Mathematica - organizacja. czyli sztuka obliczeń symbolicznych. Możliwości. Mathematica do czego można ją użyć. Możliwości, cd. Mathematica publikacje



Podobne dokumenty
Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle

Sin[Pi / 4] Log[2, 1024] Prime[10]

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

Wykorzystanie programów komputerowych do obliczeń matematycznych

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

ALGEBRA z GEOMETRIA, ANALITYCZNA,

Lista nr 1 - Liczby zespolone

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Obliczenia Symboliczne

WPROWADZENIE DO ŚRODOWISKA SCILAB

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Równania liniowe i nieliniowe

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

1. Liczby zespolone i

Algebra Symboliczna. Wykład I. Andrzej Odrzywolek. Instytut Fizyki, Zakład Teorii Względności i Astrofizyki

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

Kolorowa płaszczyzna zespolona

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab

Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2

INFORMATYKA TECHNICZNA Komputerowe Wspomaganie Obliczeń Wykład 3. Komputerowe wspomaganie obliczeń w programie Mathcad. dr inż.

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Funkcje. Część pierwsza. Zbigniew Koza. Wydział Fizyki i Astronomii

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

Mathematica - podstawy

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

E-N-1112-s1 MATEMATYKA Mathematics

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

Wprowadzenie do Mathcada 1

Elementy rachunku różniczkowego i całkowego

Funkcje Andrzej Musielak 1. Funkcje

Analiza matematyczna i algebra liniowa

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.

MATeMAtyka klasa II poziom rozszerzony

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

(a b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

Analiza matematyczna dla informatyków 3 Zajęcia 14

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Modyfikacja układu współrzędnych VIEW

Matematyka liczby zespolone. Wykład 1

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

WYMAGANIA WSTĘPNE Z MATEMATYKI

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Rozdział 2. Liczby zespolone

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

83 Przekształcanie wykresów funkcji (cd.) 3

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

Na podstawie informacji zdobytych na poprzednich zajęciach proszę wykonać następujące zadania:

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Zadania egzaminacyjne

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Opis przedmiotu: Matematyka I

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Analiza Matematyczna MAEW101 MAP1067

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Algebra z geometrią analityczną zadania z odpowiedziami

Poradnik encyklopedyczny

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

Zestaw 4. Rozdział 2: Analiza matematyczna

ZAKRESY NATERIAŁU Z-1:

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Podstawowe operacje na macierzach

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.

Przekształcenia całkowe. Wykład 1

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Spis treści. Przedmowa do wydania piątego

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

Algebra z geometrią analityczną zadania z odpowiedziami

Analiza Matematyczna MAEW101

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

ANALIZA MATEMATYCZNA

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

1 Funkcje dwóch zmiennych podstawowe pojęcia

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

Matematyka I i II - opis przedmiotu

S Y L A B U S P R Z E D M I O T U

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

Standardy wymagań maturalnych z matematyki - matura

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

Transkrypt:

czyli sztuka obliczeń symbolicznych Mathematica - organizacja Dokument Mathematica zorganizowany jest w tzw. komórki. Ręczne zerowanie zmiennych Clear[variables] (* czyści wartości zmiennych*) x=. (* to samo co Clear*) Remove[ Global`* ] (* usuwa wszystkie zmienne*) Clear[ Global`* ] Mathematica do czego można ją użyć Zastosowania: o nauki przyrodnicze o matematyka o nauczanie o inżynieria o infomatyka, itd Ponad 100 wyspecjalizowanych, komercyjnych pakietów i ponad 200 książek o Mathematice i jej zastosowaniach Mathematica publikacje o http://www.wolfram.com strona główna. o Wbudowana dokumentacja Mathematica (wszystko napisane w układzie notatnika) o http://www.wolfram.com/broadcast/screencasts/ Możliwości Działania arytmetyczne Operacje na liczbach całkowitych, rzeczywistych i zespolonych z dużą precyzją Bardzo dużo wbudowanych funkcji i stałych Algebra Rozwinięcia w szereg, upraszczanie, rozwiązywanie układu równań liniowych Operacje na wektorach, macierzach i tensorach Analiza matematyczna Granice, całkowanie i różniczkowanie, szeregi, rozwiązywanie układu równań różniczkowych, itd. Analiza numeryczna: Znajdowanie pierwiastków równań, całkowanie numeryczne, dopasowywanie krzywych, itd. Możliwości, cd. GRAFIKA - wykresy 2D, 3D, konturowe, parametryczne, animacje, itd. Programowanie Wbudowany interpreter języka programowania (zbliżony do C) z kompilatorem o Projekty demonstracyjne można znaleźć na: http://demonstrations.wolfram.com/ o Czasopismo programu Mathematica http://www.mathematica-journal.com Mathematica - organizacja Pracujemy w dokumencie zwanym Notatnik Jak uzyskać dostęp? Dokument Mathematica zorganizowany jest w tzw. komórki. SHIFT+ENTER wykonanie obliczeń ENTER nowa linia Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 9

Z. Postawa, "Podstawy Informatyki II" Strona: 2 z 9 Podstawowe zasady o Program rozróżnia małe i duże litery o Polecenia, nazwy wbudowanych funkcji i stałych zaczynają się od dużej litery np. Sin[] o Użyj małych liter, aby zadeklarować swoje funkcje i stałe o Argumenty są zamykane w nawiasach prostokątnych [] o Nawiasy klamrowe {} są używane do grupowania elementów, oraz do oznaczania zakresów parametrów funkcji. o Nawiasy () są zarezerwowane do grupowania operacji. o Nazwy wszystkich funkcji dla obliczeń numerycznych zaczynają się od litery N np. NSin[] o Komentarz (* komentarz *) Podstawowe operacje o Dodawanie + o Odejmowanie - o Mnożenie * o Dzielenie / o Podnoszenie do potęgi Uwaga: Mnożenie można reprezentować przez spacje: x y oznacza x * y ^ Wbudowane funkcje - przykłady Abs[x] -wartość bezwzględna liczby x In[1]:= Abs[ -15 ] Out[1]= 15 Sqrt[x] pierwiastek z x In[2]:= N[ Sqrt[2], 20] Out[2] = 1.4142135623730950488 Log[x] logarytm naturalny z x Log[n,x] logarytm z x przy podstawie n Exp[x] e do potęgi x Sin[x] sinus z x (radiany) Sin [x Degree] sinus z x (stopnie) ArcSin[x] funkcja odwrotna do sinus z x (radiany) Wbudowane funkcje - przykłady Sinh[x] - sinus hiperboliczny z x ArcSinh [x] odwrotna do sinusa hiperbolicznego z x! silnia!! podwójna silnia Prime[k] k-ta liczba pierwsza Mod[x,y] reszta z dzielenia x przez y MAX[x1,x2,x3..] wartość maksymalna Operacje na liczbach całkowitych -> liczba całkowita Operacje na liczbach mieszanych -> liczba rzeczywista lub zespolona Operacje przypisania zmiennych In[1]:= x = 0.5 Out[1]=0.5 In[2]:= x= x*x Out[2]=x 2 Wynik poprzedniej operacji In[3] = % * 5 Out[3] = 5 x 2 Wynik operacji numer In[1] In[4] = %1 * 5 Out[4]=2.5 Wbudowane funkcje liczby zespolone In[1]:= z=20+7 I Out[1]= 20 + 7 i Re[z] -część rzeczywista z z Out[2] = 20 Im[z] część urojona z z Out[3] = 7 Abs[z] moduł z z -sqrt(re 2 +im 2 ) Out[3] = Sqrt[449] Abs[z]//N Out[4] = 21.1896 Arg[z]//N ϕ Im[z] Out[5] = 0.336675 7 ϕ Arg[z] Out[6] = Atan[---] Re[z] 20 Conjugate[z] liczba sprzężona do z Out[7] = 20 7 i Dokładność obliczeń N[operacja, precyzja] In[1]:= N[100!] Out[1]=9.33262*10 157 In[2]:= 100!//N inny zapis In[2]:= N[100!,157] Out[2]=9.3326215443944152681699238856266700490 71596826438162146859296389521759999322991560 89414639761565182862536979208272237582511852 1091686400000000000000000000000*10 157 Algebra Mathematic a rozumie zapis algebraiczny i może na nim wykonywać operacje symboliczne In[1]:= z=(x + y)^2 Out[1]=(x + y) 2 In[2]:= Expand[z] rozwiniecie na wielomiany Out[2]=x 2 +2xy + y 2 In[3]:= Factor[%] zwiniecie do postaci potęgowej Out[3]=(x + y) 2 In[4]:= Simplify[%2] zwiniecie do najprostszej postaci Out[4]=(x + y) 2

Z. Postawa, "Podstawy Informatyki II" Strona: 3 z 9 Rozwiązywanie równania = jest znakiem przypisania wartości == jest znakiem oznaczającym równanie In[1]:= x^2 + 2x+1 == 0 Out[1]=1 + 2 x + x 2 == 0 Solve[równanie, zmienna] - rozwiązuje równanie względem zmiennej zmienna In[2]:= Solve [%,x] Out[2]={{x -> -1}, {x -> -1}} In[3]:= %1./x->-1 Out[3]=True Rozwiązywanie układu równań Solve[{ rów1== liczba1, rów2 == liczba2,. }, {x, y,.}] - rozwiązuje układ równań względem zmiennych x,y,.. Definiowanie wyrażeń In[1]:= row1= x^2 + 2x==-1 Out[1]= 2 x + x 2 == -1 In[2]:= Solve[row1] Out[2]={{x -> -1}, {x -> -1}} In[3]:=row1:= x^2 + 2x==-1 Przypisuje dopiero w momencie wykonania operacji In[1]:= x^2 + 2x-1/.x->2 Out[1]= 7 Operator zastąpienia /. In[1]:= Solve[{x+2*y ==1, x y==2},{x,y}] Out[1]= Liczbowe rozwiązywanie układu równań NSolve[{ rów1== liczba1, rów2 == liczba2,. }, {x, y,.}] - rozwiązuje układ równań względem zmiennych x,y,.. In[1]:= NSolve[{x+2*y ==1, x y==2}, {x,y}] Out[1]= {{x -> 1.66667, y -> -0.333333}} Definiowanie funkcji nazwafunkcji[argument_]: = wyrażenie In[1]:= fun[x_]:=x^2 + 2x-1 In[2]:= fun[4] Out[2]= 23 In[3]=ff[x_,y_]:=x*y In[4]=ff[1.,2.] Out[4]=2. Znajdowanie pierwiastków równania FindRoot[ rów1, {x,x0}] szuka pierwiastków równania rów1 względem zmiennej x, przy wartości zgadywanej x0 In[1]:= FindRoot [x^2 + 2x==-1, {x,0}] Out[1]= {x -> -1.} FindRoot[{ rów1, rów2,. }, {{x,x0}, {y,y0},.}] Suma i iloczyn wyrażeń szeregu Sum[ wyrażenie_ciągu, {l, lmin, lmax,lstep}] Product[ wyrażenie_ciągu, {l, lmin, lmax,lstep}] In[1]:= Sum[1/x,{x,1,10,2}] 563 Out[1]= ------- 315 In[2]:= Product[1/x,{x,1,10,2}] 1 Out[1]= ------- 945 In[3]:=%//N Out[3]=0.0010582

Z. Postawa, "Podstawy Informatyki II" Strona: 4 z 9 Suma i iloczyn wyrażeń ciągu - nieskończoność Infinity stała zastrzeżona do oznaczenia In[1]:= m:={{1,2},{2,1}} Operacje na macierzach In[1]:= Sum[1/x^2,{x,1,Infinity}] Pi Out[1]= ------- 6 In[2]:= %//N Out[3]=1.64493 In[2]:= Transpose[m] <- transponowanie macierzy Out[3]= {{1, 2}, {2, 1}} In[4]:= Det[m] Out[4]= -3 In[5]:=Inverse[m] Out[5]= <- wyznacznik macierzy =1*1-2*3=-3 <- odwrotność macierzy Wektory v:={x,y,..} wektor v o współrzędnych x,y,.. In[1]:= v1:={1,1,1} In[2]:=v2:={1,2,3} In[3]:=v1+v2 Out[3]={2, 3, 4} + = Iloczyn skalarny -. In[4]:= v1 v2 Out[3]=6 =1*1+2*2+3*1= Iloczyn wektorowy Cross[] In[5]:=Cross[v1,v2] Out[5]={1, -2, 1} = Znalezienie wartości własnych macierzy Aby znaleźć wartości własne macierzy należy rozwiązać równanie charakterystyczne In[1]:= m:={{1,2,1},{2,1,1},{1,1,1}} In[2]:=wartwl:=m-x*IdentityMattrix[3] In[3]:= wyz=det[wartwl] <- wyznacznik macierzy Out[3]= -1 + 3 x + 3 x 2 -x 3 In[4]:=NSolve[wyz==0, x] Out[4]= {{x -> -1.}, {x -> 0.267949}, {x -> 3.73205}} Macierze m:={{a11,a12},{a21,a22}} In[1]:= m:={{1,0},{0,1}} In[2]:=m2:={{2,1},{0,0}} In[3]=MatrixForm[m] <- aby przedstawić wynik w postaci macierzowej Out[3]= //MatrixForm= 1 0 0 1 IdentityMatrix[n] <- macierz jednostkowa o rozmiarze n x n In[4]:= IdentityMatrix[2] Out[4] ={{1, 0}, {0, 1}} Operacje na macierzach lub Wartości własne In[1]:= m:={{1,2,1},{2,1,1},{1,1,1}} In[2]:=Eigenvalues[N[m]] Out[2]= {3.73205, -1., 0.267949} In[3]:=Eigenvectors [N[m]] Wektory własne Out[3]= {{-0.627963,-0.627963,- 0.459701},{0.707107,-0.707107,0.},{-0.325058,- 0.325058,0.888074}} Analiza matematyczna In[1]:= m:={{1,0},{0,1}} In[2]:=m2:={{2,1},{0,0}} In[3]:= m+m2 <- suma macierzy Out[3]= {{3, 1}, {0, 1}} In[4]:= m-m2 <- różnica macierzy Out[4]= {{-1, -1}, {0, 1}} In[5]:=m.m2 <- iloczyn macierzy Out[5]= {{2, 1}, {0, 0}} + = + = o Wyznaczanie granic ciągów o Różniczkowanie o Całkowanie o Rozwiązywanie równań różniczkowych

Z. Postawa, "Podstawy Informatyki II" Strona: 5 z 9 In[1]:= Limit[ Sin[x]/x, x->0] Out[1]= 1 Granice funkcji Limit[ funkcja, x-> x0] granica funkcji przy x dążącym do x0 Można szukać granic przy x In[4]:= Limit[Exp[x]/(x^100),x->Infinity] Out[4] =Infinity In[3]:= f:= Sin[x]*Tan[x] Całkowanie nieoznaczone Użycie zmiennych In[4]:=Integrate[f, x] Out[4]=-Log[Cos[x/2] - Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] - Sin[x] In[3]:= f1[x_] = Sin[x]*Tan[x] In[4]:=Integrate[f[x], x] Out[4]=-Log[Cos[x/2] - Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] - Sin[x] In[1]:= D[ Log[x],x] 1 Out[1]= ---- x Różniczkowanie D[ funkcja, zmienna] pochodna funkcji po zmiennej zmienna D[ funkcja, {zmienna,n}] n-ta pochodna funkcji po zmiennej zmienna In[2]:= D[ Log[x],{x,2}] Out[1]= -x -2 ESCintESC Całkowanie nieoznaczone ESCddESC d CTRL+_ dolna granica CTRL+% górna granica Zapis naturalny ESCintESCSin[x]*Tan[x]ESCddESC Różniczkowanie cząstkowe D[ funkcja, {zmienna1,n},{zmienna2,m}] n-ta i m-ta pochodna funkcji po zmiennej zmienna1 i zmienna2 Całkowanie nieoznaczone wielokrotne Integrate[funkcja, zmienna1, zmienna2] całka nieoznaczona z funkcji po zmiennych zmienna1 i zmienna2 In[1]:= D[ x*sin[y],{x,1},{y,2}] Out[1]= -Sin[y] Zapis uproszczony In[1]:= Integrate[ Exp[xy]/x, x,y] Out[1]= Exp[xy] y Log[x] In[1]:= D[ x*sin[y],x,{y,2}] Out[1]= -Sin[y] In[1]:= Integrate[ 1/x,x] Out[1]= Log[x] Całkowanie nieoznaczone Integrate[funkcja, zmienna] całka nieoznaczona z funkcji po zmiennej zmienna In[2]:= Integrate[Sin[x]*Tan[x], x] Out[2]= -Log[Cos[x/2] - Sin[x/2]] + Log[Cos[x/2] + Sin[x/2]] - Sin[x] Całkowanie oznaczone Integrate[funkcja, {zmienna1,początek,koniec}] całka oznaczona z funkcji po zmienej zmienna w zakresie od z1 do z2 In[1]:= Integrate[ Exp[-x]/x, {x,1., Infinity}] Out[1]= 0.219384

Z. Postawa, "Podstawy Informatyki II" Strona: 6 z 9 Całkowanie oznaczone wielokrotne Integrate[funkcja, {x,x1,x2}, {y,y1,y2}] całka oznaczona z funkcji po zmienych x i y w zakresie od x1 do x2 oraz od y1 do y2 In[1]:= Integrate[ Sin[x+y], {x,0., Pi/2},{y,0.,Pi/2}] Out[1]= 2. Rozwiązywanie równań różniczkowych Równanie różniczkowe 2-go rzędu In[1]:=eq1 = {z''[t] == -9.81}; initial = {z[0] == 0, z'[0] == 10}; ndsol = DSolve[Join[eq1, initial], z[t], t] Out[1]= {z[t] -> 10 t - 4.905 t^2}} In[2]=tmax=Solve[ndsol==0]; In[3]=tmax = NSolve[z[t] == 0 /. ndsol, t] Out[3]={{t -> 0.}, {t -> 2.03874}} Szeregi Series [funkcja, {x,x0,rząd}] rozwija funkcję w szereg wokół punktu x0 do rzędu rząd In[1]:= Series[ Exp[-x], {x,0, 4}] 2 3 4 x x x 5 Out[1]= 1 - x + ----- - ------- + ------ + O[x] 2 6 24 Wykresy o Wykres dwuwymiarowy liniowy o Wykres dwuwymiarowy punktowy o Wykres trójwymiarowy o Wykres konturowy o Wykres pola wektorowego o Wykres parametryczny Rozwiązywanie równań różniczkowych DSolve[funkcja, y[x],x] analityczne rozwiązywanie równanie różniczkowego dla y[x], gdzie x jest zmienna niezależną Równanie różniczkowe 1-go rzędu In[1]:=Plot [x^2,{x,-1,1}] Wykres dwuwymiarowy Plot[funkcja, {x,x0,x1},opcje] rysuje wykres funkcji w zakresie od x1 do x2. Opcje pozwalają na modyfikacje stylu In[1]:=eq:=y [x]-2 y[x]==0 In[2]:=DSolve[eq,y[x],x] 2 x Out[1]= {{y[x] -> E C[1]}} In[1]:=eq:={y [x]==1.2-4.0 y[x]}; inital={y[0]==2} In[2]:=rozw = DSolve[Join[eq, initial], y[x], x] Out[2]= Plot[Evaluate[y[x] /. rozw], {x, 0, 1}, AxesLabel -> {"x", "y"}] Logarytmiczny wykres dwuwymiarowy LogPlot[funkcja, {x,x0,x1}] oś y jest logarytmiczna LogLinearPlot[funkcja, {x,x0,x1}] oś x jest logarytmiczna LogLogPlot[funkcja, {x,x0,x1}] osie x i y są logarytmiczne In[158]:=LogPlot [Exp[x],{x,0,10}, LabelStyle -> {15}]

Z. Postawa, "Podstawy Informatyki II" Strona: 7 z 9 Wykres dwuwymiarowy opcje Plot[funkcja, {x,x0,x1}, PlotRange->{x2, x3}] ] PlotRange zakres osi y AxesLabel->{"x", x^2"} opis osi x i y PlotLabel > Przebieg próbny" nazwa wykresu PlotStyle->{RGBColor[1,0,1]} kolor linii wykresu- styl linii wykresu LabelStyle->{15} rozmiar tekstu opisów osi Wykres punktowy II ListPlot[{y0,y1..},Opcje] rysuje wykres kolejnych punktów {y0,y1,...} In[1]:=ListPlot[ { 2.5, 3.7, -1.2, 7.0, 9.1, -2.3}, PlotJoined->True ] Wykres dwuwymiarowy wielu funkcji Plot[{f1,f2}, {x,x0,x1},opcje] rysuje wykres funkcji f1 i f2 w zakresie od x1 do x2 In[117]:=Plot[{x^2, x}, {x, -1, 1}, PlotStyle -> {{Red, Thickness[0.002]}, {Green, Dashing[{0.03, 0.03}],Thick}}, PlotLabel - > "Test", Frame -> True, AxesLabel -> {"Signal [au]", Superscript["mc", "2"]}] Wykres trójwymiarowy Plot3D[funkcja3D, {x,x0,x1},{y,y0,y1},opcje] rysuje wykres funkcji w zakresie x od x1 do x2 i y od y1 do y2 In[24]:=Plot3D[Sin[x] Sin[y], {x,-pi,pi}, {y,-pi,pi}, AxesLabel -> {x,y,z}, Mesh->All, PlotPoints->40] Polecenie Show Show[w1,w2] nakłada na siebie wcześniej utworzone wykresy w1 i w2 In[1]:=w1:=Plot[x^2, {x, -1, 1}]; w2 := Plot[x, {x, -1, 1}] In[2]:=Show[w1, w2] Wykres konturowy ContourPlot[funkcja, {x,x0,x1},{y,y0,y1},opcje] rysuje wykres konturowy funkcji w zakresie od x0 do x1 i od y0 do y1 In[84]:=ContourPlot[Cos[x]*Cos[y], {x, -Pi, Pi}, {y, -Pi, Pi}, ContourLabels -> True] Wykres punktowy ListPlot[{x0,y0},{x1,y1},..] rysuje wykres punktów x,y In[5]:=ListPlot[{{-5, -3}, {-3, 2}, {0.5, 6.3), {2.5, 1.4}, {5, 3}}, PlotJoined -> True] Wykres pola wektorowego VectorFieldPlot[funkcja, {x,x0,x1},{y,y0,y1},opcje] rysuje wykres wektorowy funkcji w zakresie od x0 do x1 i y0 do y1 Needs["VectorFieldPlots`"] In[1]:=V:={x, y}/(x^2 + y^2)^(3/2) In[2]:=VectorFieldPlot[v, {x, -5, 5}, {y, -5, 5}]

Z. Postawa, "Podstawy Informatyki II" Strona: 8 z 9 Wykres parametryczny ParametrivPlot[x[t],y[t],{t,t0,t1} ] rysuje wykres parametryczny funkcji x[t] i y[t] w zakresie od t0 do t1 In[30]:=ParametricPlot[{Cos[t]*t, Sin[t]*t}, {t, 0, 50}] Dopasowywanie krzywych In[1]:=dane:=ReadList["e:\dane.dat", {Number, Number}] In[2]:=Fit[ dane, {x^2, x^1, 1}, x] Out[2]:=0.46-0.352857 x + 1.05 x^2 In[3]:=NonlinearFit[dane1, a*x^2 + b*x + c, x, {{a, 0.5}, {b, -0.5}, {c, 1.5}}] Out[3]:=0.46-0.352857 x + 1.05 x^2 Operacje na zbiorach SetDirectory["Nazwa kartoteki"] ustawienie nazwy kartoteki głównej, np. kartoteki ze zbiorem Zmienna=Import["Nazwa zbioru"] importuje dane Export["dane.dat","zmienna ] zapisuje dane ze zmiennej zmienna do zbioru o nazwie dane.dat <<["dane.dat","zmienna ] ładuje jeden element ze zbioru o nazwie dane.dat do zmiennej zmienna Delete["dane.dat"] usuwa zbiór nazwie dane.dat Operacje na zbiorach In[1]:=SetDirectory["e:/"] Out[1]=e:/ In[2]:=dane:=Import["dane.dat"] In[3]:=wykres = ListPlot[dane] y v θ x Rzut ukośny x=v cos In[1]:=Remove["Global`*"] In[2]:= y:=v*sin[α]*t-9.81*t*t/2.; x:= v*sin[α]*t In[3]:= Solve[D[y,t] 0,t]; In[4]:= tmax:=n[2.*t//.%] In[5]:= zasieg=x//.t tmax Out[5]:= {0.203874 v 2 Cos[α] Sin[α]} In[6]:= wysokosc=y//.t tmax/2 Out[6]:= {0.0509684 v 2 Sin[α] 2 } y Operacje na zbiorach ReadList["Nazwa zbioru", "format"] ustawienie nazwy kartoteki ze zbiorem WriteList["Nazwa zbioru", "format"] ustawienie nazwy kartoteki ze zbiorem In[1]:=dane:=ReadList["e:\dane.dat", {Number, Number}] In[2]:=dane:=Import["dane.dat"] In[3]:=wykres = ListPlot[dane] Rzut ukośny, cd In[7]:= Solve[D[zasieg,α] 0,α] Out[7]:= {{α -2.35619},{α 0.785398},{α 0.785398}, {α 2.35619}} In[8]:= αmax=n[α//.%][[3]] In[9]:= α=αmax/pi*180. Out[9]:= 45 In[10]:= zasieg Out[10]:={0.0911312 v 2 }

Z. Postawa, "Podstawy Informatyki II" Strona: 9 z 9 Pole elektryczne jednorodnie naładowanej płaszczyzny θ d l θ r In[1]:=Remove["Global`*"] In[2]:= de:=1/(4*pi*ε0)*σ*ds*cos[θ]/l^2 In[3]:= l:=d/cos[θ] In[4]:= ds:=2*pi*r*dr*dφ In[5]:= dφ:=1/(2 Pi) In[6]:= r:=d*tan[θ]; dr:=d[r,θ] In[7]:= E calk =Integrate[dE,{θ,0,Pi},{φ,0,2 Pi}] de dϕ de Out[2]:= σ/ε 0 Rozpraszanie 2 2 2 ( A sin θ ) ) 1/ 2 cosθ1 ± 1 E1 E0 1 A m2 =, gdzie A = + m1 In[1]:= e0:=100; m2=108 (*Srebro *); m1=40 (*Argon *); In[2]:= A:=m2/m1 In[3]:= e1[θ _]:=e0 ((Cos[θ Degree]+Sqrt[A^2-Sin[θ Degree]^2])/(1+A))^2 In[4]:= Plot[Evaluate[e1[x]],{x, 0, 90},AxesLabel {"Angle (degrees)","kinetic energy (ev)"}] Manipulate - interakcja Manipulate[wyr, {x,x0,x1}] pozwala na interaktywną zmianę parametrów zmiennej x w wyrażeniu wyr, w zakresie of x0 do x1 In[1]:=Manipulate[ Plot[e0*(((Cos[x] - Sqrt[a1^2 - Sin[x]^2])/(1 + a1))^2), {x, 0 Degree, 90 Degree}, AxesLabel -> {"Angle (rad)", "Kinetic energy (ev)"}], {a1, 1, 10}] Programowanie w Mathematice To już we własnym zakresie lub na ćwiczeniach