy nfrast

REGIONALNE ZRÓŻNICOWANIE SYTUACJI MIESZKANIOWEJ GOSPODARSTW DOMOWYCH

Natalia Nehrebecka. Dariusz Szymański

PRACE NAUKOWE Uniwersytetu Ekonomicznego we Wrocławiu

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

województwa zachodniopomorskiego ATTRACTIVENESS OF LABOR MARKETS IN RURAL AREAS IN CONTEXT

Próba wyjaśnienia regionalnego zróżnicowania międzypłciowej luki płacowej w Polsce

ANALIZA PORÓWNAWCZA WYBRANYCH METOD GRUPOWANIA SPÓŁEK GIEŁDOWYCH

STATYSTYKA MIĘDZYNARODOWA

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

Pomiary parametrów akustycznych wnętrz.

Nieparametryczne Testy Istotności

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

Transkrypt:

PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 468 2017 Taksonoma 28 ISSN 1899-3192 Klasyfkacja analza danych teora zastosowana e-issn 2392-0041 Izabela Kurzawa, Aleksandra Łuczak, Felks Wysock Unwersytet Przyrodnczy w Poznanu e-mals: kurzawa@up.poznan.pl; luczak@up.poznan.pl; wysock@up.poznan.pl ZASTOSOWANIE METOD TAKSONOMICZNYCH I EKONOMETRYCZNYCH W WIELOWYMIAROWEJ ANALIZIE POZIOMU ŻYCIA MIESZKAŃCÓW POWIATÓW W POLSCE APPLICATION OF TAXONOMIC AND ECONOMETRIC METHODS IN MULTIVARIATE ANALYSIS OF THE LIVING STANDARD OF THE POPULATION IN DISTRICTS IN POLAND DOI: 10.15611/pn.2017.468.13 JEL Classfcaton: C01, C02, R110 Streszczene: Celem pracy była welowymarowa analza zróżncowana pozomu życa meszkańców Polsk według powatów. Zaproponowano dwuetapowe podejśce w perwszym etape dokonano oceny pozomu życa z wykorzystanem metody TOPSIS w ujęcu pozycyjnym z zastosowanem przestrzennej medany Webera. Borąc za podstawę wynk etapu 1, czyl klasy powatów według pozomu życa, zastosowano welomanowy model logtowy kategor uporządkowanych. Zbudowany model pozwolł określć stotność (słę kerunek) wybranych czynnków zrównoważonego rozwoju (takch jak zdrowe, warunk życa gospodarstw domowych, dostęp do rynku pracy, warunk meszkanowe boróżnorodność) na pozom życa meszkańców. Podstawę empryczną badań stanowły dane statystyczne z Banku Danych Lokalnych GUS dla 2014 roku. Badana potwerdzły, że stymulujący wpływ na podnesene pozomu życa mały: poprawa bazy lecznczej zabegowej, rozbudowa terenów zelen, a także poprawa warunków meszkanowych ludnośc. Słowa kluczowe: metody taksonomczne, metoda TOPSIS, uporządkowany model logtowy. Summary: The goal of the paper was a mult-dmensonal analyss of the dfferences n the lvng standard of the populaton n dstrcts n Poland. A two-staged approach was proposed. In the frst stage the standard of lvng assessment was performed usng the TOPSIS method n the postonal aspect and applyng the spatal Weber medan. Basng on the results of stage 1, the logt ordered model was created. The model allowed specfyng the mportance (magntude and drecton) of some selected sustanable development factors (such as: health, housng condtons, advancement level of households, access to the job market, bodversty) and ther nfluence on the standard of lvng. The statstcal data from the Central Statstcal Offce of Poland for 2014 were the emprcal research bass. The studes con-

128 Izabela Kurzawa, Aleksandra Łuczak, Felks Wysock frmed the stmulatng nfluence of the mprovement n medcal care, housng condtons and the extenson of town parks on the ncrease n the standard of lvng. Keywords: taxonomc methods, TOPSIS method, ordered logt model. 1. Wstęp Pozom życa jest zjawskem welowymarowym, obejmującym różne aspekty take, jak m.n.: ochrona zdrowa opeka socjalna, rynek pracy, wynagrodzena dochody, warunk meszkanowe, ośwata edukacja, rekreacja, kultura czas wolny oraz komunkacja łączność [Zelaś (red.) 2007]. Ne można go zmerzyć bezpośredno, lecz jedyne można próbować opsywać za pomocą welu cech prostych (wskaźnków cząstkowych pozomu życa), a następne na tej podstawe ocenć z wykorzystanem cechy syntetycznej. Proponowane podejśce do welowymarowej analzy pozomu życa meszkańców przeprowadzono w dwóch etapach obejmujących ocenę pozomu życa oraz jego modelowane. W perwszym etape dokonano oceny pozomu życa meszkańców z wykorzystanem metody TOPSIS (Technque for Order Preference by Smlarty to an Ideal Soluton) w ujęcu pozycyjnym z zastosowanem przestrzennej medany Webera [Wysock 2010; Łuczak, Wysock 2013]. Metoda TOPSIS oparta jest na de konstrukcj cechy syntetycznej wprowadzonej przez Hellwga [1968, 1972] umożlwa syntetyczną ocenę zjawska opsywanego przez wele cech (zob. [Hwang, Yoon 1981; Wysock 2010]). Natomast do modelowana pozomu życa meszkańców wykorzystano welomanowy model logtowy kategor uporządkowanych (tzw. uporządkowany model logtowy, który modeluje skumulowane prawdopodobeństwa) [Hlbe 2009; Cramer 2011]. Zastosowany model pozwala określć stotność (słę kerunek wpływu) poszczególnych czynnków zrównoważonego rozwoju na pozom życa meszkańców powatów. Analza modelu poszerza możlwośc analtyczne przyczyn zróżncowana pozomu życa meszkańców. Głównym celem pracy jest welowymarowa analza zróżncowana pozomu życa meszkańców powatów w Polsce. Podstawę empryczną przeprowadzonych badań stanową dane statystyczne z 2014 roku pochodzące z Banku Danych Lokalnych Głównego Urzędu Statystycznego. 2. Metodyka badań W procedurze welowymarowej analzy pozomu życa meszkańców jednostek admnstracyjnych (np. powatów) zaproponowano podejśce oparte na dwóch głównych etapach obejmujących ocenę pozomu życa oraz jego modelowane (tab. 1). Perwszy etap obejmuje ocenę pozomu życa z wykorzystanem metod taksonomcznych. W tym etape konstruuje sę cechę syntetyczną syntetyczny mernk pozomu życa meszkańców w przekroju wybranych jednostek terytoralnych. W procese budowy cechy syntetycznej można wyróżnć sześć kroków postępowana

Zastosowane metod taksonomcznych ekonometrycznych w welowymarowej analze... 129 (tab. 1). Perwszym z nch jest wybór cech opsujących wybrane jednostk terytoralne pod względem pozomu życa (krok 1). Wyboru cech dokonuje sę na podstawe analzy merytorycznej statystycznej [Wysock 2010]. Jednym ze sposobów statystycznej redukcj dużej lczby cech opsujących pozom życa meszkańców w wybranych jednostkach jest analza wartośc macerzy odwrotnej do macerzy korelacj mędzy badanym cecham [Malna, Zelaś 1997]. W przypadku, gdy cechy są nadmerne skorelowane z pozostałym, wówczas elementy dagonalne badanej macerzy są znaczne wększe od jednośc. Cechy nadmerne skorelowane pownny zostać wyelmnowane z perwotnego zboru cech. W badanach przyjęto, że elementy dagonalne macerzy odwrotnej do macerzy korelacj mędzy badanym cecham ne pownny być wększe od 15. Tabela 1. Etapy analzy pozomu życa Etapy krok postępowana Etap 1. Ocena pozomu życa Krok 1. Wybór cech Krok 2. Podzał cech Krok 3. Normalzacja wartośc cech Krok 4. Oblczene odległośc każdej jednostk od wzorca antywzorca rozwoju Krok 5. Oblczene wartośc syntetycznego mernka rozwoju Krok 6. Uporządkowane lnowe jednostek dentyfkacja typów rozwojowych Etap 2. Modelowane pozomu życa Krok 7.Ustalene zmennych objaśnanej objaśnających Krok 8. Estymacja parametrów modelu Krok 9. Interpretacja Ops etapów podetapów z wykorzystanem metod loścowych Wykorzystane metod taksonomcznych Dobór cech oraz ch weryfkacja pod względem merytorycznym statystycznym Ustalene kerunku preferencj cech w stosunku do rozpatrywanego kryterum ogólnego (pozomu życa meszkańców), tj. ch podzał na stymulanty, destymulanty nomnanty Standaryzacja z wykorzystanem medany Webera Oblczene oddalena każdej ocenanej jednostk welocechowej od wzorca antywzorca rozwoju za pomocą medanowego odchylena bezwzględnego Oblczene wartośc cechy syntetycznej (syntetycznego mernka rozwoju) za pomocą metody TOPSIS Wyodrębnene klas typologcznych jednostek terytoralnych dla całego obszaru zmennośc cechy syntetycznej metodam statystycznym lub w sposób arbtralny Wykorzystane metod ekonometrycznych uporządkowany model logtowy Dobór zmennych objaśnających oraz ch weryfkacja pod względem merytorycznym statystycznym oraz przyjęce zmennej objaśnanej uporządkowanej, którą tworzy układ przedzałów klasowych ustalonych dla całego obszaru zmennośc zbudowanej cechy syntetycznej uporządkowanych według wzrastającego pozomu życa Oszacowane parametrów uporządkowanego modelu logtowego Interpretacja parametrów oszacowanego modelu Źródło: opracowane własne na podstawe [Wysock 2010; Łuczak, Wysock 2013].

130 Izabela Kurzawa, Aleksandra Łuczak, Felks Wysock Następne należy dokonać podzału cech, ustalając ch kerunek preferencj w stosunku do rozpatrywanego kryterum ogólnego pozomu życa meszkańców (krok 2). Wybrane cechy dzel sę na stymulanty, destymulanty nomnanty. Cechy uznane za destymulanty można przekształcć w stymulanty za pomocą przekształcena różncowego: gdze: k D k x = ab x, D x k wartość k-tej cechy będącej destymulantą ( k I D, gdze I D oznacza zbór numerów cech, które mają charakter destymulant) w -tej jednostce (powece), ( = 1,..., N ); x k wartość k-tej cechy przekształconej na stymulantę w -tej jednostce (powece); a, b stałe przyjmowane w sposób arb- D a = max x oraz b = 1. tralny, najczęścej a = 0 lub ( ) Wybrane cechy poddaje sę normalzacj (krok 3), aby doprowadzć je do porównywalnośc, co polega na pozbawenu ch man ujednolcenu rzędów welkośc [Wysock 2010]. Ze względu na fakt, że w zborze cech opsujących pozom życa meszkańców często pojawają sę cechy, które charakteryzuje slna asymetra lub obserwacje netypowe, w pracy zastosowano standaryzację medanową Webera, która jest odporna na tego typu wartośc cech. Oparta jest ona na formule [Lra, Wagner, Wysock 2002; Młodak 2006, 2009; Łuczak, Wysock 2013]: xk med k zk =, 1, 4826 mad gdze: k x k wartość k-tej cechy (k = 1, 2,..., K) w -tej jednostce (powece) ( = 1, 2,..., N); K lczba cech reprezentujących pozom życa meszkańców; m ed ~ k składowa wektora medanowego Webera (medana Webera) dla k-tej cechy, mad k = med xk med k medanowe odchylene bezwzględne, które jest medaną z bezwzględnych odchyleń wartośc cechy od składowej medany Webera odpowadającej k-tej cesze; 1,4826 jest stałym współczynnkem skalowana, który zależy od rozkładu wartośc cech ( σ E ( 1,4826 mad k ( X1, X 2,..., X K) ) ; σ odchylene standardowe) (zob. [Młodak 2006, 2009]). W kolejnym czwartym kroku ustalone zostają współrzędne wzorca: antywzorca rozwoju: ( max ( 1),max ( 2),...,max ( K )) + = = ( + + + z ) 1, z2,..., zk A z z z k

Zastosowane metod taksonomcznych ekonometrycznych w welowymarowej analze... 131 ( mn ( 1),mn ( 2),...,mn ( K )) ( 1, 2,..., K ) A = z z z = z z z. Jest to podstawą do oblczena oddalena każdej ocenanej jednostk od wzorca + A antywzorca rozwoju A (krok 4) [Wysock 2010]: gdze: + d = ( ), = medk ( zk zk ) + + k k k d med z z rozwoju d ( = 1, 2,, N), d medanowe odchylene bezwzględne od wzorca A dla -tej jednostk; k ( ) + A antywzorca med medana brzegowa dla k-tej cechy. Do konstrukcj mernka syntetycznego zastosowano metodę TOPSIS za pomocą mernka (krok 5) [Hwang, Yoon 1981; Wysock 2010]: S = d d + d +, ( = 1, 2,, N). Wartośc cechy syntetycznej S mogą być z przedzału 0, 1. Im mnejsza jest odległość danej jednostk od wzorca rozwoju, a tym samym wększa od antywzorca rozwoju, tym wartość mernka syntetycznego jest blższa 1. Wyznaczone wartośc cechy syntetycznej zostają lnowo uporządkowane stanową podstawę do wyodrębnena klas typologcznych powatów według pozomu życa (krok 6). Wyodrębnene klas dla całego obszaru zmennośc cechy syntetycznej może zostać przeprowadzone metodam statystycznym lub w sposób arbtralny. W pracy przyjęto następujące przedzały lczbowe wartośc mernka S : 0,00;0,20) pozom bardzo nsk, 0,20;0,40) pozom nsk, 0,40;0,50) pozom średn-nższy, 0,50;0,60) pozom średn-wyższy, 0,60;0,80) pozom wysok, 0,80;1, 00 pozom bardzo wysok. Wyodrębnone klasy powatów według pozomu życa meszkańców stanowły podstawę do jego modelowana (etap 2). W tym podejścu zastosowano welomanowy model logtowy kategor uporządkowanych, tzw. uporządkowany model logtowy, który modeluje skumulowane prawdopodobeństwa [Hlbe 2009; Cramer 2011]. Model ten zastosowano w odnesenu do zmennej uporządkowanej przedzałowej, stanowącej klasy wyodrębnonych typów pozomu życa meszkańców powatów w połączenu z systemem wskaźnków zrównoważonego rozwoju. Do dentyfkacj czynnków wpływających na pozom życa meszkańców powatów (wynkający z syntetycznego mernka) zastosowano uporządkowany model logtowy postac: y = x T β + ε,

132 Izabela Kurzawa, Aleksandra Łuczak, Felks Wysock gdze: y zmenna neobserwowalna odnosząca sę do -tego powatu, zwązana jest z jej dyskretnym odpowednkam odpowadającym wyodrębnonym klasom pozomów życa ustalonym w etape 1 (j = 1, 2,, J), x wektor wartośc zmennych objaśnających dla -tego powatu (czynnków wpływających na pozom życa meszkańców powatów), β wektor parametrów, ε składnk losowy dla -tego powatu. W tym przypadku modelowanu podlegają tzw. skumulowane logty, czyl logarytmy lorazów prawdopodobeństwa przynależnośc -tego powatu do kategor ne wyższej nż j-ta (p ) prawdopodobeństwa do nego przecwnego (1 p ). Kategora pozomu życa determnowana jest przez zestaw zmennych egzogencznych (wskaźnków zrównoważonego rozwoju) oraz składnk losowy. W przypadku j-tej kategor (j-tego przedzału klasowego opartego na cesze syntetycznej) otrzymuje sę j 1 równań logtowych: lllll p = ll Pr(y j) Pr(y >j) = β 0 + β 1 x 1 + β 2 x 2 + + β k x kk + ε dla j=1, 2,, J, gdze: p 1 + p 2 + + p J = 1. Istneje tylko jeden zestaw oszacowanych parametrów przy zmennych objaśnających, jeżel zwązek mędzy wszystkm param kategor w ramach tej samej grupy porównań jest proporcjonalny. W przecwnym wypadku należy oszacować tzw. uogólnony uporządkowany model logtowy, co prowadz do oszacowana różnych zestawów parametrów przy zmennych objaśnających mędzy każdą porównywaną parą przedzałów klasowych (pozomów życa). W celu weryfkacj tego założena stosuje sę test Branta [Brant 1990; Long, Freese 2006]. 3. Ocena pozomu życa meszkańców powatów W badanach pozomu życa meszkańców wykorzystano dane statystyczne z Banku Danych Lokalnych Głównego Urzędu Statystycznego z 2014 roku. W perwszym etape badań, dotyczącym oceny pozomu życa ludnośc, na podstawe analzy merytorycznej dokonano wstępnego wyboru 53 cech opsujących powaty 1 w Polsce. Cechy te reprezentowały następujące kategore pozomu życa ludnośc: ochrona zdrowa opeka socjalna, rynek pracy, wynagrodzena dochody, warunk meszkanowe, ośwata edukacja, rekreacja, kultura czas wolny oraz komunkacja łączność. Następne na podstawe analzy statystycznej wybrano 20 cech opsujących powaty w Polsce (krok 1): lczba podstawowych porad lekarskch na 1 meszkańca (x 1 ), ludność na aptekę ogólnodostępną (x 2 ), lekarze na 1000 ludnośc (x 3 ), pelęgnark położne na 10 tys. ludnośc (x 4 ), zgony nemowląt na 1000 urodzeń żywych 1 Obektam badań są powaty zemske grodzke w Polsce. Pommo że masta na prawach powatu znaczne różną sę od powatów zemskch, analzy mogą być prowadzone łączne ze względu na to, że zastosowane zostały metody odporne na obserwacje netypowe.

Zastosowane metod taksonomcznych ekonometrycznych w welowymarowej analze... 133 (x 5 ), przyrost naturalny na 1000 ludnośc (x 6 ), lczba pracujących ogółem na 1000 osób (x 7 ), podmoty gospodark narodowej wpsane do rejestru REGON według klas welkośc na 10 tys. meszkańców w weku produkcyjnym (x 8 ), przecętne mesęczne wynagrodzene brutto ogółem w złotych (x 9 ), lczba ludnośc w weku neprodukcyjnym na 100 osób w weku produkcyjnym (x 10 ), stopa bezroboca rejestrowanego w % (x 11 ), odsetek meszkań wyposażonych w centralne ogrzewane w % (x 12 ), odsetek meszkań wyposażonych w gaz secowy w % (x 13 ), meszkana na 1000 meszkańców (x 14 ), zużyce energ elektrycznej w gospodarstwach domowych w cągu roku na 1 meszkańca (kwh) (x 15 ), zużyce wody w gospodarstwach domowych w cągu roku na 1 meszkańca (m 3 ) (x 16 ), dzec w placówkach wychowana przedszkolnego na 1 tys. dzec w weku 3-5 lat (x 17 ), ucznowe przypadający na 1 oddzał w szkołach podstawowych dla dzec młodzeży bez szkół specjalnych (x 18 ), ksęgozbór bblotek na 1000 ludnośc (x 19 ), długość dróg publcznych lokalnych na 100 km 2 (x 20 ). W drugm kroku przyjęto, że pęć cech ma charakter destymulant (x 2, x 5, x 10, x 11, x 18 ), a pozostałe stymulant (etap 2). Cechy o charakterze destymulant zostały przekształcone w stymulanty za pomocą przekształcena różncowego. Jak wynka z oblczeń, cechy: dostęp ludnośc do aptek ogólnodostępnych oraz przecętne mesęczne wynagrodzene brutto, charakteryzowały sę wysoką asymetrą prawostronną. Współczynnk skośnośc dla x 2 wynos 2,52, a dla x 9 2,83. Taką sytuację w przypadku tych cech wywołują obserwacje skrajne. Dla powatu suwalskego lczba osób na jedną aptekę wynosła ponad 11 976, przekraczając 3,4 razy średną dla powatów w Polsce oraz dla powatu lubńskego, gdze przecętne mesęczne wynagrodzene brutto przekraczało średną dla powatów w Polsce około dwukrotne wynosło ponad 6807 zł. Ponadto w przypadku cech x 3 oraz x 20 zaobserwowano wysok stopeń rozproszena wartośc cechy. Współczynnk zmennośc dla cechy x 3 wynosł ponad 70,6%, a dla cechy x 20 78,3%. Równeż cechy x 4, x 5, x 11 charakteryzowały sę znacznym zróżncowanem ch wartośc (odpowedno 62,5%, 53,5% oraz 40,2%). W zborze cech przyjętych do badań znalazły sę węc cechy charakteryzujące sę slną asymetrą obserwacjam netypowym, stąd zastosowane metody pozycyjnej TOPSIS opartej na medane Webera medanowych odchylenach bezwzględnych od wzorca antywzorca rozwoju wydaje sę zasadne. W kolejnym kroku wartośc cechy poddano normalzacj, wykorzystując standaryzację medanową Webera 2 (krok 3). Zestandaryzowane wartośc cech umożlwły wyznaczene medanowego odchylena bezwzględnego każdego ocenanego powatu od wzorca antywzorca rozwoju (krok 4). Następne oblczono wartośc syntetycznego mernka pozomu życa meszkańców powatów metodą TOPSIS (krok 5). Metoda pozycyjna TOPSIS jest odporna na występowane wartośc netypowych cech, jak równeż przyjętych wartośc antywzorca wzorca rozwoju ustalonych w zborze wszystkch powatów zemskch w Polsce. Dostarczyła ona znacznego zakresu zmennośc mernka synte- 2 Oblczena wykonano z wykorzystanem paketu robustx w programe R.

134 Izabela Kurzawa, Aleksandra Łuczak, Felks Wysock tycznego (od 0,214 do 0,713), co pozwolło określć rang cztery typy rozwojowe powatów (obejmujące pozomy życa: wysok, średn-wyższy, średn-nższy nsk ) (rys. 1). Rys. 1. Uporządkowane lnowe wybranych a) powatów w Polsce według wartośc syntetycznego mernka rozwoju pozomu życa uzyskane metodą pozycyjną TOPSIS opartą na medane Webera a) Dzesęć najlepszych dzesęć najgorszych powatów pod względem pozomu życa meszkańców. Źródło: opracowane własne na podstawe danych z Banku Danych Lokalnych GUS (2014). Perwszą klasę o wysokm pozome życa meszkańców utworzyło 7 mast na prawach powatu. Druga klasa, charakteryzująca sę średnm-wyższym pozomem życa meszkańców, objęła 29 powatów. Są to w wększośc masta. Kolejną, trzecą klasę o średnm-wyższym pozome życa ustanowło 107 powatów będących w oddzaływanu główne metropol, tj. Warszawy, Krakowa, Poznana, Katowc, Wrocława, Szczecna Trójmasta. Natomast ostatn typ o nskm pozome życa zdentyfkowano na najwększym obszarze Polsk, obejmującym aż 237 powatów. Wyodrębnone klasy w połączenu z systemem wskaźnków zrównoważonego rozwoju były podstawą do modelowana pozomu życa meszkańców powatów w Polsce 3 (etap 2). Ze wstępne ustalonego zboru 25 wskaźnków zrównoważonego rozwoju przyjęto następujące zmenne egzogenczne (krok 7): przychodne na 10 tys. meszkańców (z zakresu czynnków warunkujących zdrowe), udzał osób w gospodarstwach domowych korzystających ze środowskowej pomocy społecznej w relacj 3 Zmenne do etapu 2 ne pokrywały sę ze zmennym użytym do etapu 1.

Zastosowane metod taksonomcznych ekonometrycznych w welowymarowej analze... 135 do ludnośc ogółem oraz przecętna powerzchna użytkowa meszkana na 1 osobę (z zakresu czynnków warunkujących ubóstwo warunk życa), lczba bezrobotnych kobet zarejestrowanych w relacj do lczby osób w weku produkcyjnym (w zakrese dostępu do rynku pracy), udzał meszkań wyposażonych w łazenkę w ogólnej lczbe meszkań (w zakrese warunków meszkanowych), udzał terenów zelen w powerzchn ogółem (określający boróżnorodność). W tabel 2 przedstawono lorazy szans uzyskane z uporządkowanego modelu logtowego pozomu życa meszkańców powatów w Polsce. Oszacowany model charakteryzował sę bardzo dobrym dopasowanem do danych emprycznych (McFadden s R 2 = 40,2%, McKelvey Zavona R 2 = 66,8%, Count R 2 = 78,2%) oraz statystyczną stotnoścą (p < 0,05) wększośc wstępujących parametrów przy zmennych objaśnających. Tabela 2. Oszacowane lorazy szans z uporządkowanego modelu logtowego pozomu życa meszkańców powatów w Polsce Zmenne objaśnające Iloraz szans Istotność p Udzał osób w gospodarstwach domowych korzystających ze środowskowej pomocy społecznej w ludnośc ogółem (w %) 0,799 0,003 Lczba bezrobotnych kobet zarejestrowanych w relacj do lczby osób w weku produkcyjnym 0,874 0,056 Meszkana wyposażone w łazenkę w % ogółu meszkań 1,141 0,000 Przecętna powerzchna użytkowa meszkana na 1 osobę (w m 2 ) 1,185 0,002 Udzał terenów zelen w powerzchn ogółem (w %) 1,407 0,001 Przychodne na 10 tys. meszkańców 1,587 0,000 Źródło: opracowane oblczena własne z wykorzystanem paketu STATA 12. Zwększająca sę wartość zmennych objaśnających (przy założenu ceters parbus), takch jak udzał osób w gospodarstwach domowych korzystających ze środowskowej pomocy społecznej w ludnośc ogółem oraz lczba bezrobotnych kobet zarejestrowanych w relacj do lczby osób w weku produkcyjnym, powodowała zmnejszene szansy zmany pozomu życa na wyższy (odpowedno o 20,1% 12,6%) z jednego z pozomów nższych. Natomast pozostałe zmenne mały stymulujący wpływ na podwyższane pozomu życa meszkańców powatów. Najwększa szansa na poprawene pozomu życa nastąpłaby pod wpływem zwększena: lczby przychodn na 10 tys. meszkańców (o 58,7%) oraz udzału terenów zelen w powerzchn ogółem (40,7%). 4. Zakończene Na podstawe przeprowadzonych oblczeń analz można sformułować następujące stwerdzena wnosk.

136 Izabela Kurzawa, Aleksandra Łuczak, Felks Wysock 1. Proponowane podejśce do welowymarowej analzy pozomu życa meszkańców przeprowadzono w dwóch etapach obejmujących syntetyczną ocenę pozomu życa oraz jego modelowane. Zaproponowane podejśce do porządkowana lnowego jednostek terytoralnych oparte na metodze TOPSIS medane pozycyjnej Webera może być zastosowane do wyznaczena syntetycznego mernka rozwoju w przypadku, gdy w zborze cech opsujących badane jednostk pojawają sę obserwacje netypowe lub slna asymetra. 2. Uzyskane klasy pozomu życa meszkańców powatów były punktem wyjśca do dalszej analzy ekonometrycznej, stanowły kategore uporządkowane zmennej objaśnanej w modelu logtowym w połączenu z systemem wskaźnków zrównoważonego rozwoju. 3. Zastosowany w pracy welomanowy model logtowy okazał sę użytecznym narzędzem do dentyfkacj czynnków wpływających na pozom życa meszkańców powatów w Polsce. 4. Zbudowany model pozwolł określć stotność (słę kerunek) wybranych czynnków zrównoważonego rozwoju. Przyjęte zmenne egzogenczne, obejmujące wybrane czynnk zrównoważonego rozwoju (take, jak zdrowe, warunk życa gospodarstw domowych, dostęp do rynku pracy, warunk meszkanowe boróżnorodność), wpływały statystyczne stotne na pozom życa meszkańców. Badana potwerdzły, że stymulujący wpływ na podnesene pozomu życa mały: poprawa bazy lecznczej zabegowej, rozbudowa terenów zelen, a także poprawa warunków meszkanowych ludnośc. Natomast destymulujący wpływ ujawnły take zmenne, jak ubóstwo oraz zwększene pozomu bezroboca wśród kobet. 5. Powązane w badanach metody TOPSIS w ujęcu pozycyjnym uporządkowanego modelu logtowego poszerza możlwośc analtyczne przyczyn zróżncowana pozomu życa meszkańców. Lteratura Brant R., 1990, Assessng proportonalty n the proportonal odds model for ordnal logstc regresson, Bometrcs, vol. 46, no. 4, s. 1171-1178. Cramer J.S., 2011, Logt Models from Economcs and Other Felds, Cambrdge Unversty Press. Hellwg Z., 1968, Zastosowana metody taksonomcznej do typologcznego podzału krajów ze względu na pozom ch rozwoju strukturę wykwalfkowanych kadr, Przegląd Statystyczny, nr 4, s. 307-327. Hellwg Z., 1972, Procedure of evaluatng hgh-level manpower data and typology of countres by means of the taxonomc method, [w:] Gostkowsk Z. (ed.), Towards a System of Human Resources Indcators for Less Developed Countres: Papers Prepared for a UNESCO Research Project, Ossolneum. Polsh Academy of Scences Press, Wrocław, s. 115-134. Hlbe J.M., 2009, Logstc Regresson Models, Chapman & Hall/CRC Press, Boca Raton. Hwang C.L., Yoon K., 1981, Multple Attrbute Decson Makng: Methods and Applcatons, Sprnger, Berln. Lra J., Wagner W., Wysock F., 2002, Medana w zagadnenach porządkowana obektów welocechowych, [w:] Paradysz J. (red.), Statystyka regonalna w służbe samorządu terytoralnego bznesu, Akadema Ekonomczna w Poznanu, Poznań, s. 87-99.

Zastosowane metod taksonomcznych ekonometrycznych w welowymarowej analze... 137 Long J.S., Freese J., 2006, Regresson Models for Categorcal Dependent Varables Usng Stata (second edton), Stata Press Publcaton, College Staton, Texas. Łuczak A., Wysock F., 2013, Zastosowane medany przestrzennej Webera metody TOPSIS w ujęcu pozycyjnym do konstrukcj syntetycznego mernka pozomu życa, Prace Naukowe Unwersytetu Ekonomcznego we Wrocławu, nr 278. Taksonoma 20, s. 63-73. Malna A., Zelaś A., 1997, Taksonomczna analza przestrzennego zróżncowana jakośc życa ludnośc w Polsce w 1994 r., Przegląd Statystyczny, z. 1, t. 44, s. 11-27. Młodak A., 2006, Analza taksonomczna w statystyce regonalnej, Dfn, Warszawa. Młodak A., 2009, Hstora problemu Webera, Matematyka Stosowana, nr 10, s. 3-21. Wysock F., 2010, Metody taksonomczne w rozpoznawanu typów ekonomcznych rolnctwa obszarów wejskch, Wydawnctwo Unwersytetu Przyrodnczego w Poznanu, Poznań. Zelaś A. (red.), 2007, Taksonomczna analza przestrzennego zróżncowana pozomu życa w Polsce w ujęcu dynamcznym, Wydawnctwo Akadem Ekonomcznej, Kraków.